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This is the first of two papers dealing with the dynamics of semi-infinite crystals. The static equilibrium
structure of a semi-inIjnite crystal at zero temperature is considered in the first paper. The discussion of
small-amplitude vibrations of the atoms about their static equilibrium positions'is taken up in the second
paper. The static equilibrium configuration of a semi-infinite, classical, jcrystal lattice at zero temperature,
having a free boundary, is described in terms of a set of displacements relating the actual positions to those
which the lattice particles would assume if the semi-infinite lattice were embedded in an infinite lattice.
These displacements are calculated from a set of difference equations which specify the conditions of static
equilibrium for the semi-infinite lattice in the absence of external forces. Several unexpected results con-
cerning the structure of the physical boundary region were obtained. These will be shown, in a forthcoming
paper, to provide a consistent interpretation of some features of low-energy electron diffraction data, which,
until now, could not be interpreted. Of particular interest is the conclusion that the two-dimensional period
of the semi-infinite lattice in the planes parallel to the boundary may be larger than that deduced from the
bulk lattice structure. The difFraction of low-energy electrons from the surface of single crystals of Ge and
Si provides a clear illustration of this effect. It is also shown that the change in the spacing of atomic planes
(in the direction normal to the boundary) varies in a nonmonotonic fashion with the distance from the
boundary. The efFect of appreciable distortions in the surface region is considered in some detail.

I. INTRODUCTION

'HE classical theory of lattice dynamics was
originally formulated by Born and von Karman'

in terms of the so-called periodic boundary conditions.
The modern elaborations of the theory, and its many
applications, are discussed in great clarity and detail
in the standard references, Born and Huang, ' Liebfried, '
Ludwig and Leibfried, 4 and Maradudin, Montroll,
and Weiss. ' The theory has great practical and aesthetic
appeal because of its formal simplicity. This advantage
is in no way impaired by the great practical de.culty in
calculating the actual dispersion relation and frequency
spectrum of any particular crystalline solids. However,
one rather serious limitation of the theory is that it is
inherently designed for the discussion of bulk effects,
or more specifically, it applies to an infinite system.
Thus, the theory does not provide a reliable conceptual
framework for the analysis of phenomena occurring
within the physical boundary layer whose width is of
the order of 10' A. Examples of such phenomena are
the Mossbauer eGect from a nucleus in the boundary
layer and the low-energy electron di6raction and photo-
emission of electrons.

*Sponsored by Aeronautical Systems Division, Air Force
Systems Command, U. S. Air Force, with the Department of
Electrical Engineering, University of Minnesota, Minneapolis,
Minnesota.' M. Born and T. von Karaman, Z. Physik 13, 297 (1912).' M. Born and K. Huang, Dynamica/ Theory of Crysta/ Lattices
(Oxford University Press, New York, 1954).

G. Leibfried, in IIundblch der Physi&, edited by S. Flugge
(Springer-Verlag, Berlin, 1955), Vol. VII, Part I, p. 104.

G. Leibfried and W. Ludwig, in Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic Press Inc. , New York,
1961), Vol. 12. p. 275.

~ A. A. Maradudin, E. W. Montroll, and G. H. Weiss, in Solid
State Physics, edited by F. Seitz and D. Turnbull (Academic
Press Inc., New York, 1963), Suppl. , Vol. 3.

Recently, low-energy electron diffraction experi-
ments have achieved a high degree of reliability and
sensitivity. In principle, these experiments should en-
able us to study the static (equilibrium) configuration
of semi-indnite crystal lattices and their dynamics
(i.e., dispersion relation) with a sensitivity which is
comparable to the study of the corresponding proper-
ties of infinite (bulk) crystals by means of x-ray and
neutron scattering experiments. In order to utilize
the available electron diffraction data, we require a
formulation of the dynamics of semi-in6nite crystal
lattices which provides an adequate conceptual frame-
work for the analysis of these data. That is, we require
a formulation which is not necessarily ideal for u priori
calculations, but most transparent in its formal
predictions.

Several investigations of surface effects on the dy-
namics of crystal lattices have been reported in the
literature during the last two decades. Ledermann'
investigated the effect of boundaries on the vibrational
spectrum. His work demonstrated the possible exis-
tence of vibrational states whose energy lies in an
interval which is forbidden by the periodic boundary
conditions. The nature of these so-called surface modes
was investigated by Lifshitz, 7 using Green's-function
techniques. Similar techniques were used by Maradudin
and Wallis' in an analysis of surface contributions to the
low-temperature speci6c heat. Wallis and co-workers'

6 W. Ledermann, Proc. Roy. Soc. (London) A182, 362 (1944).
I. M. Lifshitz and L. N. Rosenzweig, Zh. Eksperim. i Teor.

Fiz. 18, 1012 (1948); I. M. Lifshitz, Nuovo Cimento Suppl.
3, 732 (1956).

'A. A. Maradudin and R. F. Wallis, Phys. Rev. 148, A962
(1966).' D. C. Gazis, R. Herman, and R. F. Wallis, Phys. Rev. 119,
533 (1960); B. C. Clark, R. Herman, and R. F. Wallis, ibid. 139,
A860 (1965).
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have chosen a less formal approach. They considered
rather restricted models to calculate explicit disper-
sion relations of surface modes, as well as the mean-
square displacement, and mean-square velocity of
atoms in the surface region. None of these investiga-
tions was concerned with the explicit equilibrium struc-
ture of the surface region of a crystal. This problem was
considered by Gazis and Wallis. "However, Gazis and
Wallis restricted themselves to the analysis of a one-
dimensional monatomic model with second-neighbor
interactions. It is the purpose of this paper to in-
vestigate the static equilibrium structure of a three-
dimensional crystal lattice with a single free boundary.
More specifically, we shall refer the actual equilibrium
positions of the particles to the "nominal" equilibrium
positions they would occupy if the lattice were in6nite
(and subject to periodic boundary conditions). We
shall derive a convenient formal expression for the
static displacements relating the actual positions to the
"nominal" equilibrium positions of the particles in an
in6nite crystal lattice with periodic boundary condition.
The theory is very general and involves a minimum of
special assumptions concerning the nature of the effec-
tive interparticle interaction. In effect we only have to
assume that the interaction has some unspeci6ed
finite range.

Following an analysis assuming small relative dis-
placements, we also discuss the effect of anharmonicity
on our results. Proceeding from our theory of the static
equilibrium structure of the semi-infinite lattice, we
shall develop, in a second paper, " a theory of the dy-
namics of small amplitude vibrations of particles in a
semi-in6nite crystal lattice, about their actual equilib-
rium positions. We shall derive convenient formal ex-
pressions for the normal modes of a semi-infinite crystal
with a free boundary, without having to resort to
Green's-function techniques. That is, we shall obtain
explicit expressions, rather than integral representations
of the normal modes.

The application of our theory to the analysis of low-
energy electron diffraction is reasonably simple. We pro-
pose to consider this subject in our forthcoming paper. "
In that paper we shall show that the essential char-
acteristics of the static displacements, which specify
the structure of the semi-infinite crystal, can be deduced
directly from the raw diffraction data.

The model on which our theory is based is described
in Sec. II. The mathematical analysis of the linearized
model is taken up in Sec. III. In Sec. IV we take up the
discussion of anharmonic effects. The results are sum-
marized and discussed in Sec. V.

II. DESCRIPTION OF THE MODEL

We consider a system of atoms which, in its ground
state (i.e., at T=O), is ordered in an approximately

"Denos C. Gazis and Richard F. %allis, J. Math. Phys. 3, 190
(1962)."T. E.Feuchtwang, following paper, Phys. Rev. 155, 731 (1967)."T.E. Feuchtwang, Phys. Rev. (to be published).

periodic semi-infinite lattice. We assume that the lattice
is bounded by a single lattice plane, i.e., it arises from
an infinite and perfect lattice by removing all "atoms"
below a particular lattice plane spanned by the basis
vectors a~, a2. During this operation, we freeze all of
the remaining "atoms. " We then release, instan-
taneously, all of these "atoms" and allow them to relax
to the configuration which minimizes their potential
energy of interaction. Thus the centers of mass of the
lattice particles are located at the positions

R(m, p,)= R(m)+R(p)+U(m, p) . (2.1)

Here, the vectors

3

R(m)= P a,m;;mg, m, =oa1, a2,

m3=0, 1, 2, (2.2)

in that unit cell of the infinite lattice which includes the
point R(0,0,0). The mass of this atom is M„.

