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This is the second of two papers dealing with the dynamics of semi-infinite crystal lattices. The present
paper is concerned with the small-amplitude vibrations of the atoms in a semi-infinite crystal lattice, with a
free boundary, about their actual static equilibrium positions. The static equilibrium configuration (at zero
temperature) of such a lattice was discussed in the first paper. The normal modes of the semi-infinite lattice
are derived in a harmonic approximation. These modes are represented as linear combinations of elementary
bulk modes and elementary surface waves, the latter having a wave vector whose component normal to the
surface is complex. All the elementary modes which specify a given normal mode have the same frequency,
and the same two-dimensional reduced wave vector k,. The normal modes are again classified into “bulk
modes” and “surface modes.” The latter represent a vibrational state, consistent with a free boundary, in
which the displacements decrease essentially exponentially with the distance from the free boundary. The
dispersion relation of the surface modes is discussed in some detail. The theory is developed in terms of the
complex vibrational energy-band structure. The approach is related to Heine’s analysis of generalized Bloch
functions in terms of the complex electronic energy-band structure.
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I. INTRODUCTION

HIS is the second in a series of two papers dealing
with the dynamics of semi-infinite crystal lattices.
In the first paper! we considered the static equilibrium
configuration of such a lattice. In the present paper we
consider the dynamics of small-amplitude vibrations
of the lattice particles about their static equilibrium
configuration in a semi-infinite lattice with a free
boundary.

In the last few years there has been a considerable
increase in the interest in surface phenomena in crystal-
line solids. Among these there are some which are ideally
suited to study the equlibrium configuration of the
physical boundary layer and its effect on the vibrational
spectrum of the crystal. Examples of such phenomena
are the diffraction and thermal diffuse scattering of low-
energy electrons from a single crystal and the Moss-
bauer effect from a nucleus in the boundary layer. In
order to extract from these experiments as much in-
formation as possible concerning the surface structure
and its vibrational effects, we need a formulation of the
dynamics of semi-infinite crystal lattices which is con-
ceptually simple, and most transparent in its formal
conclusions. It is, however, not necessary that this
formulation be particularly suitable for e prior:
calculations.

The classical theory of lattice dynamics was formu-
lated by Born and von K4rmén,? and extended by Born

* Sponsored by Aeronautical Systems Division, Air Force Sys-
tems Command, U. S. Air Force, with the Department of Elec-
trical Engineering, University of Minnesota, Minneapolis,
Minnesota.

1;(’51‘7.) E. Feuchtwang, preceding paper, Phys. Rev. 155, 715
( ? M. Born and T. von Karmén, Z. Physik 13, 297 (1912).

3 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
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and Huang,® Leibfried,* Ludwig and Leibfried, and
Maradudin, Montroll, and Weiss.® An outstanding ad-
vantage of this theory is its formal simplicity. This fea-
ture of the theory follows primarily from the imposition
of the so-called periodic boundary conditions on the
lattice, which in effect restrict the theory to infinite
crystals; hence it can only apply to the analysis of bulk
effects.

The effect of surfaces on the dynamics of solids was
first investigated by means of the elastic-continuum
model. These investigations were primarily extensions
of Rayleigh’s original work on surface waves in aniso-
tropic elastic medium.” During the last two decades,
several investigations of the surface effects on the dy-
namics of crystal lattices have been reported in the
literature. Ledermann established that vibrational
states with energy in intervals which are forbidden by
periodic boundary conditions may exist.? The nature of
these so-called surface modes was examined in consider-
able detail by Lifshitz,? who used Green’s-function tech-
niques, originally developed for the discussion of local-
ized-impurity—induced vibrational modes. Similar tech-
niques were used by Maradudin and Wallis in their
analysis of surface contributions to the low-temperature

4 G. Leibfried, in Handbuch der Physik, edited by S. Fliigge
(Springer-Verlag, Berlin, 1955), Vol. VII, Part I, p. 104.

5 G. Leibfried and W. Ludwig, in Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic Press Inc., New York, 1961),
Vol. 12, p. 275.

6 A. A. Maradudin, E. W. Montroll, and G. H. Weiss, in Solid
State Physics, edited by F. Seitz and D. Turnbull (Academic Press
Inc., New York, 1963), Suppl., Vol. 3.

"Lord Rayleigh, Proc. London Math. Soc. 17, 4 (1887);
Stoneley, Proc. Roy. Soc. (London) A323, 447 (1955); J. L. Synge,
J. Math. Phys. 35, 323 (1957).

8 W. Ledermann, Proc. Roy. Soc. (London) A182, 362 (1944).

9 1. M. Lifshitz and L. N. Rosenzweig, Zh. Eksperim. i Teor.
Fiz. 18, 1012 (1948); I. M. Lifshitz, Nuovo Cimento Suppl. 3,
732 (1956).
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specific heat.!® Wallis and co-workers have used a less
formal approach to calculate explicit dispersion relations
for surface modes. Those workers used rather simple
explicit models which they analyzed numerically.!* This
work was discussed by Maradudin in a comprehensive
review article.!? All of this work explicitly neglects the
fact that the harmonic approximation for the vibra-
tional states of the semi-infinite solid refers explicitly
to small-amplitude vibrations about the equilibrium
configuration of the semi-infinite lattice. More precisely
it is assumed that the latter does not differ significantly
from the corresponding configuration for the infinite
lattice. In fact, only recently has there been any at-
tempt to consider the equilibrium structure of the free
surface of a semi-infinite lattice. This investigation was
based, however, on a one-dimensional monatomic
model.!® In the present paper we wish to formulate the
harmonic approximation for the semi-infinite lattice on
the basis of our analysis of the static equilibrium con-
figuration of this system, which was made in the first
paper of this series.!* The theory is kept as general as
possible, and involves only the assumption that the
effective interparticle interaction has some unspecified
finite range. We propose to derive convenient formal
expressions for the normal modes of the semi-infinite
crystal lattice with a free boundary, without having to
resort to Green’s-function techniques. That is, we obtain
explicit expressions for these modes, rather than their
integral representation. The advantage of this formula-
tion is manifest. We shall also consider in some detail
the formal structure of the dispersion relations for sur-
face modes, a problem which has not yet received suffi-
cient attention.

In a forthcoming paper we propose to apply our re-
sults to a theory of the thermal diffuse scattering of low-
energy electrons.

The model on which our theory is based is described
in detail in the first paper of the series.! In Sec. II, we
shall therefore restrict ourselves to a brief statement of
our assumptions. We then proceed to formulate the
harmonic approximation for the semi-infinite lattice.
Special attention is given to the proper boundary con-
ditions to be imposed at an infinite distance from the
free boundary. In Sec. IIT we go through a preliminary
analysis of the model. In Sec. IV we determine the
normal modes of the semi-infinite crystal lattice. The
results are summarized and discussed in Sec. V.

( ;06 A) A. Maradudin and R. F. Wallis, Phys. Rev. 148, A962
1966).

1D, C. Gazis, R. Herman, and R. F. Wallis, Phys. Rev. 119,
533 (1960); B. C. Clark, R. Herman, and R. F. Wallis, 139, A860
El9g%§; D. C. Gazis and R. F. Wallis, J. Math. Phys. 3, 190

1962).

12 See Ref. 6, Chap. V, Sec. 5.

13D. C. Gazis and R. F. Wallis, Surface Sci. 3, 19 (1964).

14 Tn the following we shall refer to this paper (Ref. 1) as I.
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II. FORMULATION OF THE HARMONIC
APPROXIMATION FOR SEMI-INFINITE
CRYSTAL LATTICES

In this section we wish to formulate the harmonic ap-
proximation for the semi-infinite lattice. That is, we are
concerned with low-energy excitations of the semi-
infinite crystal lattice, characterized by the fact that
the atoms undergo small, time-dependent displace-
ments u(m,u) from their static equilibrium positions,
R(m,u).

The static-equilibrium positions were discussed in I.
However, in order to make the present paper reasonably
self-contained, we shall explain briefly the notation
which was introduced in Sec. II of Paper I, and restate
the basic assumptions of our model of the semi-infinite
crystal lattice.

