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This is the second of two papers dealing with the dynamics of semi-infinite crystal lattices. The present
paper is concerned with the small-amplitude vibrations of the atoms in a semi-infinite crystal lattice, with a
free boundary, about their actual static equilibrium positions. The static equilibrium configuration (at zero
temperature) of such a lattice was discussed in the first paper. The normal modes of the semi-infinite lattice
are derived in a harmonic approximation. These modes are represented as linear combinations of elementary
bulk modes and elementary surface waves, the latter having a wave vector whose component normal to the
surface is complex. All the elementary modes which specify a given normal mode have the same frequency,
and the same two-dimensional reduced wave vector h, . The normal modes are again classified into "bulk
modes" and "surface modes. "The latter represent a vibrational state, consistent with a free boundary, in
which the displacements decrease essentially exponentially with the distance from the free boundary. The
dispersion relation of the surface modes is discussed in some detail. The theory is developed in terms of the
complex vibrational energy-band structure. The approach is related to Heine's analysis of generalized Bloch
functions in terms of the complex electronic energy-band structure.

I. INTRODUCTION

~ 'HIS is the second in a series of two papers dealing
with the dynamics of semi-in6nite crystal lattices.

In the first paper' we considered the static equilibrium
con6guration of such a lattice. In the present paper we
consider the dynamics of small-amplitude vibrations
of the lattice particles about their static equilibrium
con6guration in a semi-in6nite lattice with a free
boundary.

In the last few years there has been a considerable
increase in the interest in surface phenomena in crystal-
line solids. Among these there are some which are ideally
suited to study the equlibrium configuration of the
physical boundary layer and its effect on the vibrational
spectrum of the crystal. Examples of such phenomena
are the diBraction and thermal diffuse scattering of low-

energy electrons from a single crystal and the Moss-
bauer effect from a nucleus in the boundary layer. In
order to extract from these experiments as much in-
formation as possible concerning the surface structure
and its vibrational effects, we need a formulation of the
dynamics of semi-infinite crystal lattices which is con-
ceptually simple, and most transparent in its formal
conclusions. It is, however, not necessary that this
formulation be particularly suitable for a pri ori
calculations.

The classical theory of lattice dynamics was formu-
lated by Born and von Karman, ' and extended by Born
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tems Command, U. S. Air Force, with the Department of Elec-
trical Engineering, University of Minnesota, Minneapolis,
Minnesota.

'T. E. Feuchtwang, preceding paper, Phys. Rev. 155, 715
{1967).

~ M. Born and T. von Karman, Z. Physik 13, 297 (1912).
3 M. Born and K. Huang, Dynamical Theory of Crysta/ Lattices

{Oxford University Press, New York, 1954).

and Huang, ' Leibfried, ' Ludwig and Leibfried, ' and
Maradudin, Montroll, and Weiss. ' An outstanding ad-
vantage of this theory is its formal simplicity. This fea-
ture of the theory follows primarily from the imposition
of the so-called periodic boundary conditions on the
lattice, which in effect restrict the theory to in6riite
crystals; hence it can only apply to the analysis of bulk
sects.

The effect of surfaces on the dynamics of solids was
first investigated by means of the elastic-continuum
model. These investigations were primarily extensions
of Rayleigh's original work on surface waves in aniso-
tropic elastic medium. 7 During the last two decades,
several investigations of the surface eGects on the dy-
namics of crystal lattices have been reported in the
literature. Lederm ann established that vibrational
states with energy in intervals which are forbidden by
periodic boundary conditions may exist. The nature of
these so-called surface modes was examined in consider-
able detail by Lifshitz, ' who used Green's-function tech-
niques, originally developed for the discussion of local-
ized-impurity —induced vibrational modes. Similar tech-
niques were used by Maradudin and Wallis in their
analysis of surface contributions to the low-temperature

G. Leibfried, in Handbuch der I'hysik, edited by S. Flugge
(Springer-Verlag, Berlin, 1955), Vol. VII, Part I, p. 104.

G. Leibfried and W. Ludwig, in Solid State I'hysics, edited by
F. Seitz and D. Turnbull (Academic Press Inc. , New York, 1961),
Vol. 12, p. 275.' A. A. Maradudin, E. W. Montroll, and G. H. Weiss, in Solid
State Physics, edited by F. Seitz and D. Turnbull (Academic Press
Inc. , New York, 1963), Suppl. , Vol. 3.

7 Lord Rayleigh, Proc. London Math. Soc. 17, 4 (1887);
Stoneley, Proc. Roy. Soc. (London) AB23, 447 (1955);J.L. Synge,
J. Math. Phys. 35, 323 (1957).' W. Ledermann, Proc. Roy. Soc. (London) A182, 362 (1944).

I. M. Lifshitz and L. N. Rosenzweig, Zh. Eksperim. i Teor.
Fiz. 18, 1012 (1948); I. M. Lifshitz, Nuovo Cimento Suppl. 3,
732 (1956).
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speci6c heat. '0 Wallis and co-workers have used a less
formal approach to calculate explicit dispersion relations
for surface modes. Those workers used rather simple
explicit models which they analyzed numerically. "This
work was discussed by Maradudin in a comprehensive
review article. "All of this work explicitly neglects the
fact that the harmonic approximation for the vibra-
tional states of the semi-in6nite solid refers explicitly
to small-amplitude vibrations about the equilibrium
con6guration of the semi-infinite lattice. More precisely
it is assumed that the latter does not di6cr signi6cantly
from the corresponding con6guration for the in6nitc
lRttlcc. ID fact, only rcccntly hRS thcrc been Rny Rt-

tempt to consider the equilibrium structure of the free
surface of a semi-in6nite lattice. This investigation was
based, however, on a one-dimensional monatomic
model. "In the present paper we wish to formulate the
harmonic approximation for the semi-in6nitc lattice on
the basis of our analysis of the static equilibrium con-
6guration of this system, which was made in the 6rst
paper of this series. '4 The theory is kept as general as
possible, and involves only the assumption that the
effective interparticle interaction has some unspecified
6nite range. We propose to derive convenient formal
expressions for the normal modes of the semi-infinite
crystal lattice with a free boundary, without having to
resort to Green's-function techniques. That is, we obtain
explicit expressions for these modes, rather than their
integral representation. The advantage of this formula-
tion is manifest. We shall also consider in some detail
the forrnal structure of the dispersion relations for sur-
face modes, a problem which has not yet received suffi-

cient attention.
In a forthcoming paper we propose to apply our re-

sults to a theory of the thermal disuse scattering of low-

energy electrons.
The model on which our theory is based is described

in detail in the 6rst paper of the series. ' In Sec. II, we
shall therefore restrict ourselves to a brief statement of
our assumptions. We then proceed to formulate the
harmonic approximation for the semi-infinite lattice.
SpcclRl RttcD'tlon ls given 'to thc pi oper boulldRry coD-
ditloQS to bc 1mposcd Rt Rll 1116nltc dlstRilcc from thc
free boundary. In Sec. III we go through a preliminary
analysis of the model. In Sec. IV we determine the
normal modes of the semi-in6nite crystal lattice. The
results are summarized and discussed in Sec. V.

"A. A. Maradudin and R. F. Wallis, Phys. Rev. 148, A962
(1966).

"D. C. Gazis, R. Herman, and R. F. Wallis, Phys. Rev. I19,
533 {1960);S.C. Clark, R. Herman, and R. F. Wallis, D9, A860
(1964); D. C. Gazis and R. F. Wallis, J. Math. Phys. 3, 190
(1962).

"See Ref. 6, Chap. V, Sec. 5.
"D.C. Gazis and R. F. Wallis, SUrface Sci. 3, 19 (1964).
'4 In the following vie shall refer to this paper (Ref. 1) as I.

II. FORMULATION OF THE HARMONIC
APPROXIMATION FOR SEMI-INFINITE

CRYSTAL LATTICES

3

R(m) =P a;m;, m~, mg=0, +1, &2

F3=0, I, 2.

The basis vectors ai, a2 are the primitive translation
vectors for the planes parallel to the boundary. The
third basis vector a3 is orthogonal to a), and a~ (that is,
a3 is normal to the boundary surface). Usually this con-
vention makes the unit cell spanned by aq, a2, a3
Donprlmltlve.