We shall call the vector U(m, p) the static displace-
ment of the pth atom in the mth unit cell of the infinite
lattice. These static displacements are due to the
creation of a free-boundary plane at nz3 ——0.

In the following we shall derive an approximate set of
linear difference equations which has to be satisfied by
the static displacements U(m, p). The nature of the
solutions of these equations is then investigated with
the help of the general theory of linear difference
equations.

The static displacements are defined by the equilib-
rium conditions

where

~(m&/ ) = ~r(m, y) ~ (r(l,x) l =(R(l,x))

my) tn2=0+1+2. )

@23=0, 1, 2

/=1) ' s)
(2.3)

(2 4)

and C'({r(I,X)})is the potential energy of interaction of
the semi-infinite lattice in the con6guration

{r(1,)); l~, 2 ——0+1;/3——0, 1;X=1 s}. (2.5)

We now make the following assumptions:

(1) The magnitude of the relative static displace-
ments of atoms in adjacent cells is small compared to
the lattice parameters. Consequently, we can approxi-
mate functions de6ned on the semi-infinite lattice by
retaining only the lowest-order terms in their series
expansion in powers of these relative displacements.

span a semi-infinite Bravais lattice. For the following, it
is essential to choose a3 to be orthogonal to a~ and a2.
Usually this convention makes the unit cell nonprimitive.

R(p), @=1, s=position of the pth atom



This is the familiar basic assumption of the harmonic
approximation to lattice dynamics. "

(2) The potential energy of interaction of the semi-
in6nite lattice in the nonequilibrium con6guration
(U(l,X) }=0 differs from the potential energy of inter-
action of the particles in the upper half of the in6nite
lattice, in the same configuration, by terms of the third
order in the relative static displacements. That is, we
assume

C ((U(1~)}=o)—C'"'((R(1)+R(~)})=O((~~)') (2 6)

where S;, i= j., 2, are fixed, though arbitrary, large
integers, and the limit E;—+co is understood.

We can use the 6rst two assumptions listed above to
approximate the vector %'(m, p) to within terms of order
2 in the relative displacements. This is achieved by
considering first the Taylor expansion of %'(m,p) in
terms of U,

e'(m, p) = —F(m, p,)

+g Q Q e(m, y, n, v). U(n, v)+0(U'). (2.9)
1 n3=0 nf, n2=oo

Here C&"~{(R(l)+R{X)})is the potential energy of
interaction of the particles in the upper half of the
in6nite lattice, i.e.,

(2.7) and

—F(m,v)=~R(~,„)C ")(u(i),))=0, (2.10)

It should be stressed that this assumption is rather
weak, and one might even consider it reasonable to
assume that the left side of Eq. (2.6) vanishes.

(3) The range of the effective interatomic interaction
is 6nite. The precise mathematical formulation of this
assumption will be given below.

It should be stressed that assumption (3) is also
valid for ionic crystals. For, as is well known from the
standard treatment of the lattice dynamics of ionic
crystals, the Coulombic contribution to the interionic
interaction has to be decomposed into two terms. The
first term represents an eRective long-range interaction
which is a slowly varying function of position. The
second term is an eRective, short-range interaction.
Only the second terIn is included in the eRective inter-
ionic interaction which enters the mechanical (micro-
scopic) equations of motion for the ions. The long-
range interaction is replaced by a macroscopic (slowly
varying) effective electric field which has 'to satisfy
the macroscopic Maxwell equations. Thus the com-

plete dynamic problem reduces to a simultaneous solu-
tion of the Inechanical equations of motion and the
associated set of Maxwell equations. "Ke now recog-
nize that the discussion of the equilibriuIn con6guration
of ionic and piezoelectric crystals is complicated by the
ncccsslty of Inaklng thc suH1 of thc cffcctlvc intcrlonlc
potential energy and of the electrostatic energy of the
macroscopic 6eld stationary. For this reason we shall

explicitly exclude ionic and piezoelectric crystals from
the following discussion.

We also stipulate that we wish to consider only the
effect of a single free boundary. Ke shall therefore elimi-

nate the CRect of boundaries in the 1 and 2 dimensions.
This ls done by imposing pcI'lodic boundaI'y condltloIls
on these two (unbounded) dimensions. That is, we shall

require that all functions P, defined over the lattice,
have the property

F(m, p) =0 if m3&~EI3,

e (m,p; n, v) =0,

(2.12)

(2.13)

if one or more of the following inequalities applies:

im; n;i &—H;+1; i=1, 2, 3. (2.14)

Our assumptions concerning the potential energy of
interaction of the semi-in6nite lattice imply a number of
constraints on the quantities F and C appearing in
Eq. (2.9). These relations are stated below, and their
proof is indicated in Appendix A. The relations are im-
portant for the subsequent analysis; in particular, they
enable us to express Eq. (2.9) in terms of the relative
static displacements.

First we note that if both nz3 and e3~&H3, then the
matrices %(m,p; n, u) are identical with the coupling
(or force) constants introduced in the ordinary theory
of infinite lattices. ' ' Furthermore, the forces F(m,p)
are the unbalanced forces acting on the particles in the
upper half of the in6nite lattice if we remove their inter-
action with the particles in the lower half of the lattice,
m, &0.

Next we invoke the invariances of C&") under a
translation by a lattice vector parallel to the boundary,

Q a,m, —+ g a,{m~+h~), h;=integer, (2.15)

to conclude that

F{m,p) =F(0,0,ma, p) =F(ma, p), (2.16)

%(m)p j n)p) = VR(m II)VR(n p)4 I (Q(f g) j =o, (2.11)

We can now make more precise our assumption (3),
concerning the 6nite range of the eRective interatomic
interaction. We shall assume that

F(mq, mm, ma, p) =F(m~~S~, m~+&2, ms, p), (2 g)

"In the following we shall in fact only retain 6rst-order terms
in the relative static displacement. A nonlinear nmdel wiH, how-
ever, be considered in Sec. II.

C;;(n,p; m)p) = C,;(m,p; n, v)

=4 "(0 0 ma p;sy —my) N, 2 mg, N3) p), —
ma or my&83

=4@(0,p; n —m, p); mg and ea&H3. (2.17)
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The first equation in Eq. (2.17) is a direct conse-
quence of the definition of the + matrices as mixed
second derivatives. The third equation in Eq. (2.17)
follows from assumptions (2) and (3). We shall find
it convenient to exhibit the symmetry of the W matrices
explicitly in our notation by introducing the variable
h;=s=n' m'

C g(m, p; n, v)

=C—,;(hi, hg, mgpg, p, ,v); mg or eg(H8
—=C,,(h; p, ,v); ma and n3 ~&BB. (2.18)

Finally, we observe that the upper half of the infinite
lattice may be viewed as a system of particles in static
equilibrium with the "external" forces F(m,p). Hence
we can deduce the following identities:

and

H3—1

P F(ning, p,)=0,
p=i m3=0

(2.19)

X,(m, p) = the ith
component of the vector R(m)+R(p).

These identities simply assert that the particles in the
upper half of the infinite lattice experience neither a
net force nor a net torque due to their interaction with
the particles in the lower half of the lattice. A cor-
responding set of identities is imposed on the matrices
e(m, p; n, v):

H3—1

P X;(0,0,m, p)F, (m, p)
p=l m3=0

—X;(0,0,nba, p)F;(m3, p) =0, (2.20)
where

It follows from Eqs. (2.13), (2.21), and (2.23)
that Eq. (2.9) is in fact an expansion in powers of
the relative displacements. Hence it follows that
if we neglect, as a Qrst approximation, terms of order
[U(n, v) —U(m, p)]', then our assumptions specify the
static displacements U;(m, p) as the solution of a system
of 3s coupled linear partial difference equations with
inhomogeneous boundary conditions. In the next sec-
tion we shall solve these equations by means of standard
methods.

At this point it might help to recapitulate the physical
content of the assumptions we have made in the pre-
ceding discussion. In effect, we visualize the semi-
infinite lattice to be created from an infinite lattice by
means of the following thought experiment. We freeze
all "atoms" in the half-space nsa~&0 in their static
equilibrium positions. Next we remove all "atoms"
from the lower half-space, m&0. Finally, we release,
instantaneously, the remaining "atoms. " These now
relax, under the influence of the unbalanced forces
F(m,p). These forces are due to the "missing" inter-
actions of the remaining "atoms" with those that were
removed.

