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Influence of Conduction Electrons on the Lattice Specific Heat and
Elastic Moduli of Alpha-Phase Alloys of the Noble Metals*

J. G. COLLINS)

Institute for Atomic Research and Department of Physics, Iowa State University, Ames, Iowa

(Received 5 August 1966}

Measurements near O'K of the lattice specific heat and the elastic moduli C;; of a-phase alloys of the noble
metals imply a change in Debye temperature 0+ which is a function only of the electron/atom ratio when the
solute is iso-electronic with the solvent. An attempt is made to estimate the variation in 0+ by calculating
the dependence of the shear moduli on the total kinetic energy of the electron system. The band structure is
assumed rigid and the energy surfaces, which are defined using a nearly-free-electron model, are chosen so
that the shape of the model Fermi surface resembles that which has been measured for the pure metals. The
calculated variation with electron density is too large, particularly for C44, and the observed change in 0+

cannot be reproduced. This is probably due to the use of a rigid-band model, which predicts a decrease in
the density of states with increasing electron/atom ratio for a Fermi surface which contacts the zone bound-
ary, and is consequently unable to explain the observed changes in either the lattice or the electronic heat
capacities.

I. INTRODUCTION

0+ ~ (g/pa2)1/2 (2)

where a is the lattice constant and p is the density of the
solid. Details of the averaging procedure are given, for
example, in the review by Blackman. ' Here we merely
wish to point out the functional relationship between
the Debye temperature and the elastic moduli.

The speci6c heats at low temperature of Cu, Ag, and
Au and of a number of their n-phase alloys have been
measured very precisely over the past ten years. '—~
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HE heat capacity C„of a metal at very low tem-
peratures (T&4.2'K) can be analyzed into two

principal contributions;

C. pT+ (12—~4/5) ¹k(T/0)'+0 (T') . (1)

The term linear in T is the specific heat of the con-
duction electrons and the coeKcient y is directly pro-
portional to the density of electron states at the Fermi
surface X(E~). The cubic term arises from long-
wavelength thermal vibrations of the lattice, the physical
properties of which are characterized by the Debye
temperature 0. (The symbols Ee and k are Avagadro's
and Boltzmann's constants, respectively, and through-
out the paper 0' means the Debye temperature at
T= O'K). At very low temperatures a solid behaves like
an elastic continuum for which 0 may be related to an
average velocity of sound and hence to an average
elastic modulus C. If we neglect various constants, we
can write

Interest has centered mainly on the change in y/ye with
change in the electron/atom ratio (e/a) of the alloy. '
The majority of the experimental points suggest that as
e/a increases the electronic density of states in these
alloys rises steadily, but at a slower rate than would be
expected for a distribution of free electrons. This is in
apparent de6ance of all theories based on a "rigid-
band" extension of the known properties of electrons at
the Fermi surface of the pure solvents, and has not yet
been satisfactorily explained. ' The present paper has
nothing to offer on this puzzling question beyond
presenting a further theoretical density-of-states curve
based on a rigid-band model (see Fig. 7). Here we are
primarily concerned with a similar trend with e/a in the
lattice heat capacity of these alloys. The ratio of the
Debye temperature 0' of an alloy to the value 0'e for
the pure solvent appears to be (a) a function only of the
e/a ratio of the alloy, and (b) independent of the nature
of the solvent, for solutes whose ion cores are iso-
electronic with the solvent, i.e., for Ni, Zn, Ga, Ge, and
As in Cu and for Pd, Cd, In, Sn, and Sb in Ag.

The elastic moduli of a number of these alloy systems
have also been measured. " "Rayne's measurements on
copper based alloys extend from room temperature
down to 4.2'K, while those by Smith and his co-
workers are at room temperature only. We have scaled
the latter results to low temperatures according to the
measured ratio of low-temperature to room-temperature
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values for the pure solvents, " and have calculated a
Debye temperature for each alloy using de Launay's
interpolation tables. "

The reduced temperature ratio 0~(pu')'"/O~a(laII')8'"
= (C/Ca)"2, in which R11owance has been made for the
explicit dependence of O~ on the density and lattice
spacing of the alloys, "'7 is plotted in Fig. 1 using all
available heat-capacity and elastic measurements. The
steady and approximately linear drop in O~/0'8 derived
from both the heat-capacity and the elastic measure-
ments has been commented on by various authors but,
apart from some work by Raync, ' no attempt has been
made to explain it quantitatively.