R(p), where p=1 . s, refers to the position of the
pth atom in that unit cell of the in6nite lattice which
includes the point R(0,0,0). The mass of this atom is
M„. The vector U(m, y) is the static displacement of
the p,th atom in the mth unit cell of the infinite lattice,
which occurs upon the creation of a free boundary at
ns3= 0.

These static displacements are de6ned by the equi-
librium conditions,

~(rnql)) ~r(m, y) ~Cfro, x) I (R(l,x))

ele2=0+I +2 ~ ~ ~

nba=0 2 3

p I ~ 0 ~ $

(23)

r(I, &,)=R(I,X)+u(I,X), (24)

and. C ((r(I,X))) is the potential energy of interaction of
the semi-infinite lattice in the configuration:

(r(I,X); l),12=0+1, &2,
lg ——0, 1, 2, ; p=1, ~, s) . (2.5)

We make the following assumptions:

(1) The magnitude of the relative static displace-

In this section we wish to formulate the harmonic ap-
proximation for the semi-in6nite lattice. That is, we are
conccrDcd with low-cQcrgy cxcltRtloIis of thc scmi-
in6nite crystal lattice, characterized by the fact that
the atoms undergo small, time-dependent displace-
ments n(m, p) from their static equilibrium positions,
R(m, u).

The static-equilibrium positions were discussed in I.
However, in order to make the present paper reasonably
self-contained, we shall explain brieRy the notation
which was introduced in Sec. II of Paper I, and restate
the basic assumptions of our model of the semi-in6nite
crystal lattice.

We write the static equilibrium positions R(m, p) in
the following form:

R(m, p) =R(m)+R(p)+U(m, p),
where
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ments of the atoms in adjacent cells is small compared to
tlM dimension of the unl't ccLL.

(2) The potential energy of interaction of the semi-
in6nite lattice in the nonequilibrium con6guration,
{U(lvX)}=0, divers from the potential energy of inter-
action of the particles in the upper half of the infinite
lattice (m0~)0), in the same configuration, by terms of
the third order in the relative static displacements; that
1S, wc assume,

4({U(l,X)}=0)—C (")({R{1)+RP)})=0((aV)0}. (2.6)

Here C'(")({R(l)+R(X)})is the potential energy of inter-
action of the particles in the upper half of the in6nite
lattice, l3~& 0.

(3) The range of the effective interatomic interac-
tions is 6nite. The precise mathematical formulation of
this assumption is given below.

The small displacements u(I, X) of the atoms from
their static-equilibrium positions lead to an increase of
the potential energy of interaction above the value it
assumes in the static equilibrium configuration. In the
harmonic approximation, we assume that this change
in the potential energy of interaction is a bilinear form
in the displacements, which can be written in the form

C'({l(1~)})—C'0

numbers. It will be understood that these factors are
abSOrbed in the funCtiOnS I;(m, )r) and 11;(n,v). A1SO, We

shall require the limit &;, q; ~ 0+ to be taken at the end
of any calculation involving the series in Eq. (2.7).
This hmit is trivial as far as Eq. (2.8) is concerned:
—C';, (m,p; n, v) represents the ith component of the force
acting on the particle located at R(m, )M) due to a unit
displacement, along the j axis, of the particle located
at R(n, v), and thus is a manifestly finite and well-

defined quantity. A similar comment obviously applies
to Eq. (2.9) and all other infinite series in the following

discussion. These series always represent the net 6nite
force acting on a particular particle.

In order to proceed, we shall assume that C'({r(1,X})
satisfies the three assumptions listed above. We can
therefore expand the matrices %' in a formal power
series in the set of static displacement U(I,X).

Thus,

% (m, )M v nvv) ='I)(mvP
v nvv)

+ P P P Le(m, )r, n, v; l,X)
ZI, Zg=oc Z3=0 X=1

gee(m, „;n, ', I,) )]U(l,)()+" . (2.9)

~(m);nv)=&R(-, .)&R(...)c(")I(U(),.))=0, (2»)
%,,(m, p; n, v) e(m, p; n, v; I,)}

+R(m, v) 4(n, v)+R(l, x)c I (U(l, x))=0v (2.11)

X(N, (m, )r}—u;(n, v)}'. (2.7)

Here r and u are defined by Eqs. (2.1), (2.2), and (2.4).
The matrix

%'(m, y, ; n, v)

~r(mp)~r(nv)c I (vox)) (R(1 x) ) =F (nvv v mvtr) v (2 g)

and we have explicitly used the equilibriom conditions
Eq. (2.3).We shall use Eq. (2.7) to derive the equations
of motion for the semi-in6nite lattice. This will be done
in Sec. III. The rest of this section is devoted to a dis-

cussion of the matrices %'(m,p; n, v) entering Eq. {2.7),
dtoade' atio f theb d y diti st be

imposed on the displacernents u(m, )(r}.

It is clear that the multiple infinite series in. Eq. (2.7)
is purely formal. In fact, since Eq. (2.7) represents a
term in the potential energy of a many-particle system,
it is proportional to the number of particles and hence
it diverges. We are, however, only interested in the d'-
pendence of the potential energy on the quantities
II,(m, p), and not with the numerical value of the series;
hence we may impose a summation convention using

exponential convergence factors of the form

exp{—P 0;lm;I },exp{—P fU, ln;I },

where 0&e;,g,&&1;i= 4, 2, 3 are arbitrary small positive

N{m,)r; n, v) =0,
lf onc of thc following 1ncqualltlcs appllcs:

(2.13)

lm,—~, I&fI,+I; i=i, 2, 3.
Also,

e(m, )r; n, v; I,X)=0= ()riv(m, p; n, v; 1,)), (2.15)

if one of the following inequalities applies:

l~' —~'l, l~'—1'I l~' —1'I &II'+I

Our assumptions concerning the potential energy of
interaction imply a number of constraints on the
quantities '4(m, )(r; n, v), %(m,)1 Il,v', 1,x), aiid 8e'{m,p'

n, v, l,X). Some of these relations are listed below. The
proof of these relations is given in Appendix A of I.

We note that if m3 and e3&II3, then the matrices

W(m, p; n, v) are the harmonic coupling (or force) con-
stants introduced in the ordinary theory of in6nitc
crystal lattices. 4 ' Similarly, if ns3, e3, and t3 are all

&2H0, then the quantities N(m, p; n, v;1,X) are the
ordinary third-order (harmonic) constants of the in-

l)rIv(m, )r; n, v; 1,),)
)tR(m, n)~R(n, v) 7R(l, i)(C ~ ) I (U(I,X))=0~ (2 12)

We now can make more precise our assumption (3),
concerning the 6nite range of the CQective interatomic
interaction. We shall assume that
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8e'(In, p; n, p)=0, if tIss or tss&2IIs. (2.18)

This assumption is convenient, though not essential.
It can be weakened by including the eRect of 8@ if
tsss or tss&pBs —1, where p=integcr&2.

Ke next note that

c;,(m, la, n, p) = 4@(np; m, ts)
=Crt(0)0qfÃs)pi NI tssr) tss tw2) tss) p) i

ma or @3&.H3
=C„(o,p; n—m, p); ttss and Ns~&Hs. (2.19)

The first equation in Eq. (2.19) follows from the
de6nition of the matrices 4 as mixed second derivatives.
The second equation follows from assumptions (2) and
(3) above, and the invariance of the function C ~~& under
a translation by a lattice vector R(m) parallel to the
boundary plane. Wc shall 6nd it convenient to exhibit
the symmetry of the matrices W explicitly in our nota-
tion, by introducing the variables h;=e;—m;,

c',,(In,ts; Il,p)=—4;;(hr, ks, ttss, tss& p,p);
ma or ma(H3

=—C';t(h; p,p); tls and tss) Ps. (2.20)

Turning 'to 'tile matrices 8+(Ill,ts; Ill p), wc sce tllat be-
cause of the form of the static displacements, discussed
in the 6rst paper, we have

8%(alttsI)astnsqtls)Jfl i aINI)astss)tssqp)

= 8%(0~0)tÃs~tsi alhr, aslss~tss)p)

=—he(a, k, ,ashs., ttss, ms+hs, p, ,p), (2.21)

Igg S$ Sg'$p Z fp 2 p

6nite lattice. If, however, one of the indices m3, e3,
l3&HS, then these anharmonic constants diRer from
those in the infinite lattice.