III. THE DETERMINATION OF THE STATIC
DISPLACEMENTS IN THE LINEAR

APPROXIMATION

Combining Eqs. (2.3) and (2.9), we obtain the fol-
lowing set of difference equations:

3 e m3+H3 oo

C;;(m, p, , n, v) U;(n, v)
j=l p, 1 n3=0 nl, n2

=F;(mg,p), ms= 0 Hg —1
e n3+H3 oo

Cg(m, p; n, v) =0, (2.21)
p=l m3=0 m1, m2=00

=0 m3r& &3 (3.1)

e n3+H3 oo

[X,(m, p)C„(m,p, n, v)
p=l m3=0 ml, m2~00

These difference equations are to be solved subject to
the boundary conditions

—X,(m) p) C,t(m) p; n, v)]

=F,(n, v)b; i F;(n,v)h;, &. (2 2—2) and

If n3~&Hg, then these identities assume the form valid
for the infinite lattice,

lini U(m, p) =0. (3.3)

U(m, ,mg, ms, p) =U(mi+Ni, m2+E2, m3, p), (3.2)

and

e n3+II3 00

C;,(m, p; n, v) =0, (2.23)
p,=l m3=n3-H3 m1, m2~00

s n3+H3

X,(m, p)
1 m3=n3 —K3 ml, m2 00

XC;i(m, p', n, v) —X,(m, p)C', i(m, p; n, v) =0. (2.24)

The latter condition assures that atomic arrangement
characteristic of the in6nite lattice is recovered at
sufticiently large distances from the boundary at nba= 0.

We can simplify our problem considerably by taking
advantage of the periodic boundary conditions, and the
invariance of the problem under a translation by a lat-
tice vector parallel to the boundary. We write

U(m, p) =exp(ikv R(mv))U(m3, ir,), (3.4)
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where

2

R(m, )= Q a,ns;, (3.5)

Eq. (3.8) in the form

3s H3

8..(h„k,)
0——1 h3 H3

Ks',

k, =2~ g k h —1&k =—&1,
s=l S;

e;= integer, (3.6)

a,Xa3 a3Xal
bl —— bs=

al a2Xa3 a2 a3Xal
(3.7)

The rational numbers k;, i = 1, 2, are the components of
a vector in a two-dimensional reciprocal space, which is
restricted to lie in the 6rst Brillouin zone of the two-
dimensional reciprocal lattice spanned by {bi,bs).
It is clear that our choice of k, automatically satisfies the
periodic boundary conditions. It also reduces our
problem to a set of 3s coupled ordinary difference equa-
tions of order 2B3,

3s m8+Hg

8..(ms, ns, kp) U.(ns, k,)
o =1 n3=0

=F (ms)8s, , p,
' ms=0 .8s—1, m'=1 Bs (3.9)

and the additional condition at infinity,

lim U.(ms, k,)=0.
m3 ~oo

(3.10)

Here, we defined the new indices

3s m3+Hg

8(m, n,; k),
cr=l n3=m3 —He

XU (ns, k,)=0; sr=1, , 3s ms~&Hs (3.8)

subject to the 3sB3, inhomogeneous boundary condi-
tions, at the free surface,

X U.(ms+hs, k,)=0; ms & 2Hs. (3.14)

The solution of difference equations with constant
coeKcients is significantly easier than that of the more
general type. As we shall see, we can take advantage
of this fact by basing our analysis on Eq. (3.14) rather
than on Eq. (3.8). This we can do by means of the fol-
lowing trick: We define an auxiliary problem for the
functions U s(m; k,), m=0, , 2Hs —1, which has to
satisfy the BsHs boundary conditions )Eq. (3.9)j and
the BsHs equations obtained from Eq. (3.8), when
a, &~,&211,—&.

We furthermore impose on these functions a set of
3sH3 continuity or consistency relations

U. i'&(m, ; k,) = U.(m; k,);
2Hs &~ ms &~Bus—1, sr = 1, , Bs. (3.15)

Here U (ms, k,) is the most general solution of Eq.
(3.14) which satisfies Eq. (3.10). It is easily recognized
that this procedure is equivalent to the solution of Eq.
(3.8) subject to the boundary conditions, Eqs. (3.9) and
(3.10). However, it is much simpler than the direct
solution of these equations.

We recall that the general solution of a system of
3s coupled di6erence equations of order 2H3 can be
viewed as a 3s-dimensional vector. This vector can be
expressed as a linear combination of a complete set of
6sH3, linearly independent so-called "elementary solu-
tions" (vectors) of the system. For systems with con-
stant codhcients, these elementary solutions are easily
obtained. ""Thus we find that the general 3s-dimen-
sional vector solution of Eq. (3.14) can, in general, be
written in the form

6sH3

sr=3(ls 1)+i —o =3(»—1)+j; (3.11) U(ms, k,)= P cs(kp)U«&
0=1

and the 3s-dimensional matrices 0

8..(ms, ns, k,)

C;,(hi, hs, ms, ns, &My)e'~~' &"~& (3.12)
hI, h2=oo

In deriving Eq. (3.9), we also used the following known
relation:

NI N2

e '"' '~~&=(2N&+1)(2Ns+1)b&, p
mI NI mn

(3.13)

where N; are the integers defined by Eq. (3.2).
Equation (3.8) represents a set of Bs coupled diRer-

ence equations which have constant coeKcients if
ms&&2Hs. That is, using Eq. (2.18), we can rewrite

X (exp{iks«'); k,) exp{iksi'&ms), (3.16)

detg8, (exp{iks); k,)j=0,
associated with the matrix

(3.17)

8,(exp{iks) ) ks) = p e'~s"'8.,(hs) kp) . (3.18)

If the roots of Eq. (3.17) are all distinct, then the
Bs-dimensional vectors U«& are speciaed, within an

' C. Jordan, Calculus of Finite DigererIces (Chelsea Printing
Company, New York, 1949), Chap. IX.

"Tomlinson Fort, Finite Differences (Clarendon Press, Oxford,
England, 1948), Chaps. VII, IX.

where exp{iks«&), g=1, , 6sHs, are the roots of the
characteristic equation



arbitrary constant multiplier, by the matrix equation absolute magnitude is diferent from unity. That is,

36 k« ———«[principal value of ln(e'")] (3.23)

X (exp{ik««~ };k,)=0; «r = 1, 3s. (3.19)

When Eq. (3.17) has a q-fold root, exp{ik«}=exp{«k «"'},
then Eq. (3.16) has to be modified, and we have instead

U(«««„k,)= P c,(k,)U«&

&&(exp{ik««&};kp) exp{«k««'ma}

is a complex number.
It is well known that if k, =0, Eq. (3.17) has a six-

fold root, e'~'= j.. It is also known that this is the only
case in which Eq. (3.17) has roots such that k«is real. To
this sixfold root of Eq. (3.17), exp{«7«,(k, 0)}=1,
there correspond the six trivial zero-frequency solutions
of the dynamic equations for the in6nite lattice: the
three linearly independent uniform translation. modes,

U(m««) = (UOO), (OUO), (OOU); for all m, ««,

+g c„,«(k,)U, «'&(exp{ik««" };k,)

Cxp gk3(gs)~3 3 2(}

and the three linearly independent inhnitesimal solid-

body rotations of the entire lattice.
Concerning the other solutions of Eq. (3.17) we can-

not, in general, say a great deal. Ke can, however,

easily show that complex values of k3 have to occur in

complex conjugate pairs. This follows from the ob-
servation that Eq. (2.17) implies the identities

is the binomial coefficient, ««««!/p!(«««« —p)!. The de-

termination of the q vectors U~«) associated with the
q-fold root of the characteristic equation is indicated in
Appendix B.

In the following we discuss only the general case,
when ail roots of Eq. (3.17) are simple. However, it is
clear that this is no essential restriction of our analysis.

The coeKcients c,(k,) appearing in Eq. (3.16) have to
bc dctcrmlncd from thc bouIldaly conditions imposed
on the (vector) function U(««««, k,). Before we proceed.
to this task, we pause to discuss some of the properties
of the elementary solution vectors de6ncd by Kqs.
(3.17), (3.18), and (3.19).

