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Compressibility and Binding Energy of the Simple Metals*
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A straightforward calculation of the compressibility, binding energy, and density of the simple metals
yields good agreement with experiment. Effects of band structure are included in the perturbation theory,
using an electron-ion interaction fitted to experimental data in the region of the zone faces.

I. INTRODUCTION

A I.THOUGH the electron-gas compressibility, when
measured in units of the noninteracting electron-

gas compressibility, is an increasing function' ' of r, (see
Fig. 1), the experimentally observed compressibilities
for simple metals strongly show the opposite trend.
The quantity r, is, as usual, given by -', ~r,'=e ', where
e is the electronic density. It is well known, of course,
that the ions play an important role in determining the
compressibilities E of metals, and, in fact, detailed and
quite accurate calculations have been made in isolated
cases. ' These calculations fall into two general classes:
Those based on cellular methods, and those based on
perturbation theory. The former have two distinct dis-
advantages: (1) They are complicated, must be applied
to each metal separately, and hence do not elucidate
the trend shown in Fig. 1; (2) They cannot be readily
extended to polyvalent metals. On the other hand, there
has been no assurance in the past that the latter method
is suKciently accurate to treat volume-dependent
properties.

Here, we present a simple calculation, based on
perturbation theory, of the total energy and hence the
compressibility of the nearly-free-electron metals. 4 For
the alkalis, our results are of accuracy comparable to
that of the cellular methods for both binding energy and
compressibility. Moreover, we find good agreement for
polyvalent metals where few previous calculations
exist. The accuracy and simplicity of our methods may
be attributed to: (1) Use of a simple analytic form for
the electron-ion potential Atted to metallic data near
Bragg reflection planes; (2) The utilization of the zero-
pressure condition to eliminate the less accurately
known zeroth Fourier coeKcient of this potential. Thus,
we are able to derive simple formulas for the binding
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~ D. Pines and P. Nozikres, The Theory of Qgantum Liquids
(W. A. Benjamin, Inc. , New York, 1966), Vol. I.

s We use atomic units throughout: A=2m=e'/2=1.
3 See, for example, J. Bardeen, J. Chem. Phys. 6, 367 (1938),

and, for recent reviews: H. Brooks, Trans. Met. Soc. AIME 227,
546 (1963); F. S. Ham, Solid State Phys. 1, 127 (1955); H. B.
Huntington, ibid. 7, 213 (1958); and W. A. Harrison, I'seudo-
Potentials in the Theory of Metals (W. A. Benjamin, Inc. , New
York, 1966).

4 By this we mean metals with principally parabolic band struc-
ture, and specifically exclude in this paper any discussion of the
noble and transition metals.

energy and compressibility, which apparently apply to
all simple metals. Finally, we expect that similar con-
siderations will be useful for a number of other solid-
state properties; for example, calculations of phonon
spectra.

Here Z is the valence, and t/"~ is the kth Fourier coeK-
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FIG. 1.Comparison of experimental and theoretical values of the
compressibility E', measured in units of the free-electron com-
pressibility, Eo——1.7r, ', where 3~r,'=n '. The dashed line is
the interacting electron-gas compressibility, according to the
Nozihres-Pines interpolation formula (Ref. 1).

~ By energy we always mean energy per electron.
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II. CALCULATION

In addition to the usual kinetic, exchange, and corre-
lation energies, the energy of a solid contains terms re-
sulting from the electron-ion and ion-ion interaction.
Our basic assumption is that band-structure effects
can be included in perturbation theory. But the zeroth
Fourier coefIicient of the electron-ion potential is never
small and must be treated exactly. Its contribution to
the energy' is comprised of the potential field of the
ions plus the Coulomb field of the other electrons, and
may be written as u/-,'s.r,', where
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For a lattice of equivalent ions p &pl,
——N28J, , &, so that

(3) follows immediately. For the band parameters VG,

we have used a form recently proposed by one of us',
namely,

Vg= (—8~Z/G') cos ~G ~r„ (4)

With this grouping, the divergent long-range parts of the
ion-ion and electron-electron interactions precisely cancel. In
writing (2), we neglect any deviations of the ion-ion interaction
from Coulomb's law; at normal densities these deviations are
surely unimportant. We also neglect the effects associated with
the polarization of the ion cores; such neglect appears to be
justified in all the metals we consider here, except possibly in Pb
and Zn, where the core states are not so well separated in energy
from the valence states.