We shall rewrite Eq. (2.9) in the form

%'(In,p, ; n, p) =e'(In, p, ; n, p)+ii4 (nI, ts; n, p). (2.17)

The IDR'tI'lccs 8% RccouIlt fol two lclRtcd though dis-
tinct, boundary CGccts. Both effects are due to the
relaxation of the atoms from their static-equibbrium
positions in the infinite lattice. First we have an an-
hRI monic cRcct lIlvolvlng thc coupling const Rnt

N(m, Is; n, p; 1,X). Next we have to account for the pos-
sibility that the dependence of C on the atomic positions
may be RRected by the creation of a free boundary. Ac-
cording to assumption (2), above, C —C'~"&=0((AU)s),
and consequently the coeKcicnts 8+(m, ts;n, p; I,X) do
not necessarily vanish. If we invoke the assumed 6nite
range of the interatomic interaction, we may expect these
coeS.cients to have an appreciable value only if at least
two of the indices ms, m3, l3 are less than II3. YVC showed
in I that the static displacements U decrease roughly
exponentially with the distance from the free boundary,
hence we shall make the "working approximation"

If n;& j., e.g., for Ge and Si, it is convenient to relabel

the functions de6ned on the semi-in6ni. te lattice by in-

troducing the larger two-dimensional unit cell spanned

by (alai asas) havlllg (alass) atoms pel uIllt cell. We
shall, in this case, use the convention that the new func-

tion E' is related to the old function Ii by the relation

F (tll, ttss, ttss& ts= p +pl+ ps)
=P(ttsr+Plttss+Ps~ ttss~ ts ) ) (2.23)

whcl c

0&p,=integer&a, —1; i=1, 2 (2.24)

(2.25)

In the following wc shall assume such a relabeling to
have been performed whenever necessary. It should be
noted that whenever 0.~ and o.2 are both equal to u»ty',
the neglect of the matrices 84 in Eq. (2.1'/) should not
lead to serious errors. However, whenever one or both
of the n's is larger than unity, the neglect of the Inatrices
8C should lead to qualitatively wrong results, be-

cause of the fact that quasiharmonic force constants
%'(In,p;n, p) are not invariant under the full two-

dimensional translation (symmetry) group of the har-

monic force constants +(In,p; n,p)."
In order to complete the formulation of the harInonic

Rppro&imation fol 'thc dynamics of thc scIQl-ln6nltc

crystal lattice, we have to specify the boundary condi-
tions to be imposed on the displacements n(m, is). In
order to eliminate the eRect of boundaries in the two
unbounded dimensions, I and 2, wc impose the conven-
tional periodic boundary conditions on the dependence
of u on the variables m~, m2. At the boundary plane
ns~=o we shall impose free-boundary conditions. That
is, we shall assume that there are no external forces act-
ing on any particle. The mathematical statement of
these conditions will be given in the next section. The
only boundary conditions that require some discussion
are thus seen to be those to be imposed at an in6nitc
distance from the free boundary, i.e., vrhcn mg ~ 00.

In general, the choice of boundary conditions is dic-

tated by the use to be Inade of the results, and the case
of obtaining a formal solution of the problem posed. Our

principal concern is the cRect of a single free boundary
in modifying the functional form of the vibrational
modes characteristic of the in6nite lattice subject to
periodic boundary conditions. This suggests that we

» The matrices @(m,p, n, p) are the harmonic force constants
of the semi-infinite lattice. However, vrhen they are expressed in
terms of the force constants of the in6nite lattice, they include
anharmonic contributions, hence the designation quasiharmonic,
as distinguished from the matrices %(m,p', n, n) vrhich are essen-
tially the harmonic force constants of the in6nite lattice,

and the static displacements have the symmetry,

U(0,0,tns, p) = U(alttsr, asttss, ttss, p);
tts =0 +1 ' ar=lnteger+1 ~ (2'22)
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impose on the semi-infinite lattice the following set of
quasipcriodic boundRry conditions:

u(m, p)=v(m, p)+w(m, p); ms)2HS, (2.26)

where v satisfies the periodic boundary conditions,

v(m~, m2, ma+iVg, p) =v(m~, m2, mg, p), (2.27)

with Es an arbitrary, though 6xed, large positive in-

teger, and the limit E3~ ~ is understood.
On %' wc impose thc condition

hm ~w;(m„m„m„&)~=0 if v=—0,
M3 ~oo

=M( ~ if VQO. (2.28)

When v/0, it is a plane wave with a group velocity
whose 3-component is v, ,~(v(m, p)). In this case we irn-

pose on w the additional condition that lim, „w is to
be a sum of plane waves, such that the sign of the 3-
component of the group velocity of each wave is
—sgnv, ,s(v(m, p)). We include here the case where

&,,3(v(m, p)) =0. Thus we see that w may be thought of
as the scattered wave associated with the incident wave
V.

Physically thc preceding boundary conditions rcQcct
the interpretation of the semi-in6nite lattice as an in-
6nite lattice (subject to periodic boundary conditions)
ln'to which a f1cc boundRI'y 1s intI'oduccd by means of 'thc

thought experiment outlined in Sec. II of Paper I. The
modi6cations of the modes, v, of the periodic lattice by
means of the free boundary is completely speci6ed by
the scattered wave w.

Mathematically, the quasiperiodic boundary condi-
tions are a device to select a countable subset from the
continuous spectrum associated with the standard
homogenous boundary condition for unbounded do-

mains, i.e., the requirement that the vibrational modes
be bounded at in6nity. Such a restriction of the spec-
trum is essential in view of the physical requirement that
the vibrational spectrum of a discrete system, consist-

ing of a countable number of particles, be a countable
set.

We shall see that, in practice, quasiperiodic boundary
conditions are readily imposed. Furthermore, the dis-

creteness of the spectrum may in general be ignored, a
situation familiar from the conventional dynamics of
in6nite lattices, subject to periodic boundary conditions.
In conclusion we note that the boundary conditions ex-

plicitly allow for the occurrence of vibrational modes
which have no counterpart in the in6nite lattice;
namely, nontrivial solutions for which v=—0, and for
which

hrn w~(my)m2~mg)p) =0= hI11 N~(ml)mt)m8)p) .

cV„u(m, &; ~ )
+I r t|2 ~ +3=0

+M(m, p; n, p)fu(n, p; aP), (3.1)

ms= +Ha.

The boundary conditions imposed on this set are, at
the free boundary,

M „u(m,p, (o')a)'= Q P g Le(m, p, n, ~)
v=1 nI, nm=oo n3=0

+~~'(m~pi n)&)3u(n)"i ~ ) i (3 2)

m3=0 . B3—j,

At an in6nite distance from the free boundary, we im-
pose quasiperiodic conditions,

u(m, pi Go )=v(m, p; &0 )+w(m, p, &v ), m3) 2&3,

v(myim2|mappq Gl )= v(my)m2~m3+iV3)pi 6) ) q

lorn iu;(mx, m2, ma, p) i
=0, v—=0

=cV& ~, v/0. (3 3)

Here, X3 is an arbitrary but very large integer, and
the limit E3—+ ~ is understood. When vp0, then
lim, „„wis a sum of plane waves. The group velocity
of each of these waves has a 3-component whose sign is
the negative of the sign of the 3-component of the group
velocity of v.

Finally, we impose periodic boundary conditions in
the two unbounded, j. and 2, dimensions:

u(my, m2, map; N )=u(mg+Ey, m2+Eg~ me, p; 0) ), (3.4)

where Sq and F2 are arbitrary though 6xed integers,
and the limit E;—+ oo is understood.