We write the static equilibrium positions R(m,u) in
the following form: '

R(m,u)=R(m)+R(u)+U(m,y), 2.1)
where
R(m)=28‘, agms, mme=0, =1, £2
¥=l (2.2)

m3=0, 1, 2.

The basis vectors aja, are the primitive translation
vectors for the planes parallel to the boundary. The
third basis vector a; is orthogonal to a; and a, (that is,
a3 is normal to the boundary surface). Usually this con-
vention makes the unit cell spanned by ai, as, as
nonprimitive.

R(u), where u=1, - -, s, refers to the position of the
uth atom in that unit cell of the infinite lattice which
includes the point R(0,0,0). The mass of this atom is
M,. The vector U(lm,u) is the static displacement of
the uth atom in the mth unit cell of the infinite lattice,
which occurs upon the creation of a free boundary at
m3=0.

These static displacements are defined by the equi-
librium conditions,

W(mp)=Vmn®| carni=tran=0,
'ml,m2=0:l:1, :i:z,' cey

ms=0,2,3, -+, (2.3)
p=1, e,
where
r(LA)=R{AN)+ud,)), (2.4)

and ®({r(I,\)}) is the potential energy of interaction of
the semi-infinite lattice in the configuration:

{r(LN\); l,le=021, £2, -+
l3=0, 1, 2, ..';“’=1} . ..,s}.

We make the following assumptions:

(2.5)

(1) The magnitude of the relative static displace-
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ments of the atoms in adjacent cells is small compared to
the dimension of the unit cell.

(2) The potential energy of interaction of the semi-
infinite lattice in the nonequilibrium configuration,
{U(,)\)}=0, differs from the potential energy of inter-
action of the particles in the upper half of the infinite
lattice (m3>0), in the same configuration, by terms of
the third order in the relative static displacements; that
is, we assume,

(UM} =0)—2“{RD+RN)})=0((a0)). (2.6)

Here ®@({RI)4+R(\)}) is the potential energy of inter-
action of the particles in the upper half of the infinite
lattice, 13> 0.

(3) The range of the effective interatomic interac-
tions is finite. The precise mathematical formulation of
this assumption is given below.

The small displacements u(l,\) of the atoms from
their static-equilibrium positionslead to an increase of
the potential energy of interaction above the value it
assumes in the static equilibrium configuration. In the
harmonic approximation, we assume that this change
in the potential energy of interaction is a bilinear form
in the displacements, which can be written in the form

({r(,))})— 2o

0 0 8 3
:% Z Z Z \I/'ij(mﬂ"; na”)
mime=— o ma,ns=0v,pu=14j=1

n1,n2

X (i) —ui(np))*. (2.7)

Here r and u are defined by Egs. (2.1), (2.2), and (2.4).
The matrix

W (m,pu; n,v)
= r(m,n)vr(n.v)q)l {r(l.)\))={R(l,)\)}=‘FT<n7V; m)“) b) (28)

and we have explicitly used the equilibrium conditions
Eq. (2.3). We shall use Eq. (2.7) to derive the equations
of motion for the semi-infinite lattice. This will be done
in Sec. III. The rest of this section is devoted to a dis-
cussion of the matrices W'(m,u; n,v) entering Eq. (2.7),
and to a derivation of the boundary conditions to be
imposed on the displacements u(m,u).

It is clear that the multiple infinite series in Eq. (2.7)
is purely formal. In fact, since Eq. (2.7) represents a
term in the potential energy of a many-particle system,
it is proportional to the number of particles and hence
it diverges. We are, however, only interested in the de-
pendence of the potential energy on the quantities
au;(m,u), and not with the numerical value of the series;
hence we may impose a summation convention using
exponential convergence factors of the form

3 3

exp{— X e|m.|}, exp{—

t=1 1=

n’ilﬂ'il}y
1

where 0< e;,7:<1; i=1, 2, 3 are arbitrary small positive
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numbers. It will be understood that these factors are
absorbed in the functions #;(m,u) and #;(n,v). Also, we
shall require the limit e;, 7, — 0% to be taken at the end
of any calculation involving the series in Eq. (2.7).
This limit is trivial as far as Eq. (2.8) is concerned:
—&;;(m,u;n,») represents the sth component of the force
acting on the particle located at R(m,u) due to a unit
displacement, along the j axis, of the particle located
at R(np), and thus is a manifestly finite and well-
defined quantity. A similar comment obviously applies
to Eq. (2.9) and all other infinite series in the following
discussion. These series always represent the net finite
force acting on a particular particle.

In order to proceed, we shall assume that ®({r(1\})
satisfies the three assumptions listed above. We can
therefore expand the matrices W in a formal power
series in the set of static displacement U(L,)).

Thus,

T(m’ﬂ; H,V) = (I)(mﬂ" > n;”)

+ Z et [‘I’(m,u; ny; l;>\)
U1,lg=—00 I3=0 =1
+6®(m,u; ny; LN JUAN) -+, (2.9)
Here,

W (m,u; 0,0) = Vemn Vr@n®® | tvani-o, (2.10)

(I)(m,p,; ny; l,)\)
= VR(@mw VR @ VR (1,0 2™ | twanyi=o, 2.11)

d®(m,u; nv; L)
= V(. VR VRan (2= ) [ toaayl=o.  (212)

We now can make more precise our assumption (3),
concerning the finite range of the effective interatomic
interaction. We shall assume that

@(m,pu; n,y)=0, (2.13)
if one of the following inequalities applies:
Iml—nr,|ZHz—|—1, 7:=1, 2,3. (214)
Also,
®(mpu; np; L\)=0=068(mpu; ny; 1)), (2.15)

if one of the following inequalities applies:

Our assumptions concerning the potential energy of
interaction imply a number of constraints on the
quantities @(m,u; ny), ®(mu; ny;LN), and 6®(m,u;
n,v; L)\). Some of these relations are listed below. The
proof of these relations is given in Appendix A of I.

We note that if ms and n3> Hj, then the matrices
®(m,u; n,y) are the harmonic coupling (or force) con-
stants introduced in the ordinary theory of infinite
crystal lattices.*~¢ Similarly, if ms, ns, and I3 are all
>2H;, then the quantities @(m,u;np;L\) are the
ordinary third-order (harmonic) constants of the in-
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finite lattice. If, however, one of the indices ms, s,
I3<H3, then these anharmonic constants differ from
those in the infinite lattice.

We shall rewrite Eq. (2.9) in the form

(2.17)

The matrices §® account for two related, though dis-
tinct, boundary effects. Both effects are due to the
relaxation of the atoms from their static-equilibrium
positions in the infinite lattice. First we have an an-
harmonic effect involving the coupling constant
@(m,u; ny; L,\). Next we have to account for the pos-
sibility that the dependence of ® on the atomic positions
may be affected by the creation of a free boundary. Ac-
cording to assumption (2), above, ®— P =0((AU)?),
and consequently the coefficients 6®(m,u;ny;1\) do
not necessarily vanish. If we invoke the assumed finite
range of the interatomic interaction, we may expect these
coefficients to have an appreciable value only if at least
two of the indices 3, n3, I3 are less than H;. We showed
in I that the static displacements U decrease roughly
exponentially with the distance from the free boundary,
hence we shall make the “working approximation”

W (m,u; n,)=®(m,u; n,v)+@(m,u; np).

5@(1’!1,#; n,v)=0, if mgz Or %3_>_ 2H;. (218)
This assumption is convenient, though not essential.
It can be weakened by including the effect of é® if
ms or ng< pHs—1, where p=integer> 2.
We next note that

q)'ij(m;”'; n;”) = q)if(nyy; mﬂu)

= 8;(0,0,m3,1; n1—m1, N3— M3, N3, ¥);
ms or ns<Hs
ms and n3> Hj.