7K. Fuchs, Proc. Roy. Soc. (London) A151, 585 (1935); W.
Kohn and D. Schecter quoted by W. J. Carr, Jr., Phys. Rev. 122,
1437 (1961).

'Obtained by numerical integration of the structure factor of
N. W. Ashcroft and J. Lekner, Phys. Rev. 145, 83 (1966).

In deriving (3), care must be exercised in excluding the
doubly counted part of the electron-electron interaction. The
effect of any deviations from our Hartree (random-phase-approxi-
mation or self-consistent-6eld) treatment of the screening must be
small, since the screening is small to begin with. Finally, we note
that (3) contains not only a shift of the band minimum, but also
a modification of the electronic kinetic energy. See, for example,
Harrison (Ref. 3), Eqs. 2.32 and 2.60.

'P N. W. Ashcroft, Phys. Letters 23, 48 (1966).

cient of the bare interaction of an electron with a single
ion. That (1) is positive is of no concern, because we
have included the electron-electron contribution twice;
half of the latter is automatically subtracted again if
we write the ion-ion interaction energy as

Sm.Z
L~(k) —1),

k&0 P2

where 5(k) is the structure factor for the ionic arrange-
ment: S(k) =(pqp q)/N, where pq is the kth Fourier
coeKcient of the ionic density, and N is the total
number of ions. For hcp, fcc, and bcc structures, the
numerical value of this term' is —1 792.Z'/r, ; for a
liquid metal we obtain' 1 73—Z'/. r,

. Band-structure effects add a term

Ga

f
Vg[' —1/~ (3)

0 8zZ' eo

to the energy, where eI, is the Lindhard' dielectric func-

tion, and the sum extends over all nonzero reciprocal-
lattice vectors G. The term (3) is readily derived in
second-order perturbation theory treating screening in
the Hartree approximation. ' Further, we note that (3)
may be written down immediately using the following
considerations. According to the definition of the di-

electric coefficient, the electronic-density fluctuation in-

duced by pj, is

p„'"'= (ep
—' —1)(k'Vp/8~) ps.

This, in turn, acts back on the lattice with interaction
energy

a 2 pA:Vap a'"'.
k&0

TABLE I.Values of r, used in Eq. (4) (atomic units). The entries
in the first column were deduced from Fermi-surface data, while
those in the second column were derived from transport proper-
ties of the liquid. The value re=2.00 also fits the resistivity of
liquid Li, but gives poor agreement for E/Ep and Eg.

Metal Metal

K
Rb
Al

Pb

2.14
2.61
1.12
1.12

Ll
Na
Cs
Mg
Zn

1.06
1.67
2.93
1.39
1.27

where r, is a radius close to the radius of the free ion.
This form of the electron-ion interaction is known to
give consistent results for Fermi surface and transport
properties in simple metals, and for the ionization
energies of the free atoms. We note that of the existing
pseudopotentials, (4) is at least of comparable accuracy
and is considerably easier to use. Pertinent values, given
in Table I, are deduced from metallic data, as outlined
in Ref. 10.

The total energy of the solid can now be written

2.21 0.916
E= — —(0.115—0.031 Inr, )

1.792Z: 3A
+ +Ex, (5)

r,, 4m.r,'

where the first three terms are, respectively, the kinetic,
exchange, and correlation energies, and atomic units
are used throughout. For the latter, we arbitrarily
choose the Nozieres-Pines form, ' noting that none of
the several existing interpolation formulas differ by
more than 10% over the range of r, appropriate to
Table I. If we assume that the zeroth Fourier com-

ponent of the potential is also given accurately by
Eq. (4), the limit (1) gives n=4nr 2. Then the equi-
librium condition dE/dr, =0 predicts values of r, in
fair agreement with the observed densities. For calcu-
lations of the compressibility and binding energy, how-

ever, we use the more accurate procedure of elimi-

nating n with the zero-pressure condition dE/dr, =0.
In this manner, we obtain"