Ke now take advantage of the invariance of the
boundary-value problem under a translation by a lat-
tice vector parallel to the boundary; that is, when

2 2

R(m, ) =Q u;a;m; —t P n;a, (m,+h;)

= R(m, +h, ); h, =0, 1, ~ . (3.5)

III. PRELIMINARY ANALYSIS OF THE
EQUATIONS OF MOTION

A. The Equations of Motion

Using &qs. (2.7), (2.8), (2.17), and (2.18) we can now
write the time-Fourier transformation of the classical
equations of motion fol 'the scII11-1n6nltc lattice as a sct
of partial-diBerencee quations for the s three-dimen-
sional vectors u(m, p, ; ra'),

These solutions are, in the terminology of scattering
theory, states bound at the boundary; that is, they
represent surface waves.

Hence, we write

M ' 'u(m p'ru')=e'"& &)u{m p'u k ') (3.6)
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88,(~„n,; k,)

=(M M)-II' Q 84 "(h1h2mgms PI)e'"'"I"»
Ag, lg ao (3 14)

f~:;=integer,

a2+a3

ag a2&ae

aagay

a2 a3&aj

—14k =—&j.
/V;

(3.7)

(3.8)

Equations (3.9) and (3.10) are Inanifestly similar to
Eqs. (3.8) and (3.9) of Paper I.This suggests that the
dynamical equations be analyzed by the technique ap-
plied in I to the static equations. Following the proce-
dure described in Sec. III of I, we extract from Eq. (2.8)
a set of difference equations with constant coeKcients,

The rational numbers kq, kg are the components of
a vector in a two-dimensional reciprocal space. This
vector is restricted to lie within the 6rst Brillouin zone
of the two-dimensional reciprocal lattice spanned by

&,(X2

The substitution indicated by Eq. (3.6) reduces Eq.
(3.1) to a set of 3s-coupled ordinary difference equations

Ss m3+H3

[8 .(ms, n3,.~',k,)
@=1 n3=m3—H3

+88..(ma, n3, k,)7N.(mg, (u', k,)=0; (3.9)

ys3&H3 x=1 . 3s

These equations are subject to the following boundary
conditions:

es m3+&3

If=1 F3=0

+ 88.,(m„ii„k,)]u,(e3,. or', k,)=0, (3.10)

m=0 . H3—I sr=I . 3s

and the quasiperiodic conditions

N. (iN3,
. (o',k,)=I,(ms, ~',k,)+II.(ns3, ~',k„),

mg&2H3,

v.(m3+Xg, (o',k,)=I.(ma, o)',k,),

(my)
X (exp{27rikg &"};M', k,)I

—
~
exp{27rik3«'tnt}, (3.16)

where q(g) is the multiplicity of the root exp{2Irika«&}
of the characteristic equation,

det[8 (s2wiks. ~2 k )] 0 (3.17)

and g now runs only over distinct roots of Eq. (3.17).
The matrix e in Eq. (3.17) is defined by the relation

H3

8,(em~'"3. io~ k )= p 8 (h ~ ~s k )&2~II313 (3 13)

If exp{2'.ika«I } is a simple root of Fq. (3.17) then the
3s-dimensional vector u«) is the null vector of the
matrix 6(exp{2vrika'&&}; co', k,), i.e.,

38 H3

8 .(h3, co',k,)N.(m,+h, ; ra', k,)=0;
e 1 h3~H3

ma&2H3, m =1, ~ ~ ~

) 3s. (3.15)

We can write the general solution of this set of equations
as a linear combination of a set of 6sH3 linearly inde-
pendent elementary solutions, "'~ i.e.,

q«) —&

u (Ila, oP,kp)=p p c,, „(ro',k,)N, ,
«&

IA"hen v/0, then 11m~, ~ zv~ Is a s11111 of plaIle waves.
The group velocity of each wave has a 3-component
whose sign is the Dega, tive of the sign of the 3-component
of the group velocity of v.

The indices m, 0 are de6ned as follows:

s =3(Ii—1)+i, o.=3(1—1)+j. (3.12)

The matrices 6 and 58 are defined, using Eqs. (2.12)
and (2.22), by Eqs. (3.13) and (3.14):

8..(ma, ng,~',k,)

P 8,.(exp{2 iu «I};~,k,)~.~ &

l

X(exp{2Irik3«I} co~ k )=0. (3 ]9)

3s

The determination of the q linearly independent vectors
II~«' associated with a q-fold root of Eq. (3.17) is in-
dicated ln Appendix 8 of I.

To simplify our notation, we shall in the following
suppress the factor 2m in the exponentials. We shall also
restrict ourselves to the general case where Eq. (3.17)

[C„(hI,~„~„.,;,.)
AI, hm~oo

X8 8i re@ &8~3 '+8 (3.13)

"Charles Jordan, Calczdns of FinAe Dgererzces (Chelsea Pub-
lishing Company, New York, I949), Chap. IX.

"Tomlinson Fort, F&uIe DzJferemes (Clarendon Press, Oxford,
England, 1948); J. J. Lander, Progress irI, Sold Slate Chemisiry
(Pergamon Press, Inc. , New York, 1965), Vol. 2, p. 26.
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has only simple roots. The effect and significance of
multiple roots will be discussed separately.

The coe%cients c,(&o',k,) appearing in Eq. (3.16) have
to be determined from the boundary conditions, Eq.
(3.11), and an auxiliary problem to be discussed in Sec.
IV. Before we proceed to this problem we shall briefly
indicate some general properties of the characteristic
equation (3.17), and of the elementary solutions of
Eq. (3.15).

B. General Properties of the Elementary
Solutions of Eq. (3.1S}

The symmetry of the matrices 6, indicated by Eq.
(2.19), implies that

$8 (si»4 ~ ~ k )]4 8 (s~». ~2 k )
=8 (e '" (o'—k ) (320)

Thus the generalization of Eqs. (3.25) and (3.26) of
Papel I ls

detL8, (e'»; ~',k,)]=0~ detL8..(e"&~ ~' k )]=0,
(3.21)

detL8, .{e"& o)' k )]=0&-+det/8. .(e-"3 (o' —kp)]=0.
(3.22)

Thus, we conclude that complex values of kg(ro', k,)
occur in conjugate complex pairs. Ke also note that
Eqs. (3.21) and (3.22) imply that

0=det/8 .(e'»; (o',k,)]&+ detL8, (e
—'"3~; o)',—kp)]=0.

(3.23)

This is a statement of the time-reversal invariance of the
full (time-dependent) dynamic problem. We note that
Eq. (3.17) is an unconventional way of defining the dis-
persion relation for the in6nite crystal, usually written
in the form

dett D .(k) —8..&e']=0. (3.24)

In fact, Eq. (3.22) is the generalization of the known
result,

~(k) =~(—k) (3.25)

to include complex values of k3.
At this point it should be noted that Eq. (3.17) de-

6nes the complex, 6sII3-valued algebraic function
exp(ika(co'; k,)} of the complex variable u' and the
pair of real parameters kl, k~. This rather obvious re-
mark may be used as a point of departure for an analysis
analogous to the dlscusslon of generalized Bloch func-
tions given by Heine" and Blount. " This analysis,
though somewhat tedious, sheds considerable light on
the analytic structure of the phonon energy function for

"V.Heine, Proc. Phys. Soc. (London) 81, 300 (1963).
' E.I. Blount, in SOHd State Physics, edited by I'. Seitz and D.

Yurnbull I'Academic Press Inc., New York, I962), Vol. 13, Ap-
pendix C.

the infinite crystal. Another important consequence of
this analysis is the elucidation of the analytic depend-
ence of the elementary solutions of Eq. (3.15) on the
parameter M'. This is an important result for the deriva-
tion of the Green's (Inatrix) function for the semi-
in6nite lattice. The details of the above analysis will
be given in another publication. Here we only wish to
list the main results which will be used below.

The 6sII3 branches of the algebraic function
exp(i&a(&a'; k,)} can be defined in such a way that if
Q) +0& then

IITlk3(g)(0 fol g= ~QSB3' ' (3.26)

-gk3«) ——&&

0 for g= +3sH3 ~1, (3.27)

Imka«) =0.
These statements can be conveniently visualized in
terms of one-dimensional sections of the (complex)
3s-valued phonon energy function:

cv=G)~(kai kp= coils't)) I= iq ' ' ') 3s.