= (I)i]'(onu‘; n—my"); (2'19)

The first equation in Eq. (2.19) follows from the
definition of the matrices ® as mixed second derivatives.
The second equation follows from assumptions (2) and
(3) above, and the invariance of the function ®®) under
a translation by a lattice vector R(m) parallel to the
boundary plane. We shall find it convenient to exhibit
the symmetry of the matrices @ explicitly in our nota-
tion, by introducing the variables %;=n;—m;,

q)ij(mal“‘; l'l,V) = q:'ii(hlyk%m&n% ”77’) >
ms or n3<Hs

'—_:<I’,-j(h;u,v); ms and 1132H3. (220)

Turning to the matrices 6@ (m,u; n,v), we see that be-
cause of the form of the static displacements, discussed
in the first paper, we have

5@(&1’%1,6!2”12,'}%3,”; aml,ozznz,ng,v)
= 3‘1’(0,0,’)%3,#; alhl,aghz,’ﬂs,v)
E5<D(a1h1,ot2h2; M3,M3+k3; p,v) y (2.21)
where

h,-=m—m,-; 1= 1, 2 ,
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and the static displacements have the symmetry,
U(O,O;mz; w= U(al’ml,otzmz,ms; ®);
m;=0, +£1, -+, a;=integer>1. (2.22)

If a;>1, e.g., for Ge and Si, it is convenient to relabel
the functions defined on the semi-infinite lattice by in-
troducing the larger two-dimensional unit cell spanned
by {aiai,a:a:} having (aics) atoms per unit cell. We
shall, in this case, use the convention that the new func-
tion F’ is related to the old function F by the relation

F'(ma, ma, ms, p=p'+ p1+ p2)

= F(my+pimatpa, ms, '), (2.23)
where
0<p;=integer<e,—1; i=1,2 (2.24)
W=1---,
p=1---oqass’'=s. (2.25)

In the following we shall assume such a relabeling to
have been performed whenever necessary. It should be
noted that whenever o; and as are both equal to unity,
the neglect of the matrices 6® in Eq. (2.17) should not
lead to serious errors. However, whenever one or both
of the o’s is larger than unity, the neglect of the matrices
é® should lead to qualitatively wrong results, be-
cause of the fact that quasiharmonic force constants
Y'(m,u;np) are not invariant under the full two-
dimensional translation (symmetry) group of the har-
monic force constants ®(m,u; nv).'

In order to complete the formulation of the harmonic
approximation for the dynamics of the semi-infinite
crystal lattice, we have to specify the boundary condi-
tions to be imposed on the displacements u(m,u). In
order to eliminate the effect of boundaries in the two
unbounded dimensions, 1 and 2, we impose the conven-
tional periodic boundary conditions on the dependence
of u on the variables m,m,. At the boundary plane
ms=0 we shall impose free-boundary conditions. That
is, we shall assume that there are no external forces act-
ing on any particle. The mathematical statement of
these conditions will be given in the next section. The
only boundary conditions that require some discussion
are thus seen to be those to be imposed at an infinite
distance from the free boundary, i.e., when mz— «.

In general, the choice of boundary conditions is dic-
tated by the use to be made of the results, and the ease
of obtaining a formal solution of the problem posed. Our
principal concern is the effect of a single free boundary
in modifying the functional form of the vibrational
modes characteristic of the infinite lattice subject to
periodic boundary conditions. This suggests that we

16 The matrices ¥(m,u; n,p) are the harmonic force constants
of the semi-infinite lattice. However, when they are expressed in
terms of the force constants of the infinite lattice, they include
anharmonic contributions, hence the designation quasiharmonic,
as distinguished from the matrices @ (m,u; n,y) which are essen-
tially the harmonic force constants of the infinite lattice.
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impose on the semi-infinite lattice the following set of
“quasiperiodic” boundary conditions:

u(m;u) = v(m,u)-l—w(m,p) ) ms>2H; ) (226)
where v satisfies the periodic boundary conditions,
v(mi, mz, my+Na, u)=v(my,me,map), (2.27)

with N3 an arbitrary, though fixed, large positive in-
teger, and the limit Nz — o is understood.
On w we impose the condition

lim |wi(mymemsu)| =0 if v=0,

m3 >0
=M<o if v#£0. (2.28)

When v£0, it is a plane wave with a group velocity
whose 3-component is v,,3(v(m,u)). In this case we im-
pose on w the additional condition that lim,.. W is to
be a sum of plane waves, such that the sign of the 3-
component of the group velocity of each wave is
—sgny,,3(v(m,u)). We include here the case where
v5,3(v(m,u))=0. Thus we see that w may be thought of
as the scattered wave associated with the incident wave
V.

Physically, the preceding boundary conditions reflect
the interpretation of the semi-infinite lattice as an in-
finite lattice (subject to periodic boundary conditions)
into which a free boundary is introduced by means of the
thought experiment outlined in Sec. II of Paper I. The
modifications of the modes, v, of the periodic lattice by
means of the free boundary is completely specified by
the scattered wave w.

Mathematically, the quasiperiodic boundary condi-
tions are a device to select a countable subset from the
continuous spectrum associated with the standard
homogenous boundary condition for unbounded do-
mains, i.e., the requirement that the vibrational modes
be bounded at infinity. Such a restriction of the spec-
trum is essential in view of the physical requirement that
the vibrational spectrum of a discrete system, consist-
ing of a countable number of particles, be a countable
set.

We shall see that, in practice, quasiperiodic boundary
conditions are readily imposed. Furthermore, the dis-
creteness of the spectrum may in general be ignored, a
situation familiar from the conventional dynamics of
infinite lattices, subject to periodic boundary conditions.
In conclusion we note that the boundary conditions ex-
plicitly allow for the occurrence of vibrational modes
which have no counterpart in the infinite lattice;
namely, nontrivial solutions for which v=0, and for
which

Lim w;(ma,me,me,u)=0= Hm wu;(my,me,ms,u)..

mg->c0 ma—>x

These solutions are, in the terminology of scattering
theory, states bound at the boundary; that is, they
represent surface waves.

DYNAMICS OF SEMI-INFINITE CRYSTAL LATTICE. II
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III. PRELIMINARY ANALYSIS OF THE
EQUATIONS OF MOTION

A. The Equations of Motion

Using Egs. (2.7), (2.8), (2.17), and (2.18) we can now
write the time-Fourier transformation of the classical
equations of motion for the semi-infinite lattice as a set
of partial-differencee quations for the s three-dimen-
sional vectors u(m,u; w?),

© mg+H3

M,,u(m,,u; w2)w2= Zs Z Z [‘D(mnu'; n:”)

v=1 n1,ng=—00 n3=0
+5‘1’(m;us ny”)]“(“;y; w?) ’
mz= 2 Ha .

(3.1)

The boundary conditions imposed on this set are, at
the free boundary,

ma+Hg

Mamu o)=Y Y 5 [Dmu;ny)

v=1 n1,ng=—c0 ng=0
+5‘I)(m:/-‘; n:”)]u(nay; w2) ’
m3=0, -+, Hs—1.

(3.2)

At an infinite distance from the free boundary, we im-
pose quasiperiodic conditions,

u(m,u; %)= v(m,u; &?)+w(muw?), ms>2Hs,
V(mymayma,u; w2 =v(myme,ms~+Nau; o2,

v=0

=M< >, v#0,

lim | w(m1,maeyms,u) | =0,

m3->0

(3.3)

Here, N3 is an arbitrary but very large integer, and
the limit N3— o is understood. When v#0, then
limmgae W is @ sum of plane waves. The group velocity
of each of these waves has a 3-component whose sign is
the negative of the sign of the 3-component of the group
velocity of v.

Finally, we impose periodic boundary conditions in
the two unbounded, 1 and 2, dimensions:

u(ml,M2,m3u; w?)= u('ml"_le matNo, ms, p; o), (3.4)

where Ny and N, are arbitrary though fixed integers,
and the limit N;— o is understood.