We note first that Eq. (3.17) is the zero-frequency
limit of the standard, implicit, de6nition of the dis-
persion relation for the inhnite crystal. In the conven-
tional notation, this relation is specified by the secular
equation

(3.21)

where the so-called dynamic matrix D(k) is the 3s-
dimensional matrix,

D..(k) = (3E„M.) 'I' P C,,(h; ««,
i—)e'~."', (3.22)

and k is a vector lying in the first Brillouin zone of
the reciprocal lattice spanned by {bi, b«, b«}. The
novelty in our present development is that we use

Eq. (3.21) or rather Eq. (3.17) to define the 3-component
of the "wave vector" k as a function of k, . (Note that
the quantity ks in our analysis is usually denoted 2mke.

To simplify the notation, we have suppressed the factor
of 2«r. )

Equation (3.17) is a polynomial of order 6sH« in e'~'

and has in general 6sH3 distinct complex roots whose

[0„.(e"«'; k,)]*=0..(e
—"« —k )=0..(e"«,k,) (3.24. )

Hence

O=det[9..(e"«; k,)]&~ det[0...(e'"'*; k,)]=0 (3.25)

0=det[8, (e'"; k,)]~~det[9 .(e '"' —k )]=0. (3.26)

Equation (3.25) asserts that if Eq. (3.17) has a root
e'~3, then it also has a root e'~". This proves our pre-
vious assertion. Equation (3.26) establishes a relation
between the roots of Eq. (3.17) and those of the cor-

responding equation obtained when k, is replaced

by —k, .
At this point we define a convention for labeling the

6sH3 values of k3. YVC shall order the complex values of

k3 according to their absolute magnitudes. Those with

positive imaginary parts are labeled by g= 1 - . 6 '

those with negative imaginary parts are labeled by
g= G+1, , 2G. The real values are ordered according
to the algebraic value of k«and labeled by g= 2G+1, ~ . ~,

6sH3. If two complex values have the same magnitude
and imaginary parts of the same sign, they are ordered

according to increasing algebra, ic value of their real

parts. In case of multiple roots of Eq. (3.17) we have to
introduce a further convention for labeling these.
However, this need not be spelled out at present, since

it is of no particular consequence in the following. '6

Returning to our boundary-value problem, we note
that in order to satisfy Eq. (3.10), we have to restrict
the summation in Eq. (3.16) to those values of k«

which have a positive imaginary part. As wc have seen,

'6 This admittedly somewhat clumsy and ad Izoc convention is
adequate for the present discussion. A more versatile though also
more elaborate convention is introduced in Ref. 1I, Sec. 3, Eqs.
(3.26) and (3.27), in connection with the dynamic problem.
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there are in general 3sH3 such values. In order to determine the coeflicients c, of Eq. (3.16), we now consider
the following set of 9$H3 equations:

e..(m3,na, k,)U. '(e3,k,)+ P P P 8..(ma, rig, kp) exp(ika«&mg}

X U.(exp(ikg«'}; k,)cg(k,)=
0

F.(m3); F3=0, , Ha —1
Sw„o, ~=1,",3e. (3.27)

ns3= H3 ~ ~ ~ 3IX3—I

In this set of equations we explicitly accounted for the continuity equations, Eqs. (3.15), and eliminated
U '(m3', k,) ma= 2H~ 3H3 1. W—e now introduce a new set of indices, n and y:

n=3sm3+7r, 0&~mi&~3H3 1; n=—1, , 9sH3,

y=3sea+o. , 0&&ni~&2HS —1; y=1, , 6sHS,
= 6sH3+ g, 1 &~ g &&3sH3, =6sH3+1, , 9sH3.

In terms of these new indices we can rewrite Kq. (3.27) in a more concise form,

(3.28)

(3.29)

P M, (kp)c, (kp)=F bj,, o, n=1, .
, 9sH3.

y=l
(3.30)

The 9sH3-dimensional matrix M, ~ is defined by Eqs. (3.31) and (332);

M„(kp) = 0,„(ma,n~, kp), y=1, , 6sH3 (3.31)

3e II3+ma

8,.(m3, e3, kp) exp(ik3«'e3}U, «&(exp(i&3«'}; k,); y=6sH3+1, , 9sH3. (332)
0.=1 n3=2II8

The 9$H3-dimensional vector c7 is dehncd by Eqs.
{333)and (3.34):

c =U '(ri3 k) y=1, 6sH3 (3.33)

=c,(k,); y =6sII3+1, , 9sH3. (3.34)

We now have to distinguish between two cases. First,
if k, NO, then Eq. (3.30) reduces to a set of 9sH3 linear
homogeneous equations in 9$II3 unknowns. Hence, in
this case Eq. (3.30) has a, nontrivial solution if, and only
if, the determinant

detLM. ,{k„)]= 0. (3.35)

This "compatibility condition, " and Eqs. {3.17) and
(3.19), determine the values of k, and the correspond-
ing values of exp{isa«&(k,)} for which the boundary-
value problem has nontrivial solutions, The physical
signiflcancc of such solutions will bc dlscUsscd below.
Here we only note that available experimental evi-
dence indicates that for most solids, Eqs. (3.17),
(3.19), and (3.35) have no solution consistent with Eqs.
(3.6) and (3.7). However, there are notable exceptions
such as Si, Ge, and possible other valence crystals. "'~
It should also be noted that if a nontrivial solution of
Eqs. (3.17), (3.19), and (335) exists for k, =q„ then
there must also exist such a solution for kp qp.

"J.J. Lander, in I'rogress ie SoE'd-Slate Chemistr~, edited by
H. Reiss (Pergamon Press, Inc., New York, 1965), Vol. 2, p. 26;
J. J. Lander and J. Morrison, J. Appl. Phys. 34, 1403 (1963); J.
Chem. Phys. 37, 729 (1962); J. J. Lander, G. W. Gobeli, and
J. Morrison, J. Appl. Phys. 34, 2498 (1963).

This follows from the fact that M ~*(k,)=M ~(—k,),
and from Eqs. (3.24)—(3.26). Furthermore, if the bound-
ary plane is normal to an e-fold axis-of-rotation sym-
metry, then the existence of a solution of Eqs. (3.17),
(3.19), and (3.35) with k,=q, implies the existence of
such solutions, the e distinct vectors k, =E. qp obtained
by rotating q, by 2irm/m rad about the 3 axis in re-
ciprocal space.

The next case to consider is when kp=o. In this
case Eq. (3.17) has a sixfold root e'~'=1. Hence, only
3sHS—3 roots of Eq. (3.17) lead to elementary solutions
which satisfy the boundary conditions at ms= ~. Thus
Eq. (3.30) represents a set of 9sH3 inhomogeneous linear
equations in 9$II3—3 unknowns, and clearly has, in
general, no solution. This difhculty can be ehminated
by noting that Kqs. (2.19) and (2.21) imply that for
kp=o only 3sH3 —3 of the inhomogeneous equations
specified by Kq. (3.9) are linearly independent. This
implies that in formulating our auxiliary problem,
for U(~&, we should disregard any three of the 3sIIg
boundary conditions, Eq. (3.9). We shall drop the 6rst
three, and thus obtain instead of Eq. (3.30) the follow-
ing sct of 9$H3—3 cqUatloIls ln 9$H —3 Unknowns:

SsII3—3

M „(kp=O)c,(kp=O) =F . ,
y=l

n'= n —3= 1, , 9sII3—3. (3.36)

The quantities appearing in Eq. (3.36) are defined by
Eqs. (3.28)—(3.24). It should be noted that our labeling



This statement follows immediately from Eqs. (3.25)
and (3.26). It implies that the expansion of the static
displacements in elementary solutions always includes
in this case pairs of terms associated. with equal, posi-
tive Imka and equal ( Re&3~ .