This algebraic function is the inverse of the 6sB3-valued
function exp{ik3(&o', k,)}.The constant value of k, is
clioscli so as 'to satlsfv Eq. {3.7), and ika ls defined as 'tile

principal value of lnLe'»(aP k )].
As & ranges along the real axis from 0 to inIj.nity, the

gth branch of ka(&u', k,) may assume real values over
one or more ~ intervals. Over such an interval, k3«)
traces out a portion of the one-dimensional section of
the energy function, which is bounded by two extrema,
at which

8(cv') BQ)—= 2ia& exp( —ik} =0. (3.28)
8(exp(ik}) 843

If the gth branch of ka assumes real values over two dis-
connected, real, au intervals, then it joins two branches
of the phonon energy function ro(k8, k, =const) along
a path in the complex k3 plane. Along this path, M as-
sumes real values.

It is not necessary that every branch of k3(o&',

k, =const) assume real values over some real cv interval.
Furthermore, it is possible that for some particular value
of k k =k "& no branch of k3(co' k &I&) assumes real
values as co ranges over some given co interval, although
some or all branches will assume real values over the
same ~ interval when k, = k, "'. An example of this is
provided by the acoustic bands of a solid. Here, if
k, = 0, several (namely six) branches of k3(o&'; 0) assume
real values over an interval extending to co =0. However,
for any other value of k„ there is always a frequency
(dI(kp)) 0 sllcll 'thRt, ovci 'tllc ill'tcl'VRl

t 0)(0I(kp)] Iio
branch of k3{a&; k,) assumes real values. Stated differ-
ently, there is no normal mode of the inCinite lattice
which has a frequency &. cvI(k, ) and a component of the
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/
optical
bonds

acoustico[
gz t bonds

FIG. 1. Hypothetical one-
dimensional section of a pho-
non-energy function for k, =0.
Solid lines indicate branches of
k3(»(co', k,) with index g(0.
Dashed lines indicate branches
of ka (Go kp) with index g &0.
Heavy lines are in the plane
k3 real, co real, light lines are
out of this plane. For light
dashed lines, Imkg«)(0, for
light solid lines, Imkl«) &0.
Arrows identify the sense in
which the several portions of
the one-dimensional sections
of the allowed phonon energy
bands are traced out by
ka(» (a), kp). k3«» and kg«»
join an acoustical and an opti-
cal band, along a path on which
Imk3«' /0. Note that since
k, =0, (k)= (—k).

Hence,

[bs[ks=a
.c„'(k,/[k, [)

(3.30)

cot(k,)= smallest of the three numbers

c„(k,/it, [) [k, [,
It can also be shown that for a 6xed value of k„

each energy band is traced out by an even number of
branches of the function ks(cus, kp= const), half of which
are characterized by [Bks"t/ctco] ')0. That is, the
group velocities of the elementary solutions (which are
equal to the normal modes of the infinite lattice) corre-
sponding to these values of ks(~';kp) have a positive
3-component.

Figures 1 and 2 illustrate the preceding remarks with
the help of a hypothetical dispersion relation. Such plots
were obtained numerically by Gazis and Wallis for a
one-dimensional diatomic lattice. "

Finally we remark that Eq. (3.20) implies that the
roots of the characteristic equations,

det[8, (exp{iks); co', +kp)]=0, (3.3I)

are connected by the relation

exp{iks«»(ld'; k )—) „exp={i [ks—«»(co'; k,)]*),
(3.32)

where, in general, g~~g2. Hence, if these roots are sim-

ple, we also have

N. (ezp{iks«" ((o' kp)); lo', kp)
= [N,(exp{—ik[s'P" (td', k,)])*;co', —k,) )*

[si (=exp{.iks«»(ld —k')) i (os, —kp)]*. (3.33)
'0 See the third paper in Ref. 11.

wave vector parallel to the surface, which is equal to
k, . This can be seen from the fact that for this case, the
dispersion relation can be approximated by

co'(k) =c„'(kp/ ~kp ~) ~
k~ ', ts=1, 2, 3,

c„=velocity of sound, (3.29)
or

—1/2

The analog of this relation for the periodic factor in the
Bloch function is well known, at least for real values of
k3.

IV. DETERMINATION OF THE NORMAL MODES
OF THE SEMI-INFINITE LATTICE

Referring to our discussion in Sec. III B, we shall
distinguish three cases:

(i) "Bulk" modes. In this case, the frequency ~ lies
in one of the allowed bands of the one dimensional sec-
tion of the phonon-energy function specified by k,.Here
we may assume that the infinite lattice with periodic
boundary conditions has a vibrational mode character-
ized by the given values of co and kp or stated differ-
ently, (2tr) 'ks (io; k,) has at least two real values, one of
which is equal to a rational number in the interval
(——',, —,'). As a matter of convenience we restrict our-
selves to the general case where all of the real values
of ks(co', k,) are distinct. We also assume no accidental
degeneracy of the modes of the lattice with periodic
boundary conditions, i.e., only one value of ka equals 2x
times a rational number. "'We shall see that in this case
we can construct a vibrational mode of the semi-infinite
lattice which, at large distances from the free surface,
reduces to a sum of plane waves. We call such modes
"bulk" modes.

(ii) "Surface" modes In this cas.e the frequency td lies
in a forbidden band of the one-dimensional section of
the phonon-energy function specified by k,. The fre-
quency or may in fact lie in an absolutely forbidden band,
but this is not necessary. In this case all values of
ks(sos, kp) are complex, and we shall see that surface
modes may exist for such frequencies.

(iii) Frequetscies at which ks(co; k,) has real muttip/e
vatles. Here we are concerned only with multiple values
associated with extrema in the allowed bands of the one-

~'Note added irl proof. This simplifying assumption will be
dropped in the latter part of the discussion.
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FIG. 2. Hypothetical one-
dimensional section of a pho-
non energy function for k, &0,
hence co{ha, hp)~co( —ke, kp).
For co &co~ all branches of
03{co', k,) are complex. See the
caption for Fig. 1 for additional
comments.

dnnens~onal section of the phonon-energy function. We
shall see that, in general, if the infinite lattice, with
periodic boundary conditions, has a vibrational mode
at such an extremal frequency, then the semi-infinite
lattice does not have a mode at that frequency.

A. Bulk Modes

Suppose that for some given set of values (oI',k,},2p
branches of ks(oI', k,) assume real values. Suppose fur-
ther that one of these 2P values of (2gr) 'k3(oI2; k,), say
the gth, is a rational number in the interval (——',, 2),
and that according to our labeling convention, Kqs.
(3.26) and (3.27), g) 0. Then we can clearly satisfy the
quasiperiodic boundary conditions with

u.(me, og', k„g)=E,(oI',k,)(u.«'(exp(iks«'}; og', k,)

ycxp(ik8«&ma}+ P Egg (o&',kg)u, I"&
g'=SaII3

)&(expfikg«'I}; oI',kg)expfikg«'Ims} j; ma&283
(4.1)

H g&0, then the sum with respect to g' in Eq. (4.1)
1llIls ovcl 'tile 3$Hg —p llcgatlvc lndlces wlllcll label com-
plex values of kg (with positive imaginary parts) and
the p-positive indices labeling real values of kg.

In Eq. (4.1), Eg(Ig', k,) is a normalization constant, to
be dIscussed below. Tllc coefllclcnts Rgg~{o) )kg) llavc to
be determined from the continuity conditions

u.{mg, og', k„,g) =u.~(mg, oI', k„g);
m=28', , 38g—1, gr=1, , 3s. (4.2)

The functions u ~(mg, oI',k„g) are solutions of the
auxiliary problem speciflcd by Eq. (3.10) and the 3s83
equations obtained from Eq. (3.9) when 83&mg
&2BS—i. Proceeding as in Sec. III of paper I, it is a
simple matter to derive a set of 9sH3 linear equations for

(u,s(ms, I',k„g);
ms ——0, , 28g —1, gr=1, , 3s},

P 3I,(og', k,)Rg, (oI',k,)
y=l

=u.(~' k„g).n=1 9sHS. (4.3)
HeI"e~

n=3sm8+gr; 0&mg&38g 1, n=—1, , 9sHs, (4.4)

p =3$na+0'i 0&e3&2H3—1, y=1, ~ ~, 6sB3,

=g'+9s83+1 y=6$83+1 9sHg (45)

(If g&0, we require a similar, though more complicated,
mapping of the 3sII3 indices g onto

y =6s83+1 9$8g.)