We now take advantage of the invariance of the
boundary-value problem under a translation by a lat-
tice vector parallel to the boundary ; that is, when

2 2
R(mp) =2 cam;— 3 aia,;(mi—l—h,,-)
i=1 i=1

=R(mﬂ+hﬂ): hi=0,1, «--. (35)
Hence, we write

M Pu(myp; o) =6l R@ou(map; wik,),  (3.6)
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where

2

1
kp=27l' Z _bikz’,

=1 Q;
K;
——1<k,-=]\—<1, k;=Iinteger, (3.7)
7i
and
azX as agXay
bi=—, by=——-—. (3.8)
a;-axXag az-azXay

The rational numbers ki, k2 are the components of
a vector in a two-dimensional reciprocal space. This
vector is restricted to lie within the first Brillouin zone
of the two-dimensional reciprocal lattice spanned by
{aflbl,aflbz} .

The substitution indicated by Eq. (3.6) reduces Eq.
(3.1) to a set of 3s-coupled ordinary difference equations

3s ma+H3g

PIEEDD

o=1 ng=m3—H3

[0ro(ms,ms; w2 k,)

+80r(mams; K,) Juuo(ms; w2 k,)=0; (3.9)

m,?,ZI{a, ™= 1, ttty 3s.

These equations are subject to the following boundary
conditions:

3s mgt+Hg

DI

o=1 n3=0

(00 (m3,m35 w2 k)

+80x5(ms,13; k) Jute(n3; 0%,k,) =0, (3.10)

my=0, +-+, Hy—1, 7=1, -+, 3s,

and the quasiperiodic conditions

u,,(ms; wz,kp) =Ur (m:i; wzykp)+ww(m3; w2ykk) ’
’WL32 2H3 ,

7hr(""%‘l’zvi‘l; w27kp) =‘U7r(7%3; w2,k,,) 3
and
lim |w.(ms; w2 k,)| =0, v=0

mg—>0

=M<w,v£0. (3.11)

When v£0, then limm,e - is 2 sum of plane waves.
The group velocity of each wave has a 3-component
whose sign is the negative of the sign of the 3-component

of the group velocity of v.
The indices =, ¢ are defined as follows:

r=3(u—1)+1i, o=3p—1+]. (3.12)
The matrices 8 and 80 are defined, using Eqs. (2.12)
and (2.22), by Egs. (3.13) and (3.14):

01r47(m3,”3 ;wz;kp)
= (M”My)—IIZ Z [‘iij(hlxk%m&”:i; /-‘)V)
h1,hg=—00

(3.13)

X ee RO —§; 8, 4Bmg,ng0? |,
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50,,,,(7%3,%3; kp)

= (MuMV)—I/Z Z

h1,hg=—c0

8By (hayha,mayma; uy)ee R
(3.14)

Equations (3.9) and (3.10) are manifestly similar to
Eqgs. (3.8) and (3.9) of Paper 1. This suggests that the
dynamical equations be analyzed by the technique ap-
plied in I to the static equations. Following the proce-
dure described in Sec. III of I, we extract from Eq. (2.8)
a set of difference equations with constant coefficients,

3s Hj
IS

o=1 hg=—H3

Bwa(h-'i; w27k9>u0(m3+k3; w2;kp) = O}

m:;EZH:g, 7r=1, crty 3s. (315)

We can write the general solution of this set of equations
as a linear combination of a set of 6sHj linearly inde-
pendent elementary solutions,6:17 i.e.,

a(g)-1
ur(ms; wik,)=3% 3 Co,p(@Ek,)tp, @
g p=0

m3

X (exp{2miks?}; w2,kp)(——-) exp{2wiks @ms}, (3.16)
?p

where ¢(g) is the multiplicity of the root exp{2mik;@}
of the characteristic equation,

det[, (e ;w2 k,)]=0, (3.17)

and g now runs only over distinct roots of Eq. (3.17).
The matrix 0 in Eq. (3.17) is defined by the relation

Hy
O0ro(e?™5; w2k, )= 3 Oro(hs; w?k,)e2mikshs,  (3.18)

h3=—H3

If exp{2niks?’} is a simple root of Eq. (3.17) then the
3s-dimensional vector u( is the null vector of the
matrix 0(exp{2mik;@}; wik,), i.e.,

3s
2 Oro(exp{2mwiks@}; w2 k,)u, @

=1
X (exp{2mik;@}; w2 k,)=0; (3.19)
=1, .-, 3s.

The determination of the ¢ linearly independent vectors
u,? associated with a g¢-fold root of Eq. (3.17) is in-
dicated in Appendix B of I.

To simplify our notation, we shall in the following
suppress the factor 2z in the exponentials. We shall also
restrict ourselves to the general case where Eq. (3.17)

16 Charles Jordan, Calculus of Finite Differences (Chelsea Pub-
lishing Company, New York, 1949), Chap. IX.

7 Tomlinson Fort, Finite Differences (Clarendon Press, Oxford,
England, 1948); J. J. Lander, Progress in Solid State Chemistry
(Pergamon Press, Inc., New York, 1965), Vol. 2, p. 26.
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has only simple roots. The effect and significance of
multiple roots will be discussed separately.

The coefficients ¢,(w?,k,) appearing in Eq. (3.16) have
to be determined from the boundary conditions, Eq.
(3.11), and an auxiliary problem to be discussed in Sec.
IV. Before we proceed to this problem we shall briefly
indicate some general properties of the characteristic
equation (3.17), and of the elementary solutions of
Eq. (3.19).

B. General Properties of the Elementary
Solutions of Eq. (3.15)

The symmetry of the matrices 0, indicated by Eq.
(2.19), implies that

[0 (es*; ""2;kp)]*= 0ox(e73; w2,k,,)
Z 6, (1 wi—k,). (3.20)

Thus the generalization of Eqgs. (3.25) and (3.26) of
Paper I is

det[0,,(e*3; w2 k,)]=0 <> det[0,,(e?*; w2 k,) ]=0,

(3.21)
and
det[0,,(e™3; w2 k,)]=0+«> det[6,,(e""*3; w?—k,) ]=0.
(3.22)

Thus, we conclude that complex values of ks(w?; k,)
occur in conjugate complex pairs. We also note that
Egs. (3.21) and (3.22) imply that

0=det[0,,(e"; w? k,) ] <> det[0,,(e~**; w?—k,)]=0.

(3.23)
This is a statement of the time-reversal invariance of the
full (time-dependent) dynamic problem. We note that
Eq. (3.17) is an unconventional way of defining the dis-
persion relation for the infinite crystal, usually written
in the form

det[ Do (K) — 8,.07]=0.

In fact, Eq. (3.22) is the generalization of the known
result,

(3.24)

w(k)=w(=k),

to include complex values of %s.

At this point it should be noted that Eq. (3.17) de-
fines the complex, 6sHj-valued algebraic function
exp{tks(w?; k,)} of the complex variable w? and the
pair of real parameters ki, ko. This rather obvious re-
mark may be used as a point of departure for an analysis
analogous to the discussion of generalized Bloch func-
tions given by Heine!® and Blount.} This analysis,
though somewhat tedious, sheds considerable light on
the analytic structure of the phonon energy function for

(3.25)

18V, Heine, Proc. Phys. Soc. (London) 81, 300 (1963).

¥ E. 1. Blount, in Solid State Physics, edited by F. Seitz and D.
Turnbull- (Academic Press Inc., New York, 1962), Vol. 13, Ap-
pendix C.
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the infinite crystal. Another important consequence of
this analysis is the elucidation of the analytic depend-
ence of the elementary solutions of Eq. (3.15) on the
parameter w?. This is an important result for the deriva-
tion of the Green’s (matrix) function for the semi-
infinite lattice. The details of the above analysis will
be given in another publication. Here we only wish to
list the main results which will be used below.

The 6sH; branches of the algebraic function
exp{iks(w?; k,)} can be defined in such a way that if
w?>0, then

Imk; @20 for g=<F3sHz --F1, (3.26)
and
Oks@ 71>
[ :I 0 for g=7F3sH; --F1, (3.27)
TW <
if

Imks@=0.