Thc sohltloQ of thc sct of equations specified by Eq.
(3.36) is elementary. We denote the (9sHS—3)-
dimensional matrix of coeKcients by M('&, the set of
9sH3—3 unknowns (:7 by the vector C")(k =0) and
the right 81de of Eq. (3.36) by the (9$H3—3)-dimensional
vector I"('). Then, if

me obtain
det[M~')]W0,

C(()(k =0)= [M(())—(F(()

(3.37)

(3.38)

In principle, the rank r of M") might be less than
9sH3 —3. In this case we find

C(')(k ) = [M(")]—'F(')+P () C ('&(k =0). (3.39)

Here M(") is an r-dimensional, nonsingular submatrix
of M('), and I'(') is the associated r-dimensional com-
ponent of F('&. The (9sH3—3)-dimensional vectors
C„(')(k,=0) are 9sHq —3—r linearly independent solu-
tions of the homogeneous matrix equation,

M('&C('&(k, =0)=0. (3.40)

The physical signidcance of the undertermined constants
a„ is discussed in Sec. V.

The preceding discussion assumed throughout that
Eq. (3.17) has no multiple complex roots. It is clear
that this is an unessential simplifying assumption. The
general treatment can be given at the expense of a
somewhat more cumbersome notation.

convention for complex values of k3 implies that, for
kp ——Q, if

k3«) =k3,

for these particles the relative displacements of par-
ticles in adjacent cells is small. This then would justify
the application of the linear theory to particles removed
by more than 2H3 cells from the surface. More pre-
cisely, the ].inearized theory is self-consistent provided
that the absolute displacements of particles in the
region H3&~ma~& 2H3—1 are small.

It is quite likely that close to the boundary (ma(H3)
both absolute and relative displacements are apprecia-
ble. The preceding suggests that such displacements
might be included in the analysis without drastically
altering the results of the linearized analysis. Hence it is
of interest to determine to what extent the results of
the linear theory are modified if nonlinear terms in the
static displacements of particles close to the boundary
are included.

The speci6cation of the region within which higher-
order terms in the static. displacements are to be ex-
plicitly included in the analysis has to be consistent
with the general requirement that no net force act on
the semi-in6nitc lattice. This consistency condition can
be shomn to imply that a restriction on the region in
which nonlinear terms in the relative displacements are
to be included has to be supplemented either by an
ad hot, restriction on the derivatives of the C6ective
potential energy of interaction, or by a restriction on
the region in which nonlinear terms in the absollte
displacements are to be included. We shall choose the
second alternative.

For our purposes it is sufficient to consid. cr the simp-
lest extension of the linear model, namely, in the ex-
pression for the force acting on a given particle, we
shall neglect all third-order terms in the relative dis-
placements. Of the second-order terms, me only include
those

0([U;(n, ) )—U, (m, p) j[U(1,X)—U(m, p)1) (4.1a)

for which one of the variables, m3, n3, 13~& H3—1.
We shall also neglect terms,

0(U;(m, p) U;(n, ) )), m() and vs~&Ha. (4.1b)

IV. ANHARMONIC EFFECTS

A. Introductory Remarks

In the last two scctloIls wc wclc concclllcd with R

linearized theory based on the assumption that the
absolute magnitudes of the relative displacements of
particles in adjacent unit cells mere small compared to
the dimensions of the unit cell. Wc saw that the dis-
placements of particles more than 2H3 unit cells from
the boundary could be expressed as linear combinations
of elementary displacements, each of which depended
on thc dlstRncc from thc boundary through R colTlplcx
exponential factor. The essentially exponential decrease
of the absolute displacements of particles removed by
more than 2H3 unit cells from the surface suggests that

In practice it is more convenient to formulate the
approximation strictly in terms of the absolute static
displacement. Ke shall thus extend the linear theory
by simply including all terms

0(U;(m; v)U;(n;))), es3 or e, &H3—1 (4.1c)

and verify that the resulting equations are the same
as those derived subject to the conditions indicated. by
Eqs. (4.1a) and (4.1b).

The nonlinear model to be considered is specified in
Sec. IV 8 and, its preliminary analysis is given in Sec.
IV C. Section IV D comprises a rather detailed anal-
ysis of the model. This detailed analysis is not essen-
tial for the understanding of the physical significance
of the results which are d,educed. from the model, and
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which are discussed at length in Sec. V. Hence Sec. IV D
might be read after Sec. V.

Ke shall see that most of the analysis of the linear
model, which was given in Sec. III, is easily adapted
to the present nonlinear model, and that the essential
features of the linear theory are preserved and illumi-
nated by the following analysis.

B. Syeci6cation of the Nonlinear Model

The assumptions listed above require us to include

in the expansion of the vector %'(m,p), given by Eq.
(2.9), some quadratic terms in the static displacements.

The quadratic terms in the Taylor expansion of the
ith component of the vector %'(m, p) in terms of U are

@;&2&(mn)=-', p p Q Q LC,p(mn; nv; IX)+ac'g&(mn; n v; I X)jV;(nv)U&(1 &&). (4 2)
j,h=1 p, )& =1 n1,na& na, la=0

l1,4 j

I "&„(m p n v I X)= — 4&"&

aX,(m, & ) BX,(n, v) BX&(I,X)
(4.3)

8C;,(m& n'I&)=- (c—C&-&)

aX;(m,p) aX, (n,v) c&X&,(l,& ) (v)-6

X,(m,p) = the ~th component of R(m)+R(p) .

In the following we shall 6nd it convenient to denote

e;;&,(m,p; n, v, l,x)+SC;;&,(m, p; n, v; I,X)= c;;&,(m, n; n, v; l,&I).

The assumed finite range of the interparticle interaction implies that

c;,7„(m,p; n,v; I,& )=0,
if any one of the following inequalities applies:

(4 4)

(4.5)

(4.6)

(4.7)

)m;—n;(, [n,—I, )
&H,+1, i=1, 2, 3. (4 3)

s ~ min(ma, na} +H s

(4.9)C;,&„(m,v, ; n,v; I,X)—=0, ms and ns&~HS
)=1 l1,/2= —oo

The third-order coupling coe@cients 4;,&, satisfy identities which have a similar form to Eqs. (2.21) and, (2.23),
namely,

8 Oo min(ma, na} +Ha

Z
X = j. lz, /a = —~ ja =max(dna, na} -H s

c;&&,(m, n; n, v; I,X)=—0, mg or ng&~ H». (4.10)

We now approximate Eq. (4.2) by dropping all terms for which ng and 4&HS. Thus

3 8 oO 2II3—1

e,&2&(m,p) =-', P P g g h(ma, ns, la)c;;&,(m, v, , n,v; I,&4) U, (n,v) U»(I,X), (4.11)

where

g,h =1 v, '}& =1na,nag na, la=0
la, la J

h(ms, n~, I3)=1, if one of the variables ng, l3&~Hg —1 and if ms~&2H3-1
=0, otherwise. (4.12)

It is easily checked that this approximation is consistent with the restriction

p,=1 fag ~ sip —oo 283=0
+;&'&(m,p,)—=0,

which is imposed by the vanishing of the net force acting on the semi-in6nite crystal.
Using Eqs. (4.9) and (4.10), we can also check that Eq. (4.11) implies

4,&'&(m,p) =0, m3&&2HS

4,;& (m,p, n, v; I,&)lLU;(n, v) —U;(m, n)j
j,h ='i v, )& =1 ni, na'l na, ta=0

la, la ) =

&(LU&,(I,& )—U&, (m,p) )+O(U;(n; v) U&,(1;X); ng and l8&~ Ha', mg) }~& 2Hg —1. (4.14)
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Thus our approximation indeed is equivalent to that specif(ed by Eqs. (4.1a) and (4.1b). It is easily veriled that
Eq. (4.1a) has to be supplemented by a condition. like that specified by Eq. (4.1b) if the approximation is to be
consistent with Eq. (4.13),unless, that is, the third-order coupling constants are subjected to an, additional restric-
tion, supplementing Eqs. (4.7)—(4.10).

C. Preliminary Analysis of the Nonlinear Model

(4.15)%';("(m, p) =P e'~ 'R(~ &4, ('& (ms, k,),

In the preceding subsection we have obtained in Eq. (4.11)a precise formulation of the nonlinearity to be con-
sidered. We now proceed to investigate its effects. Equation (4.11) clearly indicates that within our model, the dis-
placements U(m, p) m&~&2H& are still governed by the linear difference equations discussed in Sec. III. The non-
jinearity of the model can only aRect the boundary values imposed on these difference equations. That is, as @re

shall see, the set of hnear equations, Eqs. (3.27), will now be replaced by a set of nonhnear equations, to be derived
below.