The 9sH3-dimensional matrix M ~ is defined by Eqs.
(4.6) and {4.7): For y=1, , 6$8g,

m. ,(~, k)=e..( „mn~', k,)+ae..(m, ,n„l,); (4.6)

For 7=6sII3+1, , 9s83,

3II,(o&',kg) =0; n=1, , 3sHg

e=l n3=2II3
0..(ng —mg) exp f ikg «'&ng}u. «'I

&& (exp fzkgI' }' og', kg); n= 3s83+1 9$8g. (4.7)

(R (oI' k ) ' g'= 3sIIg —1—}
Here, and in the following, we restrict ourselves, for

the sake of economy in notation, to the case where
g&0.

Introducing a more compact notation, we obtain the

following set of equations:
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The 9sHs-dimensional vector R,~(&os,k,) is defined by
Eq. (4.8):

Rs7(o&s,kp) =u ~(ms, o&s,k„,g); p=1, , 6sHs

=&Vs(o&,k„)Rss (o&s,kp); y=6sHs+1 9sHs. (4.8)

Finally,

u (o&s k )=0; n= 1, , 3sHs

exhibits an accidental degeneracy at {o&s,k,};i.e., more
than one branch of the function ks(o&s; k,) satisfies the
equation

(27r) 'ks's&(o&' k ) = r; r= rational number,
—-', &r &-,'. (4.15)

In that case a symmetric orthogonalization process leads
to the functions

38 Hg+m3

&Vs(o&'—k ) Q 8.,(Ns —ms, o&s,k,) u. (m„o&',kp, g)
cr 1 n3=2H3

Xexp{iks «&&ss}u, "'(exp {iks«' };oP,k,);
n= 3sHs+1, , 9sHs. (4.9)

Here we recall that

0.,(ms, sss, o&s, k,)+88 .(s&ss,sss, k,) =0,(sss m„—o&s k)

if both nz3 and e3&LIt3. In general,

=1V, (o&',k,)[u &0& (exp {its'"};o&',k,) exp {its "&ms }

Xexp{iks~»ms}+ Q R«, (o&s,k,)u. «'&

X(exp{iks&s'}; o&s,kp)exp{iks«'&ms}];

ms& 2Hs. (4.16)

Here g' ranges only over values for which

hence,
det[ M, ( o&,st)]NO;

gsHI

(4.10) Im[ks«'&(o&s k )])0

and we impose the orthonormalization conditions

g, (o&s,k,)R„,(o&s,kp) = Q (M ') ~ u, (o&s,kp) . (4,11)
a=3aH8 lim Q P e ""'[u.(ms., o&s,kp, g)]*

a~0+ 7r=l ma=0
If, for some particular choice of k„

det [M,( o&sk,)]=0, (4.12) Xu, (s&ss, o&",kp, g') = g(o&s—(g's)gg s, . (4.17)

then the homogenous matrix equation

9eHg

Q M, (o&s,kp)Rg, (o&s,kp) =0
7=1

(4.13)

has a nontrivial solution, which implies that there exists
a nontrivial solution of Eqs. (3.9) and (3.10) having the
form

The orthogonality of vibrational modes associated with
different values of or is proven in Appendix A. Thus, in
general, Eq. (4.17) just fixes the normalization constant
1V,(o&s,k,). However, in case of accidental degeneracy
of the periodic solutions of the infinite lattice, it pro-
vides a subsidiary set of relations, which together with
Eq. (4.3) suKce to determine the coeflicients in Eq.
(4.16).

u (ms, o&',k,) = Q cs. (o&s,kp)
g'=3sH3

Xexp{iks"'ms}u.«'&(exp{iks"'};o&',k,)h (4 14)

This solution violates the quasiperiodic boundary con-
ditions unless all 3sHs values of Iss(o&s; k,) entering the
sum with respect to g' are complex. In this case Kq.
(4.14) represents one of the surface waves to be discussed

below.
Physically, the exclusion of solutions of the form

indicated by Eq. (4.14) is based on the fact that if

the sum with respect to g' includes real values of
ks(o&s; k~), then these solutions imply a steady transport
of energy to infinity, and hence cannot represent sta-
tionary free vibrations of the lattice. This objection does

not apply when the real values of ks(o&s; k,) are such
that [Blss«'&/Bo&(o&', k,)] '=0. As we shall see below,

this represents the limiting case of an "unlocalized"
surface wave.

The discrete index g in Eq. (4.1) is redundant unless

the infinite lattice with periodic boundary conditions

The Zero-PrequerIcy I.im@

In the preceding we explicitly excluded the zero-
frequency limit. This limit will now be considered. It is
physically obvious that there exist trivial zero-frequency
modes, namely the three linearly independent transla-
tions, and the three linearly independent infinitesimal
solid-body rotations. This result follows immediately
from the invariance of the force acting on a given par-
ticle under an arbitrary infinitesmial translation and/or
infinitesimal rotation of the entire lattice. " The six
trivial zero-frequency modes are the only "vibrational"
modes of the infinite lattice which are unaffected by the
free boundary. These modes are the elementary solu-
tions of Eq. (3.15) belonging to the sixfold root,
exp{iks(&us=0, k, =0}=1,of the characteristic equa-
tion (3.17). All other zero-frequency roots of Eq.
(3.17) correspond to complex values of ks. Hence any
nontrivial zero-frequency mode would represent a static

"An analysis of this invariance is given in Appendix A of
Paper I.
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displacement of the type considered in Scc. III of I.
However, in the present case, the deformation has to
be out of the true static equilibrium configuration of
the semi-in6nite lattice and hence, couM only occur
under the inQucnce of an appropriate set of external
forces. This argument demonstrates that the semi-
inhnite lattice with a free boundary cannot exhibit non-
trivial zero-frequency modes. This is in fact a general
restriction to be imposed on any force-constant model.
This conclusion is equivalent with the requirement that
the zero-frequency limit of any lattice dynamics must
collcspond to thc clRstlc theory foI' Rn RpplopI'late coll-
tinuous, anistropic medium with corresponding bound-
ary conditions.

N, (ml, a&', k,)= P c,((s',kp)u„«&
g—3$II3

X(exp{ik1«&};o)',k,)exp{i', i &m, };m3&2H 3, (4'.18)

where the coefBcients c, have to be determined by a set
of continuity conditions, such as Eq. (4.2). Proceeding
as before, we obtain a set of 9sII3 linear homogeneous
cquRtlons of thc form

P M.,(a'; k,)c,(s)',k,)=0.
y=l

(4.19)

The matrix M, has been defined by Eqs. (4.6) and
(4.7). The 9sH3-dimensional vector c~ is defined by Eq.
(4.20):

c (co'k )=u ii(mg a&'k ) y=1 6sH3

=cg(a),kp); y=6sH3+1, , 9sH3.
(4.20)

Equation (4.19) has a nontrivial solution if, and only if,

det[M. ,(cu', k,)j=0. (4.21)

Thus we have to 6nd a simultaneous solution of Eqs.
(3.17), (3.18), (3.19), and (4.21). This gives us a
consistent set of values of o&',k, and k3«'(cu'; k,)
along with the corresponding elementary solutions
I (exp{iks«im&}) of Eq. (3.15). Whenever these sets
of values are such that cv'= ~.'&0, k, satisfies Eq. {3.7),
and all values of ke(co', k,) are complex, we can con-
struct a solution of our boundary-value problem in the
fol'111 indicated by Eq. (4.18). We do tllls by clloosiilg

{c,}to be a null vector of the matrix M„~(~',k,), i.e.,

Q M, (ra, ',k,)c,(i0,',k„)=0;7=1, , 9sH3 (4.22)

where aP=co, ' and k, area set of simultaneous solu-

B. Surface Modes

If for a given set of values {&u',k,} all of the 6sHg
branches of k1(~'; k,) are complex, then the function
v(m, p) appearing in Eq. {3.11) vanishes identically. We
now can satisfy the quasiperiodic boundary conditions
with

tions of Eqs. (3.1'7), (3.19), and (4.21). The charac-
tcl lstlc fcatul c of thc vlbI'RtlonR1 modes hRvlng thc
form indicated by Eq. (4.18) is that the amplitude of
the displacement of lattice particles from their static
equilibrium positions decreases, essentially exponenti-
ally, with the distance m3 from the boundary. Hence we
can consider the vibration to be localized or bound at
the surface. It is, however, important to realize that, in
general, the dependence of u on nse is neither a sim-
ple exponential, nor even monotonic: There is no
general restriction on the real part of the functions
k3«'(cv, '(k,); k,) which can, in fact, assume any value
in the interval (—~, ml.