0.737 2 (0.916+1.792Zl) —0.105+0.031 lnr,
r.2 3

—0.0338P (r,)Leos'y+ ray sin2y j, (6)

K/Ko ——22.1(0.093r '+ 2 (0.916+1.792Z*)r, —4.42

—0.0338rPP(r, )L2y(sin2y —y cos2y) j} ', (7)

"Ignoring negligible contributions arising from differentiating
the denominator of le —1)/e.
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TABLE II. Summary of numerical results, and
comparison with experiment.

Al
Pb
Zn

Mg
Ll
Na
K
Rb
Cs

3.5
3.2
2,1
2.1
2.1
1.6
1.1
0.82
0.71

3.9
3.5
2.1
1.9
2.0
1.5
1.0
0.82
0.78

E/Ep
Element Theory Experiment

1.41
1.55
1.10
0.860
0.564
0.454
0.383
0.344
0.318

1.38
1.79
1.05
0.890
0.511
0.460
0.390
0.366
0.345

—8, (Ry/electron)
Theory Experiment

I.O

( R y /electron)

5

Pb0
Al Q

Zn
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0
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where y=3 84xr, /r. „Ee is the free-electron compressi-
bility, and

1 F(x)
~(")=Z—

x4 1+0 166r,F (. x)/x'

Here x is a reciprocal-lattice vector measured in units
of twice the Fermi wave vector, and

1 x+ 1
F(x)=-',+—(1-x') ln

4x x—1

Except for E~, the relative sizes of the various con-
tributions to E, and E may be gleaned from inspection
of (6) and (7). To obtain an estimate of the size of F~,
it is sufficient to take y n./2, and P=lV /3x', where E,
is the number of shortest reciprocal-lattice vectors and
x is their length. It follows that the term L j in (6) is
very small, and E~ has but little contribution to E,.
On the other hand, the term [ ) in (7) is of order
unity, thereby giving to E: (i) in the polyvalent metals,
a substantial contribution (more than 100% in Al);
(ii) in the alkali metals, still a small contribution. The
different behaviors result from the characteristic x's
found in alkali and polyvalent metals. Since the poly-
valent metals include such a large contribution from
band structure to E, we regard the results for this

group to be least accurate.
In evaluating the contribution from (8) to F., and

E/Ee, we have included in the sum only the nearest
sets of Bragg planes to the zone center. " We have

'2 For the hexagonal structures, we carry out an equivalent
procedure in keeping the (1001}and (0002} sets. Although the

rs

FIG. 2. Comparison of experimental and theoretical binding
energies, measured in rydbergs per conduction electron. The ex-
perimental points represent the average of the erst Z-ionization
energies plus the observed heat of sublimation.

applied Eqs. (6) and (7) to a number of simple metals,
and for every case attempted, we have found at least
fair agreement with experiment as shown in Table II
and Figs. 1 and 2. Since we have treated all the metals
with the same approximation, a detailed comparison
with the few previous calculations (attempted by
different methods) is diflicult. As to the accuracy of the
results, however, we remark the following: Inaccuracies
arising from uncertainties in the band-structure terms
are clearly important, as mentioned earlier. For the
alkalis, a cellular method would probably be more
accurate than our calculation, provided the potential
was known with some precision. The present calculation,
on the other hand, makes best use of the limited infor-
mation on the potential that can be deduced from
direct experimental evidence.

contribution from the omitted terms is generally not as much as
an order of magnitude less than the terms retained, we note that
they tend to be cancelled by terms of opposite sign in third-order
perturbation theory (for both hexagonal and cubic structures).
For Mg and Zn, each term in the sums (3) and (8) is weighted by
the normalized-structure factor for the unit cell. The quantity
calculated for the hexagonal case is not strictly the compressi-
bility, but rather what the compressibility would be if the c'/a
ratio did not change on compression. This latter quantity, easily
expressible in terms of the elastic constants, is the one plotted in
Fig. 1 for both experimental and theoretical points.