These statements can be conveniently visualized in
terms of one-dimensional sections of the (complex)
3s-valued phonon energy function:

w=wn(ks; k,=const), n=1, ---, 3s.

This algebraic function is the inverse of the 6sH;-valued
function exp{iks(w?; k,)}. The constant value of k, is
chosen so as to satisfy Eq. (3.7), and ik; is defined as the
principal value of In[e#*3(w?; k,)].

As w ranges along the real axis from 0 to infinity, the
gth branch of k3(w?; k,) may assume real values over
one or more w intervals. Over such an interval, k3@
traces out a portion of the one-dimensional section of
the energy function, which is bounded by two extrema,
at which

(w?) dw

——————=2iw exp{ —ik;}—=0,
a(exp{ik3}) ks
If the gth branch of %5 assumes real values over two dis-
connected, real, » intervals, then it joins two branches
of the phonon energy function w(ks; k,=const) along
a path in the complex k; plane. Along this path, w as-
sumes real values.

It is not necessary that every branch of ks(w?;
k,= const) assume real values over some real w interval.
Furthermore, it is possible that for some particular value
of k,, k,=k,™, no branch of k3(w?; k,) assumes real
values as w ranges over some given w interval, although
some or all branches will assume real values over the
same w interval when k,=k,®. An example of this is
provided by the acoustic bands of a solid. Here, if
k,=0, several (namely six) branches of £3(w?; 0) assume
real values over an interval extending to w=0. However,
for any other value of k,, there is always a frequency
wi(k,)>0 such that over the interval [0,wi(k,)] no
branch of k3(w; k,) assumes real values. Stated differ-
ently, there is no normal mode of the infinite lattice
which has a frequency < wi(k,) and a component of the

(3.28)
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Fic. 1. Hypothetical one-
dimensional section of a pho-
non-energy function for k,=0.
Solid lines indicate branches of
k3@ (w?; k,) with index g<0.
Dashed lines indicate branches
of k39 (w?; k,) with index g>0.
Heavy lines are in the plane
ks real, w real, light lines are
out of this plane. For light
dashed lines, Imk;(@ <0, for
light solid lines, Imks(@ >0.
Arrows identify the sense in
which the several portions of
the one-dimensional sections
of the allowed phonon energy
bands are traced out by

‘optical

wave vector parallel to the surface, which is equal to
k,. This can be seen from the fact that for this case, the
dispersion relation can be approximated by

w2<k)=cn2(kp/lkp‘)lkl 2, n=1,2,3,
cn="velocity of sound, (3.29)

or
2 1/2
bo|ba=t| ——— —|Kk,|2| . (3.30)
b |:o,ﬂ(k,,/|k,,|) | :I

Hence,

wi(k,)=smallest of the three numbers
C"(kp/lkpl)lkpl; n=1, 2: 3.

It can also be shown that for a fixed value of k,,
each energy band is traced out by an even number of
branches of the function k;(w?k,= const), half of which
are characterized by [0k;9/dw1>0. That is, the
group velocities of the elementary solutions (which are
equal to the normal modes of the infinite lattice) corre-
sponding to these values of k3(w?;k,) have a positive
3-component.

Figures 1 and 2 illustrate the preceding remarks with
the help of a hypothetical dispersion relation. Such plots
were obtained numerically by Gazis and Wallis for a
one-dimensional diatomic lattice.20

Finally we remark that Eq. (3.20) implies that the
roots of the characteristic equations,

det[6,,(exp{iks}; w?,£k,) ]=0, (3.31)
are connected by the relation
exp{iks 0 (0% —k,)} =exp{i—[ks? (% k;) ]*},
32)

where, in general, g17g,. Hence, if these roots are sim-
ple, we also have

u,(exp{iks @ (% k,)}; wrk,)
= [u (exp{—ik[s? (o?; k,) I} *; 0, — k) I*
= [u,(exp{iks "V (v*; —k,)}; w?,—k,) I*.  (3.33)
20 See the third paper in Ref. 11.

k3@ (w; k,). kslov and kalo»
join an acoustical and an opti-
cal band, along a path on which
Imk;@ 0. Note that since
k, =0, w(ks) =w(—ks).

The analog of this relation for the periodic factor in the
Bloch function is well known, at least for real values of
ks.

IV. DETERMINATION OF THE NORMAL MODES
OF THE SEMI-INFINITE LATTICE

Referring to our discussion in Sec. III B, we shall
distinguish three cases:

(2) “Bulk” modes. In this case, the frequency w lies
in one of the allowed bands of the one dimensional sec-
tion of the phonon-energy function specified by k,. Here
we may assume that the infinite lattice with periodic
boundary conditions has a vibrational mode character-
ized by the given values of w and k,, or, stated differ-
ently, (2m) %3 (w; k,) has at least two real values, one of
which is equal to a rational number in the interval

—%,%). As a matter of convenience we restrict our-
selves to the general case where all of the real values
of k3(w?; k,) are distinct. We also assume no accidental
degeneracy of the modes of the lattice with periodic
boundary conditions, i.e., only one value of k; equals 27
times a rational number.2* We shall see that in this case
we can construct a vibrational mode of the semi-infinite
lattice which, at large distances from the free surface,
reduces to a sum of plane waves. We call such modes
“bulk” modes.

(i) “Surface’” modes. In this case the frequency w lies
in a forbidden band of the one-dimensional section of
the phonon-energy function specified by k,. The fre-
quency wmay in fact lie in an absolutely forbidden band,
but this is not necessary. In this case all values of
ks(w?k,) are complex, and we shall see that surface
modes may exist for such frequencies.

(i11) Frequencies at which ky(w?; k,) has real multiple
values. Here we are concerned only with multiple values
associated with extrema in the allowed bands of the one-

%2 Note added in proof. This simplifying assumption will be
dropped in the latter part of the discussion.
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Fic. 2. Hypothetical one-
dimensional section of a pho-
non energy function for k,0,
hence w(ks; k,)=w(—Fks; k).
For w<w; all branches of
k3(w?; k,) are complex. See the
caption for Fig. 1 for additional
comments.
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dimensional section of the phonon-energy function. We
shall see that, in general, if the infinite lattice, with
periodic boundary conditions, has a vibrational mode
at such an extremal frequency, then the semi-infinite
lattice does not have a mode at that frequency.

A. Bulk Modes

Suppose that for some given set of values {w?k,}, 2p
branches of k3(w?; k,) assume real values. Suppose fur-
ther that one of these 2p values of (2m)~%ks(w?; k,), say
the gth, is a rational number in the interval (—3%, %),
and that according to our labeling convention, Egs.
(3.26) and (3.27), g>0. Then we can clearly satisfy the
quasiperiodic boundary conditions with

wn(ms; 02K ,,0) =N o(w? k,) [ @ (expliks@}; o k,)

-1
Xexp{iksPms}+ 3 Rop(wikp)u”
g'=—38sH3
X (exp{iks"}; wrk,)exp{iks " ms} ]; ms>2Hs.
. (4.1)

If g<0, then the sum with respect to g’ in Eq. (4.1)
runs over the 3sH;— p negative indices which label com-
plex values of k3 (with positive imaginary parts) and
the p-positive indices labeling real values of %s.

In Eq. (4.1), N (w?k,) is a normalization constant, to
be discussed below. The coefficients R, (w%k,) have to
be determined from the continuity conditions

Ur (m3; w27kmg) = urB(m3; w2>kp;g) H
m=2Hs, -, 3Hs—1, 4.2)

The functions #,3(ms; w?k,,g) are solutions of the
auxiliary problem specified by Eq. (3.10) and the 3sH3
equations obtained from Eq. (3.9) when H;<ms
<2H3;—1. Proceeding as in Sec. III of paper I, it is a
simple matter to derive a set of 9sH linear equations for

7=1, -+, 3s.

—Imk3

the 9sH; unknowns:

{u:®(ms; w?k,,8);
m3=0’ ..

x=1, -+, 3s},

., 2H—1,
and
{R!]a'(wzykp); g'=—3SH3, Yy —1} .

Here, and in the following, we restrict ourselves, for
the sake of economy in notation, to the case where
g>0.