The surface modes are square summable, and we im-
pose on them the orthonormalization

3$00
P [N.(ma, a&,2(k,),kp) j~

m'=1 mg=0

XN (ms, ar, '(kp), k,)= 8„,~ „„~. (4.23)

Since, for a fixed value of k„no surface-mode frequency
cu, can lie in one of the 3s intervals, co„(k,), in which the
bulk mode frequencies lie, the surface and hulk. modes
are mutually orthogonal, i.e.,

r, 2 [ -( 1; .'(k.)».)3'I-( 3; ',k„g)=0. (4.24)
m
——1 ma=0

%'e now turn to a brief discussion of some features of the
dispersion relation of the surface modes.

In Sec. III 3 we considered k3 to be an algebraic func-
tion of the variable co' and the 6xed pair of real param-
eters k,= 2m P; isa; 'b,k;. It is now convenient to ex-
tend our definition of ks, by treating exp{2m ik;};i = 1, 2
as two independent variables, ranging over the entire
complex plane. This involves a process of analytic con-
tlnuatlon starting with thc functions

A3«1(&o1; exp{21riki}=ci, exp{27rikg} = c2)

and continuing them first over the exp{2~pi} pla~~ and
then over the exp{21rikm} plane. We need not be con-
cerned with the actual tedious process since wc are only
concerned with the formal result. Next wc note that the
vectors I '&'(exp{i@«1};&o',k„) are, by construction,
polynomials in the variables exp{ika«&} c0' exp{21riki}
and exp{2vrik1} Hence w. e find that the determinant,
det[M„„(c0',k,)j, can be considered a polynomial in the
variables:

~
q exp{27'Ski}, exp{21r$k2},exp{2gripg«&(~1; exp{2~i/i}

exp{2mik~})};g= —3sH„
This suggests that we interpret Eqs. (3.17), (3 18) and
(4.21) as the implicit definition of the algebraic function

of the two complex variables exp{2~i',}
exp{27rfk2} Ill pal'tlcll. lai' we may consider
dimensional sections of this function

~,2(exp{2m +1};exp{21rik,}=c2),
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and its inverse expl 2~ik&(') (ei', exp {2iriks}=cs)].These
can be discussed in a manner similar to that outlined in
Sec.III B.%e are primarily concerned with those values
of

ki&'i= (2~i) ' principal values of lnLexp{2mik&i'&} j,
(4.25)

which lie on a line segment contained in the first Bril-
louin zone, Rnd for which at least one branch of the
function s&,'l exp(2vriki}; exp(2~iks}=csf is positive,
and for which all branches of ks"'(&u.') 0; k,) assume
complex values. The analyticity of Rll these functions
implies that such values of k~ cannot in general be iso-
lated points, i.c., that all kg on a subintervRl of the
above-mentioned segment have to satisfy our require-
ment. Clearly the preceding applies also to the case
%herc vte lx kq Rnd considcl k2 R variable. Kc also note
that, as a function of frequency, a given branch of klI')
assumes real values on intervals on the real co axis, which
are bounded by frequencies for which

-8Lexp(2~ik i&'&)]

&. Real Multiple Value of k, (es', p, )

We know from the theory of algebraic functions that
a real multiple value ks, s of the function ks(&o', k,) occurs
either lf

ci((s„') Bco~= —2&v„exp{—iks}
8(exp(iks}) s,=s, , ~~3 ks~k3, p

(4.28)

this line. This is because for this case the dynamical
pI'oblcIQ scpRIRtcs 1Dto t%'0 uncoupled sets of di6crencc
equations, one consist. ing of s equations, the other of 2s
equations. A particular example of such a case is con-
sidered by Gazis et at. 22 Finally, @re note that according
to Eq. (4.26), the point ki=p=ks, e~=0 is a lower
boundary of a surface band. More precisely, the zero-
frequency modes may also be interpreted as the zero-
frequency limit of surface modes (Rayleigh waves).
Here, as in the case of the unlocalized surface modes,
the imaginary part of at least one value of k3 tends to
zero at the band edge of the surface modes in question.
This is not generally necessary.

Now,

—Ica=oons i;

)&exp( —2s.ik i ~'i }
—km=const

(4.26)

oi if the derivative on the lef't side of Eq. (4.28) is un-
defined. ss Here e&„'(exp(iks}; k,) is one of the Bs
branches of the inverse of the function exp{iks(s&',k,)}.

In the 6rst case an allowed band of the one-dimen-
sional section of the phonon-energy function has an
extremum, i.e.,

Ok ('& 8k (')

0 3gII8 gP3~&&
(4.27)

Hence, at least tvro branches of k3 have the same value.
This multiple value of k3 may be real, in which case we
have the limiting case of an unlocalized surface mode,
mentioned in our discussion of Eq. (4.14).This type of
solution of the dynamic problem is analogous to a zero-

energy scattering resonance. Ke Qow recall that only
a dense subset of thc points k, in the first Brillouin zone
of the two-dimensional reciprocal lattice, spanned by
{ni 'bi, as 'bs}, are consistent with the periodic bound-
RI'y condltlons lInposcd 1Q thc 1 Rnd 2 dUIlcDsloDs. Wc
thus conclude from the preceding that the spectrum of
the surface modes is a dense subset of a sct of m intervals
(surface bands). Unlike the bulk-energy bands, the sur-
face bands are dc6ned only over subrcgions of the first
Brillouin zone. The preceding remark has to be further
quali6ed: H the two-dimensional Brillouin zone has lines
of symmetry, then it is possible that surface modes are
associated rvith a dense set of points along such lines,
but Dot with any points in a sector of the zone including

implies that Rt lcRst onc tcI'Ill ln thc summation on thc
right of Eq. (4.27) is in6nite, i.e., for example,

au & & au ()--'

-~~3 ~~ - k2-const

~ei~ jinks I &s=&s, o= 0 ~ (4.29)

(Bks «&/Be))-'
l „„,=0, (4.30)

"See the 6rst paper in Ref. 1I.
2' See K. Knopp, Theory of Functions (Dover Publications, Inc. ,

Neer York, 1947), Part II, Chaps. 5 and 6."C.Herring, Phys. Rev. 52, 365 (1937).

In the second case one or more bands have a common
point at (ks, s, k,).The nature of this point, i.e., the way
the bands diverge from a point of degeneracy can be in-
vestigated by means of standard techniques discussed
in the theory of algebraic functions, Such degeneracies
arise if the point (ks, s, k,) lies on a line of symmetry of
the first Brillouiri zone of the three-dimensional recipro-
cal lattice. For an arbitrary point (ks, s, k,) such degen-
eracies arc vanishingly probable, in the sense of Herr-
ing. "We shall not consider the degeneracy problem any
further, since it is a rather specialized problem requiring
consldcI'Rblc Rnd tcdlous Rnalytlc work.