Following our procedure in Sec. III, we eliminate the dependence of 4;('&(m,p) on m, by a Fourier transforma-
tion. That is, vie vmite

@;'((&mg, k,)=-,' P P P 6(ms, e3,l3)8...(ma, N3, l3, qp, k, q,)—U.(ea,q,)U„(m3, k,—q,),
qp o. , iI=1 ne, l3=0

0...(m3, na, la, q„k,—q,)=0.„.(ms, l3, N3,
.k,—q„q,)

4' ' 'A('+i mi '&s2 m2 ll ml lm m2 ma '&sa 4 (&& & )()

Here, the quantities
Xeiq~ R(n~ m~)ei(Jr'--qp) R(l~-m~) (4 17)

«, =2m P b;(i;; k, =2m P bg;
2=1

(4.18)

6sIIg6s03
q."'(k,)=(1——',~., ) E s., (k,,0) (o),(k,)+-' 2 Z |)-, (q., k,—q.),(q.) (k.—«.) (4 19)

qp&0, kp y„b=l

Here,
8=3sl3+ &),

0.,)(q„k,—q, ) =0„.„(m3, ea, la, q„k,—q, )A(ma, ms, l3).

Thus Eqs. (3.30) and (3.36) are replaced by the following coupled set of nonlinear equations:

are reduced two-dimensional wave vectors, which satisfy Eqs. (3.6), (3.7), and q,—k, is the reduced wave vec-
tor which is equivalent to their difference. Finally, we have used Eqs. (3.11) to define the indices 0., ~, and
&) =3(X—1)+h. Thus, within our approximation, anharmonic effects are accounted for by adding to the left side of
Eq. (3.27) the term @ ("(ma, 0,).Using the compact notation introduced by Eqs. (3.28), (3.29), (3.33), and (3.34),
we can write + ('&(mm,' k,)=+ (2&(k,), where

6sH3

2 &if-,(0)c,(0)+l 2 0- ~(0,0)c,(0)c~(0)

6sH3
=F. PP (). ,)—(q„q,)c,(qp)c—,( qp); n'=—1, , 9sBS—3; n'= c&. 3. (4.20)—

qp&0 ~,5=1

P LM, (k,)—P 8.,)(k„0)cg(0)]c,(k,)
6sHg

0,)(q„k,—q,)c,(q,)cg(k, —q,); n= 1, , 9sHS. (4.21)
q p+O, kp y, 5 1
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The nonlinear character of these equations implies
that, in general, several stationary static configurations
may exist. Of these, more than one might be stable, in
the sense that it corresponds to a local minimum of the
potential energy of interaction. In general we should
expect some "simple" solutions of the form

If the linear system has a unique solution,

c~&'&(k„)=c~"'(0)bk, ,o, (4.24)

98I13—3

we shall define the first iterated solution by the fol-
lowing set of linear equations:

c„(k,)=c,(0)8,, p.

Another possible class of solutions has the form

(4.22) [M,(0)+-,' Q 8,)(0,0)cg&"(0)]

. Xcv~"(0)=F, , n'= 1, , 9sH3 3, —(4.25)

c,(kp)=P P c,(k,)bg, „„, (4.23) 9.rr, 6eHg

P [M.„(k,)+ P 8.„(k„0)c,&»(0)]
y=1 5 1

Xc~&"(k,)=0, o.= 1, , 9sH~. (4.26)

n kq

where e runs over all integers such that ~q, is a reduced
(two-dimensional) wave vector. According to Eqs.
(4.18) and (3.6), the components qi, q& of q, are rational
numbers of absolute magnitude less than unity. Thus,
if q; is a ratio of small integers, q, = /, /cx, , the sum over n
involves a total of e =0.~+2 terms. Such a solution
corresponds to a configuration in which the two primi-
tive translation vectors parallel to the boundary are in-
creased from a, to O.,a;. There is in principle a possibility
that the set (nq, } includes most or all of the rational
point in the first Brillouin zone. In this case the semi-
in6nite crystal loses its translational periodicity parallel
to the boundary. This type of solution can be disre-
garded on physical grounds.

D. Perturbation-Theoretical Analysis of the
Nonlinear Model

A complete, formal analysis of Eqs. (4.20) and (4.21)
is clearly not feasible, nor is such an analysis justified
in view of the limited validity of the model from which
these equations were derived. The model clearly implies
that the nonlinear effects are moderate. Consequently
only those solutions of the nonlinear model which can
be obtained by iteration of the solutions of linear
model are consistent with our basic assumption. We
shall, therefore, restrict our discussion to such solutions.
That is, the following analysis is essentially a perturba-
tion theory. Our results may have a larger range of
validity than the normal perturbation theory, but we
shall not attempt to investigate this point.

Our object is to establish two points. Firstly, the itera-
tion of the solutions of the linear problem always leads
to a solution of the form indicated by Eq. (4.22).
Secondly, solutions of the form indicated by Eq. (4.23)
are obtained by an iterative process if, and only if, the
compatibility condition, Eq. (3.35), or one of its iter-
ates has a solution consistent with Eqs. (3.6), (3.17),
and (3.19). The physical significance of this result will

be discussed in Sec. V.
In the following we shall denote the mth iterated

quantities by a superscript (n). In particular, the solu-
tions of the linear equations (3.30) and (3.36) are de-
noted by a superscript (0).

Equation (4.26) has a nontrivial solution if, and only if,
the following compatibility condition is satisfied:

det[M„(k,)+ P 8,q(k„0)cq&"(0)]=0. (4.27)

Equation (4.27) is evidently the first iterate of Eq.
(3.35). If there exists no simultaneous solution of Eqs.
(4.27), (3.6), (3.17), and (3.19), then the iterative proc-
ess is repeated. The eth iterated solution is obtained

by replacing c~(') by c~'" ') and c~&" by c~'"). lt is clear
that this procedure may be followed even if Eq. (3.35)
or any one of its iterates has a solution which is con-
sistent with Eqs. (3.6), (3.17), and (3.18). This is due
to our freedom of choosing the trivial solution of Eq.
(3.30), or its iterates, such as Eq. (4.26). In order to
gain a clearer picture of the successive iterations ob-
tained by this process it is convenient to use the more
compact matrix notation, and suppress all indices.

and
C"&(0)=M '(0)F (4.28)

C"'(o)= L1+2 (—1)"
n=1

X[M '(0)-', 8(00)M '(0)F]"M 'F. (4.30)

Thus to 6rst order in the third-order coupling con-
stants 0,

C'"(0)= [1—M '(0)-,'8(0 0)M '(0)F]M 'F. (4.31)

This is the solution obtained in first-order perturbation
theory. It is easily checked that the mth iterated solu-
tion agrees, to terms of order m in 0, with the solution
obtained by eth-order perturbation theory. Hence,

G(1)(0)
=[1+M '(0)-'8(00)M '(0)F] 'M '(0)F. (4.29)

If none of the eigenvalues of the matrix M '~0M 'Il

a,re of absolute magnitude &~ 1 (this is the criterion for
the convergence of perturbation theory), then. the right
side of Eq. (4.29) may be developed in a binomial
expansion,
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assuming perturbation theory to converge, we see that
we always can construct a solution of the form

c„(k,)=c,(0)b,, p, (4.32)

which, in the limit of zero anharmonicity (0~0),
reduces to the solution of the linear model.

We now turn to consider the consequences of having
a nonunique mth iterated solution. This difhculty is due
to the existence of a simultaneous solution of the eth
iterated compatibility condition and Eqs. (3.6), (3.17),

and (3.19). The discussion applies in particular to
m=0 or i.

If for h, =q, the eth iterated compatibility condition
has a solution which is consistent with Eqs. (3.6),
(3.17), and (3.19), and if we choose the corresponding
nontrivial solution of the Nth iterate of Eq. (3.30),
c~&"&(q,)$0, then we have to modify the remaining
iterated equations to account for the relevant nonlinear
terms on the right side of Eqs. (4.20) and (4.21). The
full set of nth iterated equations thus becomes

9sH3 6sH3

p LM, (+q,)+ g 8,~(+q„0)c&" '&(0)]c„&"~(~q,)=p; a=1, ~ ~ ~, 9@+, (4.33)

9sH3 6sH3

P LM, (~q,)+ P 0, (+2q, ; 0)c &"-'&(0)]c„&"&(+2q,)

6sH0
= —

2 & S-»(+q. +q.)"'"'(~q,)c~'"'(—q,); ~=1,",»&p (4.34)

9sH3—3 6sHI

LM, (0)+12Q 0»(0,0)cg&"—'~(0)]c,&"&(0)=P

—p &~ »(+q„—q,)c~~"&(q,)c~&"&(—q,); n'=1, , 9sP3—3. (4.35)

Now, the nontrivial null vectors C&"&(+q,) are only
specified within a multiplicative constant A+. This
constant can be chosen, without loss of generality,
to be real. Since for k,=+q, the two null vectors are
a conjugate complex pair, we then have A+= (A )*=A .
Hence, we see that the complete Nth-iterated solution
depends on A. This dependence is rather simple, but
becomes successively more complicated in the higher
iterations. However, it is clear that the A dependence
of the higher iterations is analytic.