Introducing a more compact notation, we obtain the
following set of equations:

9sH3
2. Mav(w2,kp)Ray(w2,kp)
y=1
=uo(wrk,g); a=1, -+, 9sH;. (4.3)
Here,

OSm3§3H3——1, o= 1, Tty 9SH3; (44)
vy=3sns+o; 0<ns<2H3;—1, vy=1, .-, 6sH;,
=g+ 9sH3+1; y=6sH3+1, ---, 9sH;.

a=3smz+;

4.5)

(If g<0, we require a similar, though more complicated,
mapping of the 3sH 3 indices g’ onto

’Y=6SH3+1' . '98H3.)

The 9sHs-dimensional matrix M, is defined by Egs.
(4.6) and (4.7): For y=1, - -, 6sHj3,

M (02 k,) = 0, (s mg; w2 ) 480, (mayns; K,);  (4.6)
For y=6sH3+1, - -+, 9sHs,
M ay(w?k,)=0; =1, - -+, 3sH;
3‘«}“ msiHa
=2 2 Ox(nz—ms)exp{iks " ns}u, "
o=1 n3=2H3
X(exp{ika“"-)} 4 wz,kp); o= 35H3—|—1’ ceny 9sHs. (4.7)
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The 9sHs-dimensional vector R,,(w%k,) is defined by
Eq. (4.8):

RO’Y(““’Z)kP)Zuﬂ'B(m3; wzykmg); Y= 1) R 63}13
=N, (w%k,) Ry (w2 k,); v=6sHsz+1---9sHs. (4.8)

Finally,
uo(wtk,)=0; a=1, ---, 3sH3
35 Hytms
=—Now k)Y Y Ono(nz—ms; wik,)
o=1 ng=2H3

Xexp{iksPns}u, @ (exp{iks}; wik,);
a=3sHz+1, -+, 9sH;. (4.9)

Here we recall that

00 (ms,ms; w2 K,)+ 00,0 (mans; Ky)=0,0(ns—ms; w*k,)

if both 73 and #3> Hs. In general,

det[M oy (0% k,)]70; (4.10)
hence,
98_H3
Nﬂ(w2;kp)Roa’(‘*’2,kp)= 2 (M )qjata(w? k).  (4,11)
a=3sH3
If, for some particular choice of k,,
det[ M oy (w2 k,)]=0, (4.12)
then the homogenous matrix equation
9sH3
> May(0t),)Roy(wrk,) =0 (4.13)
y=1

has a nontrivial solution, which implies that there exists
a nontrivial solution of Egs. (3.9) and (3.10) having the
form

-1

ux(my; k)= 2.

g’=—3sH3

Xexp{iks @ ms}u, 9 (exp{iks @’ }; w2 k,)h (4.14)

Cy' (w27kp>

This solution violates the quasiperiodic boundary con-
ditions unless all 3sH3 values of k3(w?; k,) entering the
sum with respect to g’ are complex. In this case Eq.
(4.14) represents one of the surface waves to be discussed
below.

Physically, the exclusion of solutions of the form
indicated by Eq. (4.14) is based on the fact that if
the sum with respect to g’ includes real values of
k3(w?; k,), then these solutions imply a steady transport
of energy to infinity, and hence cannot represent sta-
tionary free vibrations of the lattice. This objection does
not apply when the real values of ks(w?; k,) are such
that [0ks"/dw(w?; k,)]'=0. As we shall see below,
this represents the limiting case of an ‘“unlocalized”
surface wave.

The discrete index g in Eq. (4.1) is redundant unless
the infinite lattice with periodic boundary conditions

FEUCHTWANG
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exhibits an accidental degeneracy at {w?k,}; i.e., more
than one branch of the function k3(w?; k,) satisfies the
equation

(2m) k59 (w?; k,) =r; r=rational number,

—i<r<i. (4.15)

In that case a symmetric orthogonalization process leads
to the functions

s (ms;0?k,,g)
=N g(w?k,) [0 (exp {1k } ;w2 k,) exp {iksPms)
Xexp{iks Pms}+ 2 R,y (w27kl’)u7r (@
g#g’

X (exp{iks "} ; wk,)exp{iks " ms} ]

ms>2H;.  (4.16)

Here g’ ranges only over values for which
Iml:k3(ﬂ'> (‘”Z:kﬂ)] ->- 0 )

and we impose the orthonormalization conditions

3s ]
lim 3 3 e sm[u.(ms; wik,g)]*

e>0t 7=1 m3=0

KXttr(ms; w'3kp,g' ) =0(w?—w'2)8,,q. (4.17)

The orthogonality of vibrational modes associated with
different values of w? is proven in Appendix A. Thus, in
general, Eq. (4.17) just fixes the normalization constant
Ny(w?k,). However, in case of accidental degeneracy
of the periodic solutions of the infinite lattice, it pro-
vides a subsidiary set of relations, which together with
Eq. (4.3) suffice to determine the coefficients in Eq.
(4.16).

The Zero-Frequency Limit

In the preceding we explicitly excluded the zero-
frequency limit. This limit will now be considered. It is
physically obvious that there exist trivial zero-frequency
modes, namely the three linearly independent transla-
tions, and the three linearly independent infinitesimal
solid-body rotations. This result follows immediately
from the invariance of the force acting on a given par-
ticle under an arbitrary infinitesmial translation and/or
infinitesimal rotation of the entire lattice.?! The six
trivial zero-frequency modes are the only ‘“vibrational”
modes of the infinite lattice which are unaffected by the
free boundary. These modes are the elementary solu-
tions of Eq. (3.15) belonging to the sixfold root,
exp{iks(w?=0, k,=0}=1, of the characteristic equa-
tion (3.17). All other zero-frequency roots of Eq.
(3.17) correspond to complex values of %;. Hence any
nontrivial zero-frequency mode would represent a static

2 An analysis of this invariance is given in Appendix A of
Paper L.



155

displacement of the type considered in Sec. III of I.
However, in the present case, the deformation has to
be out of the true static equilibrium configuration of
the semi-infinite lattice and hence, could only occur
under the influence of an appropriate set of external
forces. This argument demonstrates that the semi-
infinite lattice with a free boundary cannot exhibit non-
trivial zero-frequency modes. This is in fact a general
restriction to be imposed on any force-constant model.
This conclusion is equivalent with the requirement that
the zero-frequency limit of any lattice dynamics must
correspond to the elastic theory for an appropriate con-
tinuous, anistropic medium with corresponding bound-
ary conditions.

B. Surface Modes

If for a given set of values {w?%k,} all of the 6sH;
branches of k3(w?; k,) are complex, then the function
v(m,u) appearing in Eq. (3.11) vanishes identically. We
now can satisfy the quasiperiodic boundary conditions
with

-1

ur(ms; w® k)= 3

g=—38sH3
X (exp{iks?}; wik,)exp{iks Pms}; ms>2Hs, (4.18)

where the coefficients ¢, have to be determined by a set
of continuity conditions, such as Eq. (4.2). Proceeding
as before, we obtain a set of 9sH; linear homogeneous
equations of the form

Ca(wz’kp)uw(g)

9sH3

2 May(e?; Kp)oy(wrk,)=0. (4.19)
y=1

The matrix M., has been defined by Egs. (4.6) and
(4.7). The 9sHs-dimensional vector ¢, is defined by Eq.
(4.20):

67(w2:kp)=u1rB(m3; wzykp); Y= 17 Tt 6sH;
=cﬂ(w2:kp); y=6sH;3+1, - - -, 9sHs.