Turning to the case where Eq. (4.29) applies, we shall
consider first the case where e~„(ks, k,) has an extremum
at R frequency mo, at which there exists a mode of the
in6nite lattice with periodic boundary conditions. This
implies that the extremum co~ of c0„(ks, lr, ) is assumed
at a rational value r of (2w) 'ks. We may assume that
r is a double value of ks(i0'; k,). In this case the quasi-
periodic boundary conditions can be satished. if, and
only if,
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for all real-valued branches of k3, and

det[M „(M',k,)]=0. (4.31)

Here the matrix M ~ is defined by Eq. (4.7). Thus we
see that if the semi-infinite lattice has a vibrational
mode of frequency co0, then this mode must be an un-
localized surface mode. Furthermore, according to Eq.
(4.30) this is possible only of &oo is an absolute extremum
of &o„(k&', k,), and if it is a boundary point of an interval
on the real co axis on which no branch of k3 has real
values. A completely different situation arises if
co„(k3=27rr; k,)=~0 and &oo is an extremum of ar„(k8', kv),
which, however, is assumed at some irrational value of
2x 'k3. In this case there exists at co0 a bulk mode, which
can be found by means of the normal procedure, i.e.,
Eqs. (4.3)-(4.9).

V. CONCLUSIONS AND DISCUSSION

It was stressed in the Introduction that our principal
concern is the formal characterization of the functional
form of the normal vibrational modes of a semi-infinite
crystal lattice. This result is of considerable interest in
the study of surface e6ects. As a particular example, we

may mention the thermal di6use scattering of low-

energy electrons.
The vibrational states of the semi-infinite lattice were

subjected to quasiperiodic boundary conditions at an
infinite distance from the free boundary. These bound-
ary conditions were discussed in Sec. II, where it was
shown that they emphasize the relation of the semi-
in6nite lattice to the in6nite lattice with periodic
boundary conditions. It was shown that the vibrational
modes of the semi-infinite lattice fall into two classes.

(1) The bulk modes can be expressed as a sum of a
plane-wave mode of, the in6nite lattice with periodic
boundary conditions, and a "scattered" wave. This
scattered wave reduces, at an infinite distance from
the boundary, to a 6nite sum of plane waves which do
not satisfy periodic boundary conditions. The group
velocities of these plane waves all have a component
normal to the boundary which has a sign opposite to the
sign of the corresponding component of the group ve-
locity of the plane wave satisfying periodic boundary
conditions.

Such a bulk mode exists for each frequency at which
the infinite lattice has a plane-wave vibrational mode,
provided this wave has a group velocity with a non-
vanishing component normal to the boundary. In gen-
eral, no "bulk" mode exists at a frequency at which the
plane wave, satisfying periodic boundary conditions,
has a group velocity with a vanishing component normal
to the boundary. The exception to this rule is when the
bulk mode reduces to a so-called unlocalized surface
mode. These modes reduce, at an in6nite distance from
the boundary, to a set of plane waves, each of which has
a group velocity with a vanishing component normal
to the boundary.

(2) The second class of modes are the surface modes.
These modes have a vanishing amplitude at an in-
finite distance from the boundary. They consist of a
sum of plane waves whose wave vector has a com-
plex component normal to the boundary. The imaginary
part of this component of the wave-vector is positive.
No general restriction is imposed on the real part of this
component of k. It was shown that the surface modes
have frequencies which form a dense subset of continu-
ous intervals or surface bands. The dispersion relation,
i.e., the dependence of the frequency of the surface
modes on the transverse wave vectors k„was consid-
ered. It was shown that for a fixed-transverse wave
vector kp the frequencies of the surface modes lie in
intervals which have at most their endpoint in common
with the intervals in which there exist frequencies of
bulk modes with the same value of kp. A somewhat more
complete study of the dispersion of the bulk modes was
undertaken. This study was based on the interpreta-
tion of the phonon-energy function at a fixed value of
k„as an algebraic function of the complex variable
exp(ika). This procedure follows a similar analysis, by
Heine, of the energy bands of Bloch electrons.

The entire analysis assumed a finite, though arbi-
trary, range of the eGective interparticle interaction and
hence the results are rather generally valid. However,
there is considerable scope for further analysis of the
analytic properties of the dispersion relations of the two
classes of modes. This holds in particular for the surface
modes. Another problem being investigated is the use
of the thermal di6use scattering of low-energy electrons
to study the dispersion relation of the surface modes.

APPENDIX: PROOF OF THE ORTHOGONALITY
OF THE NORMAL MODES [EQ. (4.59)]

In this Appendix we shall prove the orthogonality of
those solutions of Eqs. (3.9), (3.10), and (3.11) which
correspond to diferent values of co'. This result follows
from the symmetry of the equations of motion, or more
precisely, from the Hermitian character of the bound-
ary-value problem.

Consider the expression

S(ea,g8)= Q Q e ""'[I (mg a)" k )]*
n3, m3=0 x,o=1

XC (m8, nl, k,)e &'"&u,(na, co',k,), (A1)
where

4..(m8, na , k,).
C',,(m,p; n, v)exp(ik, R(h, )). (A2)

hghm ro

The matrices C'g(m, p; n, v) are defined by Eq. (2.11).I (ms', ~",k,) and I (na,'co', k,) are solutions of the
boundary-value problem belonging to diGerent values
of ie'. 0( es, gq«1, are arbitrary but fixed small, positive
numbers.
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The exponential convergence factors ensure the ab-
solute convergence of the two infinite sums over m3 and
ss3 Hence, the order of these sums is immaterial. Sum-
ming first over e3 and cr, we may safely set q3

——0, for
the series is convergent. Hence, we obtain

On the other hand, we can check directly that we re-
quire in (A1) only one convergence factor. That is,

S(eg~ga) =S(ca~0)=S(0,eg). (A6)

Hence subtracting Eq. (A.3) from Eq. (A.4), we obtain

S(e3,0)= Q P e "»'$u. (mg,. u)" k )]*
+=1 m3~0

XLa)'u (ma, (o',kp)]. (A3)

Similarly, if we sum first over m3 and ~, we obtain

3s 00

S(0,ga)= P Q e»"'u. (n3, ca', kp)

Q —(~~2 ~2) P P e c3»—3[u (ma. ~12 k )]4
1 m3=0

Xu.(m„M2; k,) (A7)
or

3S 00

P e ""'Lu.(ma (o" k )]*u.(ma (o',k,) =0
m
——1 m3=0

v=1 n3=0 if
X ((o"u.(n3,.I",k,)]*, (A4) (A8)

but the dummy variable q3,e3,a- can clearly be replaced
by ez,map. . Furthermore, &o" is real. Hence, Eq. (A4)
reduces to

3S 00

S(0,e3)=(o" P P e ""'Lu.(m3, (o" k )]*
+=1 m3=0

Xu.(ma, (o',k,). (A5)

and, since ~3 is arbitrary, we can now go to the limit
e3~0+. This proves Eq. (4.17) for ao'W&o'2. A similar
analysis leads to the proof of the Dirac delta-function
normalization indicated in Eq. (4.17). We note here
that the entire limiting procedure can be dispensed
with when u is a surface mode, for then the e's them-
selves are exponentially bounded.

PH YSICAL REVIEW VOLUM E 155, NUMBER 3 1$ MARCH 1967

Current Saturation and Trap-Controlled Electron Drift Mobility
in Photoconductive CdSt
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Current saturation due to acoustic oscillations in CdS is observed, both in a transverse mode and in a
longitudinal mode. The most pronounced saturation occurred in the transverse mode, although the applied
dc field was parallel to the c axis, and one should expect saturation mainly in the longitudinal mode. A
method for determining the threshold field for oscillation, utilizing the buildup time for current saturation
under applied pulsed dc electric field, is discussed. The threshold field is used to determine the electron
drift mobility for photoconducting CdS in the temperature range from 204 to 438'K. The temperature de-
pendence of the mobility can be described as a combination of scattering from lattice vibration and trapping
from two impurity levels, e&=0.02 eV with density N1=6)&10' cm I and c2=0.1 eV with density N&=8X10'
cm ', and is given by

1.28X10'T '&

1+1420& 3~e0 0»&&+189+—3»e0 1~&&

I. INTRODUCTION
' 'N their theoretical analysis of acoustoelectric ampli-
~ ~ fication in piezoelectric semiconductors, Hutson and
White" indicated that trapped charge could have a large
inQuence on the propagation constants, but made no
use of this concept in their experimental verification of
acoustoelectric amplification in CdS.' Several authors~'
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have ignored this effect, while others have given the
effect an extensive treatment. ' Moore and Smith'
have considered the effect of traps on acoustoelectric
current saturation in CdS, I,nd have shown that the
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