In the preceding we have tacitly assumed, for the
sake of simplicity, that the boundary is not normal to
any nz-fold axis-of-rotation symmetry. Otherwise, we
should have to include also a set of equations analogous
to Eqs. (4.33) and (4.34) for each one of the remaining
solutions of the compatibility condition and the right-
hand side of Eq. (4.35) would have to include a cor-
responding number of additional terms. We then would
also find that our iterated solutions depend on a set of
m constants A. The added complexity is only a matter
of bookkeeping, and hence will not be considered further.

If we assume that the set {eq,; I= 1, 2, ) includes
n distinct reduced wave vectors, then after n
iterations, the solutions will have the form

c &" '*&(k,)=PQ c„&" *&(k,)b „„. (4.36)
n Rp

We know that the iterative process will not converge for
arbitrary values of the constant A. However, it cer-
tainly converges for A=O, and it may converge for
some other values. In particular, if the convergence is
uniform in A over some interval I(A), then we know

that the iterations will converge to a function which is
analytic in A over a subinterval of I(A).

To conclude, if one of -the iterated compatibility
conditions has a solution which for k, =q, is consistent
with Eqs. (3.6), (3.17), and (3.19), then there exists a
one-parameter family of stationary configurations,
that satisfy Eq. (4.23). This family may include one
or more stable configurations, in which the potential
energy of interaction achieves a local minimum. The
static equilibrium configuration, which is associated
with an absolute minimum of the potential energy, is
presumably one of these stable solutions, but this is not
necessary.

This concludes our iterative analysis of the nonlinear
model. The physical significance of our results is dis-
cussed in the next section.

V. DISCUSSION OF THE STATIC
DISPLACEMENTS

In this paper, we consider the consequences of the
necessary conditions for the semi-infinite lattice to be in
static equilibrium. We have considered both a linear
and a nonlinear model. The two calculations agree in
their general predictions though they differ in some
details.

Our results can be summed up as follows: The crea-
tion of a free boundary by the removal of all particles
above a given lattice plane, say m3 ——0, leads to a spon-
taneous displacement of all atoms in the semi-infinite
lattice from the static equilibrium positions they assume
when embedded in an infinite lattice. These vector dis-
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U'(o 0 ~3 IJ) U'(~lal ~2&2 '&&i3 P)
nz, =0, +1, 2, ; i =1, 2. (5.1)

In Eq. (5.1),n; is a fixed positive integer. This integer
may be larger than unity whenever Eqs. (3.17), (3.19),
and (3.35) can be solved simultaneously for a set of real
vectors {k,'r&} such that each vector has the form

2

kp&r&=2~ P b„k,«&. (5.2)

Here, in order to satisfy the periodic boundary condi-
tions, k, &r& has to be a rational number, k, &r& =~ r& jp, &&'&,

such that the point (ki,k2) lies in the first Brillouin
zone of the lattice spanned by (bi,bu}. The integer a;
is less than or equal to the least-common multiple of
the set (P;&r&}.

In the linearized theory, discussed in Secs. II and III,
each vector k, &~) determines a set of static displace-
ments to within an arbitrary multiplicative constant.
The numerical values of these constants are not de-
termined, since we have only considered the necessary
conditions for static equilibrium. For the static-
equilibrium configuration, these constants are deter-
mined by the requirement that the potential energy
actually assumes an absolute minimum when these
constants assume a particular set of numerical values.
Several sets of this type may exist, and hence we may
6nd several coexistent "domains. ""The same com-
ment applies to the arbitrary constants a„ in Eq.
(3.39). The nonlinear theory, discussed in Sec. IV,

"G. C. Benson, P. I. Freeman, and Edward Dempsey, in
Advances in Chemistry, edited by Robert F. Gould (American
Chemical Society, Washington, D. C., 1961),Vol. 33, p. 26.

"This possibly is also suggested by J. J. Lander. See Sec. 7,6
and Fig. 31 in the erst reference of Ref. I7.

placements can in general be represented by a linear
combination of "elementary displacements. "The latter
depend on the distance m3 of the atom from the
boundary plane m3 ——0 through a complex exponential,
exp(ikam3}, where Imk3) 0. This implies that the magni-
tude of the displacement of an atom decreases, roughly
exponentially, with the distance of the atom from the
boundary. However, the displacements are in general
not monotonic functions of m3. This qualitative state-
ment is in agreement with the results of Benson et al. ,"
who considered the effect of a free boundary on an ionic
crystal with the structure of NaCl. The same conclusion
was reached by Gazis and Wallis'0 on the basis of their
one-dimensional model.

Our analysis suggests two further qualitative state-
ments. First, the static displacements of atoms in the
semi-infinite lattice are doubly periodic in the coordi-
nates (mi, m~) parallel to the boundary. These periods
may be an integer multiple of the two-dimensional unit
cell spanned by (ai,a2), and which characterizes the
bulk, or inhnite crystal. Thus

indicates that whenever Eq. (3.35) or one of its iterates
can be solved simultaneously with Eqs. (3.6), (3.17),
and (3.18), for a wave vector k„several m, -dependent
sets of static displacements are coupled with each other
and with the set of m, -independent displacements. The
absolute magnitude of the total displacements in these
stationary configurations is again undetermined. The
static-equilibrium configuration is obtained by selecting

among these stationary con6gurations the one that
minimizes the potential energy of interaction.

Low-energy diffraction experiments with some valence

crystals such as Ge and Si indicate that in these ma-

terials the integers n; are definitely larger than unity. '
Our analysis suggests that for these valence crystals, a
surface structure derived from the corresponding bulk
structure under the influence of the "unbalanced"
forces Ii and maintaining the two-dimensional period
of the atomic planes in the infinite lattice, corresponds
to an unstable or possibly metastable static-equilibrium
state of the semi-infinite crystal. This view is consistent
with the chemical arguments proposed by Lander" to
explain his experimental data on Ge and Si. The dis-

cussion in Sec. IV indicates furthermore the possibility
that this instability may be due to an anharmonic

coupling between some m, -dependent elementary dis-

placements and the m, -independent displacements.
Thus the change in the two-dimensional surface sym-

metry may be sensitive to external pressure, as well as
to temperature, both of which affect the relative im-

portance of anharmonic effects. In particular, it may be
possible to induce "phase transformations" of the sur-

face structure by these means. Furthermore, if the
linear theory applies at low temperatures, we may find

several "degenerate" configurations coexisting. This
degeneracy may be lifted at elevated temperatures due

to the nonlinear effects. If the surface finds itself in a
metastable configuration at low temperatures, heat
treatment may induce an irreversible transformation of
the surface to the actual equilibrium con6guration. The
latter phenomenon has indeed been observed by
Lander, "who invokes surface migration to explain his

observation.
Turning to another result suggested by our analysis,

suppose the static displacements of the "atoms" have
the same two-dimensional period, in planes parallel to
the boundary, as the bulk structure, i.e., the constants
a, in Eq. (5.1) are equal to unity. We still may find

that these two-dimensional unit cells distort, such that

U, (m,pi)~ U, (m; &ti~). (5 3)

This phenomenon may be due either to the fact that
F(tea, pi) NF(ma, p2), or it may be a manifestation, of an
instability of the semi-inhnite configuration assumed
under the influence of the unbalanced forces F(m3, p).