Equation (4.19) has a nontrivial solution if, and only if,
det[M o, (w2 k,)]=0. (4.21)

Thus we have to find a simultaneous solution of Egs.
(3.17), (3.18), (3.19), and (4.21). This gives us a
consistent set of values of w’k, and k; (u?;k,)
along with the corresponding elementary solutions
u(exp{iks@ms}) of Eq. (3.15). Whenever these sets
of values are such that w?=w,2>0, k, satisfies Eq. (3.7),
and all values of k3(w?; k,) are complex, we can con-
struct a solution of our boundary-value problem in the
form indicated by Eq. (4.18). We do this by choosing
{c4} to be a null vector of the matrix M oy (w2 k,), i.€.,

9sH3
Z Ma?(w82;kp)c‘7(w82:kp)=0; v=1, -+, 9sH;

=1

(4.20)

(4.22)

where w?=w,? and k, area set of simultaneous solu-

DYNAMICS OF SEMI-INFINITE CRYSTAL LATTICE. 11

741

tions of Egs. (3.17), (3.19), and (4.21). The charac-

teristic feature of the vibrational modes having the

form indicated by Eq. (4.18) is that the amplitude of
the displacement of lattice particles from their static
equilibrium positions decreases, essentially exponenti-
ally, with the distance m; from the boundary. Hence we
can consider the vibration to be localized or bound at
the surface. It is, however, important to realize that, in
general, the dependence of u on mj3 is neither a sim-
ple exponential, nor even monotonic: There is no
general restriction on the real part of the functions
ks (ws%(k,); k,) which can, in fact, assume any value
in the interval (—, 7.

The surface modes are square summable, and we im-
pose on them the orthonormalization

5 5 Cunlma; ri(hy) k) T

=1 m3g=0

X”r(mﬁ “’S'z(kp),kp) = Qg2 0gr2+ (4-23)

Since, for a fixed value of k,, no surface-mode frequency
w, can lie in one of the 3s intervals, w,(k,), in which the
bulk mode frequencies lie, the surface and bulk modes
are mutually orthogonal, i.e.,

3s 0
2 2 [ualms; (ko) ko) P*un(ms; w2 k,,g)=0. (4.24)

r=1 m3=0

We now turn to a brief discussion of some features of the
dispersion relation of the surface modes.

In Sec. ITI B we considered % to be an algebraic func-
tion of the variable «w? and the fixed pair of real param-
eters k,=27 >_ ;12 i bk, It is now convenient to ex-
tend our definition of k3, by treating exp{2mik;}; i=1, 2
as two independent variables, ranging over the entire
complex plane. This involves a process of analytic con-
tinuation starting with the functions

k3 (w?; exp{2miki} = c1, exp{2mwiks} = cs)

and continuing them first over the exp{2wik,} plane and
then over the exp{2wiks} plane. We need not be con-
cerned with the actual tedious process since we are only
concerned with the formal result. Next we note that the
vectors u, @ (exp{iks@}; w?k,) are, by construction,
polynomials in the variables exp{iks(®},w? exp{2xik},
and exp{2mik:}. Hence we find that the determinant,
det[ M o (w?k,)], can be considered a polynomial in the
variables:

w?, exp{2miki}, exp{2miks}, exp{2miks® (w?; exp{2mwiki},
exp{2miks})}; g=—3sH;, -+, —1.

This suggests that we interpret Eqs. (3.17), (3.18), and
(4.21) as the implicit definition of the algebraic function
w? of the two complex variables exp{2wik;} and
exp{2wiks}. In particular we may consider the one-
dimensional sections of this function

ws(exp{2mwiki}; exp{2mwiks} =c,),
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and its inverse exp[ 2mik, () (w?; exp{2mwiks} =cs) . These
can be discussed in a manner similar to that outlined in
Sec. ITI B. We are primarily concerned with those values
of

k1@ = (274)~! principal values of In[exp{2mik;}],
(4.25)

which lie on a line segment contained in the first Bril-
louin zone, and for which at least one branch of the
function w2 exp{2wiki}; exp{2mwiks}=cs] is positive,
and for which all branches of k3 (w,2>0; k,) assume
complex values. The analyticity of all these functions
implies that such values of £, cannot in general be iso-
lated points, i.e., that all k; on a subinterval of the
above-mentioned segment have to satisfy our require-
ment. Clearly the preceding applies also to the case
where we fix k1 and consider k2 a variable. We also note
that, as a function of frequency, a given branch of &,(®
assumes real values on intervals on the real w axis, which
are bounded by frequencies for which

[atexp;zr:')kl(”)]]" _e

ko=const Tl

Ok 1
Xexp{—Zvrikx(“)}[ ] =0. (4.20)
dw ko=const
Now,
Ok &)1 -1 9k ® (')ks(g) —1
Oz[ ] =[ 5 ] (4.27)
Jw g=—3sHz3 3k3(g) ow

implies that at least one term in the summation on the
right of Eq. (4.27) is infinite, i.e., for example,
Oy Jhz@ 1
Bene]_
6133(9) ow ka=const

Hence, at least two branches of %3 have the same value.
This multiple value of k3 may be real, in which case we
have the limiting case of an unlocalized surface mode,
mentioned in our discussion of Eq. (4.14). This type of
solution of the dynamic problem is analogous to a zero-
energy scattering resonance. We now recall that only
a dense subset of the points k,, in the first Brillouin zone
of the two-dimensional reciprocal lattice, spanned by
{ai b1, b}, are consistent with the periodic bound-
ary conditions imposed in the 1 and 2 dimensions. We
thus conclude from the preceding that the spectrum of
the surface modes is a dense subset of a set of w intervals
(surface bands). Unlike the bulk-energy bands, the sur-
face bands are defined only over subregions of the first
Brillouin zone. The preceding remark has to be further
qualified: If the two-dimensional Brillouin zone has lines
of symmetry, then it is possible that surface modes are

associated with a dense set of points along such lines,
but not with any points in a sector of the zone including
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this line. This is because for this case the dynamical
problem separates into two uncoupled sets of difference
equations, one consisting of s equations, the other of 2s
equations. A particular example of such a case is con-
sidered by Gazis ef al.?2 Finally, we note that according
to Eq. (4.26), the point k1=0=ks, w=0 is a lower
boundary of a surface band. More precisely, the zero-
frequency modes may also be interpreted as the zero-
frequency limit of surface modes (Rayleigh waves).
Here, as in the case of the unlocalized surface modes,
the imaginary part of at least one value of %; tends to
zero at the band edge of the surface modes in question.
This is not generally necessary.

C. Real Multiple Value of k;(w?; &,)

We know from the theory of algebraic functions that
a real multiple value k3,0 of the function k3(w?k,) occurs

either if
I(wa?) 0wy

—_— = — 20, exp{—iks}— =0,

a(exp{ik-‘?}) k3=k3, 0 31 kg=ks3,0

(4.28)

or if the derivative on the left side of Eq. (4.28) is un-
defined.?® Here w,?(exp{iks};k,) is one of the 3s
branches of the inverse of the function exp{iks(w?k,)}.

In the first case an allowed band of the one-dimen-
sional section of the phonon-energy function has an
extremum, i.e.,

Oeon/ ks gty =0. (4.29)

In the second case one or more bands have a common
point at (ks,0; k,). The nature of this point, i.e., the way
the bands diverge from a point of degeneracy can be in-
vestigated by means of standard techniques discussed
in the theory of algebraic functions. Such degeneracies
arise if the point (ks,0; k,) lies on a line of symmetry of
the first Brillouin zone of the three-dimensional recipro-
cal lattice. For an arbitrary point (%3,0; k,) such degen-
eracies are vanishingly probable, in the sense of Herr-
ing.* We shall not consider the degeneracy problem any
further, since it is a rather specialized problem requiring
considerable and tedious analytic work.

Turning to the case where Eq. (4.29) applies, we shall
consider first the case where w,(ks; k,) has an extremum
at a frequency wo, at which there exists a mode of the
infinite lattice with periodic boundary conditions. This
implies that the extremum wo of wa(ks; k,) is assumed
at a rational value 7 of (2r)~'%; We may assume that
7 is a double value of k3(w?; k,). In this case the quasi-
periodic boundary conditions can be satisfied if, and
only if,

(0k39/8w) ™| 4y =0, (4.30)

22 See the first paper in Ref. 11.

% See K. Knopp, T'heory of Functions (Dover Publications, Inc.,
New York, 1947), Part II, Chaps. 5 and 6.

24 C. Herring, Phys. Rev. 52, 365 (1937).
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for all real-valued branches of %; , and
det[M oy (w2 k,)]=0. (4.31)

Here the matrix M, is defined by Eq. (4.7). Thus we
see that if the semi-infinite lattice has a vibrational
mode of frequency wg, then this mode must be an un-
localized surface mode. Furthermore, according to Eq.
(4.30) this is possible only of wy is an absolute extremum
of w,(k3; k,), and if it is a boundary point of an interval
on the real w axis on which no branch of k; has real
values. A completely different situation arises if
wa(ks=2mr; k,)=woand wy is an extremum of w,(ks; k,),
which, however, is assumed at some irrational value of
27~ k3. In this case there exists at wp a bulk mode, which

can be found by means of the normal procedure, i.e.,
Egs. (4.3)-(4.9).

V. CONCLUSIONS AND DISCUSSION

It was stressed in the Introduction that our principal
concern is the formal characterization of the functional
form of the normal vibrational modes of a semi-infinite
crystal lattice. This result is of considerable interest in
the study of surface effects. As a particular example, we
may mention the thermal diffuse scattering of low-
energy electrons.

The vibrational states of the semi-infinite lattice were
subjected to quasiperiodic boundary conditions at an
infinite distance irom the free boundary. These bound-
ary conditions were discussed in Sec. II, where it was
shown that they emphasize the relation of the semi-
infinite lattice to the infinite lattice with periodic
boundary conditions. It was shown that the vibrational
modes of the semi-infinite lattice fall into two classes.

(1) The bulk modes can be expressed as a sum of a
plane-wave mode of the infinite lattice with periodic
boundary conditions, and a “scattered” wave. This
scattered wave reduces, at an infinite distance from
the boundary, to a finite sum of plane waves which do
not satisfy periodic boundary conditions. The group
velocities of these plane waves all have a component
normal to the boundary which has a sign opposite to the
sign of the corresponding component of the group ve-
locity of the plane wave satisfying periodic boundary
conditions.

Such a bulk mode exists for each frequency at which
the infinite lattice has a plane-wave vibrational mode,
provided this wave has a group velocity with a non-
vanishing component normal to the boundary. In gen-
eral, no “bulk” mode exists at a frequency at which the
plane wave, satisfying periodic boundary conditions,
has a group velocity with a vanishing component normal
to the boundary. The exception to this rule is when the
bulk mode reduces to a so-called unlocalized surface
mode. These modes reduce, at an infinite distance from
the boundary, to a set of plane waves, each of which has
a group velocity with a vanishing component normal
to the boundary.
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(2) The second class of modes are the surface modes.
These modes have a vanishing amplitude at an in-
finite distance from the boundary. They consist of a
sum of plane waves whose wave vector has a com-
plex component normal to the boundary. The imaginary
part of this component of the wave-vector is positive.
No general restriction is imposed on the real part of this
component of k. It was shown that the surface modes
have frequencies which form a dense subset of continu-
ous intervals or surface bands. The dispersion relation,
i.e., the dependence of the frequency of the surface
modes on the transverse wave vectors k,, was consid-
ered. It was shown that for a fixed-transverse wave
vector k, the frequencies of the surface modes lie in
intervals which have at most their endpoint in common
with the intervals in which there exist frequencies of
bulk modes with the same value of k,. A somewhat more
complete study of the dispersion of the bulk modes was
undertaken. This study was based on the interpreta-
tion of the phonon-energy function at a fixed value of
k,, as an algebraic function of the complex variable
exp{iks}. This procedure follows a similar analysis, by
Heine, of the energy bands of Bloch electrons.

The entire analysis assumed a finite, though arbi-
trary, range of the effective interparticle interaction and
hence the results are rather generally valid. However,
there is considerable scope for further analysis of the
analytic properties of the dispersion relations of the two
classes of modes. This holds in particular for the surface
modes. Another problem being investigated is the use
of the thermal diffuse scattering of low-energy electrons
to study the dispersion relation of the surface modes.

APPENDIX: PROOF OF THE ORTHOGONALITY
OF THE NORMAL MODES [EQ. (4.59)]

In this Appendix we shall prove the orthogonality of
those solutions of Egs. (3.9), (3.10), and (3.11) which
correspond to different values of w?. This result follows
from the symmetry of the equations of motion, or more
precisely, from the Hermitian character of the bound-
ary-value problem.

Consider the expression

© 3s
Slesme)= 2 X e mfu (ms; w'2k,)]*
ng,m3=0 w,5=1
X ®yro(ms,ns; Ko)emu,(ns; 02 k,), (A1)
where

(;ra(m&n?»; kp)

= 3 @y(mu; npesplik, R (A2)

1hg=—c
The matrices ®;;(m,u; n,v) are defined by Eq. (2.11).
wr(ms; w'2k,) and u,(ns; w%k,) are solutions of the
boundary-value problem belonging to different values

of w?. 0< €3,73<K1, are arbitrary but fixed small, positive
numbers.



744

The exponential convergence factors ensure the ab-
solute convergence of the two infinite sums over #; and
ms. Hence, the order of these sums is immaterial. Sum-
ming first over #; and ¢, we may safely set #3=0, for
the series is convergent. Hence, we obtain

3s ©
S(es0)=2 2 e ™ uz(ms; w'*k,)J*
=1 mg=0
X[w?ux(ms; w*k,) 1. (A3)

Similarly, if we sum first over m3 and 7, we obtain

3s ©
SO,s)= 20 2. e ™uq(ns; w?k,)
o=1 n3=0
X[ 4 (ns; '3 k,) T,

but the dummy variable 73,730 can clearly be replaced
by es,ms,m. Furthermore, w’2 is real. Hence, Eq. (A4)
reduces to

(A4)

3s ©
SO,e)=w? 2 2 e ux(ms; w2 k,)J*
=1 m3=0

Xur(ms; wk,).  (AS)
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On the other hand, we can check directly that we re-
quire in (A1) only one convergence factor. That is,

S(es,m3) = S(€3,0)=S(0,€3) . (A6)
Hence subtracting Eq. (A.3) from Eq. (A.4), we obtain

3s ©
0=("?—w) 2 X e ™ us(ms; w2 k,)T*

7=1 m3=0
Xux(maw?; k,) (A7)
or

3s o0
> Y e[ u(ms,w'?k,) PFur(ms; wik,)=0
=1 m3=0
if

wiFw'?, (A8)
and, since e; is arbitrary, we can now go to the limit
es— 0. This proves Eq. (4.17) for w?#w’2 A similar
analysis leads to the proof of the Dirac delta-function
normalization indicated in Eq. (4.17). We note here
that the entire limiting procedure can be dispensed
with when u is a surface mode, for then the #’s them-
selves are exponentially bounded.
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Current saturation due to acoustic oscillations in CdS is observed, both in a transverse mode and in a
longitudinal mode. The most pronounced saturation occurred in the transverse mode, although the applied
dc field was parallel to the ¢ axis, and one should expect saturation mainly in the longitudinal mode. A
method for determining the threshold field for oscillation, utilizing the buildup time for current saturation
under applied pulsed dc electric field, is discussed. The threshold field is used to determine the electron
drift mobility for photoconducting CdS in the temperature range from 204 to 438°K. The temperature de-
pendence of the mobility can be described as a combination of scattering from lattice vibration and trapping
from two impurity levels, e,=0.02 eV with density N; =610 cm™3 and e,=0.1 eV with density N.=8X10¢

cm™3, and is given by
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I. INTRODUCTION

N their theoretical analysis of acoustoelectric ampli-
fication in piezoelectric semiconductors, Hutson and
Whitel2 indicated thattrapped charge could have a large
influence on the propagation constants, but made no
use of this concept in their experimental verification of
acoustoelectric amplification in CdS.? Several authors*—®
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have ignored this effect, while others have given the
effect an extensive treatment.”® Moore and Smith?
have considered the effect of traps on acoustoelectric
current saturation in CdS, and have shown that the
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