"See erst reference of Ref. 19, Sec. 7.6. Also R. Seiwatz, in
Solid Surfaces, edited by Harry C. Gatos (North-Holland Pub-
lishing Company, Amsterdam, 1964), p. 473.
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In the latter case it is necessary that one or more of the
constants a„ in Eq. (3.39) be nonzero. This is, in fact,
a possibility originally suggested by Moliere et al. ,

"
who investigated surface structures of ionic crystals.
Unfortunately, this conclusion cannot be checked with-
out a complete Fourier inversion of the low-energy
electron di8raction data, and hence it is still rather
speculative.

It is interesting to note that the instabilities of the
semi-in6nite configurations assumed under the inQuence
of the unbalanced forces may be interpreted as mani-
festationss

of the existence of unstable (or zero-frequency)
surface modes in the configuration considered. A change
in the size of the unit cell is connected with a surface
mode which has a wave vector with a nonvanishing
component parallel to the surface, k,&0. A distortion
of the unit cell results from an unstable "optical" sur-
face mode with a wave vector whose component parallel
to the surface vanishes, k, =o. This interpretation is
analogous to the interpretation of the ferroelectric
phase transition as connected with unstable (bulk)
optical modes. Again, the nonlinear model suggests
that the instability in the surface modes may only
be latent, and manifests itself only when the I,-

independent displacements have reached a sufficiently
large amplitude.

In conclusion, we believe our model has great po-
tential applicability to surface physics. Some of these
applications, namely to the diffraction and the thermal
diffuse scattering of low-energy electrons, will be con-
sidered in following papers, "" others have yet to be
explored.

APPENDIX A: PROOF OF THE SYMMETRIES OF
THE UNBALANCED FORCES AND

COUPLING CONSTANTS

In this Appendix, we shall briefly outline the proof of
Eqs. (2.16)—(2.22). These relations are specializations of

relations discussed in great length by Leibfried' and
Ludwig and Leibfried. ' The primary purpose of this
Appendix is to make our discussion reasonably
self-contained.

We start from the observation that the potential
energy of interaction of any system of particles is in-
variant under an arbitrary infinitesimal transforma-
tion, which in turn implies a mapping,

Or(m, p) = r'(m, p) = Qr(m, p)+t
= r(m, p)+a~r(m, p)+t, (A1)

where 0 is an orthogonal matrix (representing a rota-
tion) and ~ is an in6nitesimal skew symmetric matrix.
The vector r(m, li) is defined by Kq. (2.5).

The invariance of the potential energy C)({r(1,&)})
under the operation 0 implies that

OC({r(I,X)})= C'({Or(1h)})= C({r(I,X)}). (A2)

Hence, the partial derivatives of the potential energy,

@i) "') (mi)&1 j ' ' '
j rri)))ii)))

~ [r(l,i) } = tr, (1, )j1)
ax;, (m, ,p, ) ax,„(m„,p „)

transform under the operation 0 as tensors of rank p:

O@i)" ') (mi) pij ' '
j mu)I11))

3

0,„, 0,„;„C„...,„(mi,pi," . , m„,y„) . (A4)
Jl) ' ' ' )2y

Here {ro(l,j1)}is to be interpreted as a "reference" con-
figuration, to be speci6ed later. If 0 is an infinitesimal
transformation, then the transformed Pth partial
derivatives of C defined by Eq. (A3) in terms of the
transformed configuration {Oro(2.,l)} can be expanded
in a Taylor series about the original configuration

{ro(k,l)}:

OC'i) ~ "i))(mi)gij' ' '
j m)))P))) = Ci i( )))lmal)j' ' ' )™1))I11))

3 8 00 00

+ 2 @i)"~ i))i))+) (ml)pl) ' ' 'my)pr) j m))+1)p))+1)
i'd+1=1 Pp+1=1 my+1, 1) ntp+1, 3 =0

m&+1, ~/

X[p ~,„„,&)(m„+1,1 ~1)+&;„+,]+ . (A5).

Comparing Kqs. (A4) and (A5), we obtain, for simple infinitesimal translations (i.e., when the matrix &a=0),

3 00 00 S

C'i). ~ .i'))+) (ml)util j
' '

) mp)P)))™p+1)P))+1)]ti))+)—0 ~

i@+1=1 my+1, 1( my+1, 3 =0 Py+1=1
m~+&, 2j

(A6)

Noting that t;„,is arbitrary, we conclude that the term in the square brackets has to vanish identically. Similarly,

"K.Mojiere, W. Rathje, and J. N. Stranski, Disc. Faraday Soc. 5, 21 {1949).
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for an infinitesimal pure rotation (i.e., when t= 0),

Z ~J, 'L Z
p)&+I =1 m)&+I, I) m)&+1,3 =0

m)&+1,2J

(C" - ', (mi,»'" m.,~.; m~»~~i)~ (m~»~~i))

y 3

+2 2 @6 "iq" iy(m»pij' ' 'mc)pej' ' '~n)pn)Sip iSiqi) (A7)
g 1 jr=1

Now, noting that ~ is an arbitrary skew-symmetric infinitesimal matrix, we conclude that the term in square
brackets must be symmetric in the indices i and j.Equations (A6) and (A7) apply to any semi-infinite system. In
particular, if C =4&"}=potential energy of interaction of the upper half of an infinite lattice, and if we de6ne as
our reference configuration {R(l)+R(ji)},we obtain Kqs. (2.19) and (2.20), if p=0. Similarly, we obtain Kqs.
(2.20)-(2.24) if p= 1.

We now turn to consider the consequences of the invariance of the potential energy under a translation by a
two-dimensional lattice vector

R(mp)= P am;~ R(mp+hp)= Q a;(m;+h;); hi, 4=0a1 (AS)

This invariance implies that

~ i&(m»plj ' ' '
&&ip&&i@) = @i~"~i~(mr+ hpy I'i j

' ' ' mp+hy pp) (A9)

Thus, in particular, if C=C'"&, p=0, and h, = —m, ;i=1, 2, then,

—F;(m,&ti) = 4;(m,p) = C,(0,0,ma, y) = —F,(m», p) . (A10)

Similarly, if p = 1, h;= —m, ; i = 1, 2, then

C,,(m, &ti; n, p) = C;,(0, 0, ma, p; Ni m» n—i mi, n—3, p) . (A11)

We also note that if in the configuration {R(I)+R(& )}each lattice point lies on an axis of rotation normal to the
boundary plane m3=0, then

F,(m, p) = 83,P'g(m3, p) . (A12)

This result applies in particular to alkali halides and cubic metals when the boundary plane is a (100) or a (110)
plane.

APPENDIX 8: THE DERIVATION OF A SET OF LINEARLY INDEPENDENT ELEMENTARY
SOLUTIONS ASSOCIATED WITH A MULTIPLE ROOT OF THE CHAR-

ACTERISTIC EQUATIQN

In terms of the notation of Sec. III we wish to construct the q, 3s-dimensional vectors U~'"(exp{ik3"'};lr,).
We proceed by solving the 3sq equations

q—1 3s III

@=0 o=1 h3=II3
8„(h3, k,)Ui. .(m3+h3, .lr„, g)=0= P P P exp{ik3 i}

2)=0 a=1 l=0

(m3 1 d'
X

~

— 8„(exp{ika«&};lr,)U~„(exp{ik3«&};k,) ma ——0, , q
—1

kp —/ I!d(ik3)'

7l=i)' '') 3$
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which can be written in matrix form,

g(&) g(2)
Q(q—&)

Uo

0 0 f} e ~ ~

g (q-2)

yUg
(q—2)

=0

where
. 0 0 ~ ~ ~ 8 . .y 'U, g.

t&«&= 0,.(exp{ik, & &};k,),
d(ik3)'

y= exp{ika«&},

U„= U„.(exp, {ika«&};kp); (r =1, , 3s.

(B3)

The q 3s-dimensional vectors U„can be determined from this matrix equation, to within q arbitrary constants, as
follows: Let

8U=O,

where the q last components of U are equal to one. Then,

U, &
——

U, ,=U+ (s;r)0~»(yU, ,),
yl

U =II+(6 '&r 6"'—Ui)

where (6,) is the matrix 8 with the last q rows and columns omitted, and (6&'&y'U&) is the vector 6'"y'U& with the
last q components omitted.

The general solutions of the difference equations thus have the form

U (m3, ir,)= P c,(k,)U (exp{ika«'}; k,)/exp{ik~«&m8}+ P c, „(ir,)U~(exp{i,k3«'};k, )~ exp{ikq«'ma}.
0+0 @=0