In the present paper the observed variation of the
elastic moduli and hence of O~/O~a is assumed to be due
solely to a change with alloying in the contribution of
the conduction electrons to the elastic moduli. We set
up a rigid-band model of the electronic energy-mo-
mentum relation and fix all arbitrary parameters so as
to give agreement for the pure solvent (a) between the
gross features of the model Fermi surface and the
Fermi surface which has been deduced from de Haas-
van Alphen measurements, " and (b) between the
measured and calculated elastic shear moduh. The
model is then used to predict the elastic moduli when
the e/a ratio changes from unity, and to compare these
with the measured values for the alloy systems.

Two important quali6cations to this program should
be pointed out. Firstly, we calculate the elastic moduli
for a constant lattice spacing and so assume that there
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Flo. 1. The relative variation with e/u ratio of the Debye
temperature of a-phase alloys of Cu and of Ag. The points are
taken directly from heat capacity measurements (see Refs. 2-7)
and the broken lines are calculated from measurements of the
elastic moduli (see Refs. 10—13). "Reduced" means that the ex-
plicit dependence of O~ on density and on lattice constant has
been removed using Eq. (2).
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is no difference in the sizes of the ion cores of solvent
and iso-electronic solutes, i.e., we assume that alloying
changes ordy e/a and does not affect the exchange re-
pulsion between cores. To relax this condition would
require a further assumption about the exchange inter-
action and another arbitrary parameter, and this we
wish to avoid. As a consequence we do not include the
recent heat-capacity measurements by Green and co-
workers" on CuSn and AgZn systems. These alloys
show large variations in lattice constant from the pure
metal, indicating large differences in the sizes of thc ion
cores, and the reduced O~/O~a lie, respectively, slightly
below and above the general line of the points in the
figure. Secondly, we do not calculate the variation in
bulk modulus of the alloys, since this requires a knowl-
edge of the second-order dependence of the size and
shape of thc Fermi surface upon volume. Templeton
has observed the de Haas —van Alphen CGect in the noble
metals under pressure, but his measurements can be
interpreted in terms of only a 6rst-order variation with
volume in the size of the necks and hence in the shape of
the Fermi surface. "We therefore restrict our attention
to the elastic shear moduli and to elastic strains which
do not change the volume of the solid.

In Sec. II we outline the method used to calculate the
elastic constants as derivatives of contributions to the
elastic deformation energy from both lattice and elec-
trons. The model used to represent the Brillouin zone
and the electron energy-momentum relation is then
defined, and all of its parameters Axed by comparison
with the measured Fermi-surface geometry of the pure
solvent metals. Computed values of the shear moduli
are given in Sec. IV, after which the numerical results
and the physical implications of the calculation are
assessed.

IL ELASTIC SHEAR MODULI

The elastic strain energy t/V of the face-centered-
cubic (fcc) lattice is given by the equation

W= WO+ 2C11('gl +'g2 +718 )+Cia(Ill'92+r12'ga+rla'gl)

+K'88(ne'+vs'+vs') (3)

where C;; are the three independent elastic moduli, g~,

g2, and g3 are the diagonal elements of the strain tensor

q, and -', g4, —,'g5, and -', q6 are the OB-diagonal elements of
q. We use Voigt's notation.

The two most convenient shear moduli to consider are

2 (CII—CI2)—:C RIld C42= C, RIld these call be calculated
as second derivatives of S' with respect to the ap-
propriate strains. If the direct lattice is compressed
along the s axis and allowed to expand equally along the
x and y axes so as to maintain constant volume, the

xe L. C. Clune and B.A. Green Jr. Phys. Rev. 144 525 (1966)
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(1966)."J.G. Collins, Ann. Acad. Sci. Fennicae, Ser. A.Vl. 2M, 241
(1966).
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strained lattice is described by vectors r'= (I+@) r,
where

It follows that

P (1+~)
—i/2

0
0

0 0
(1+~)

—i/2 0
0 1+&,

(4)

C'= —,
' (O'W/8 ').=0. (5)

Again, if the direct lattice is strained at constant
volume by a tension in the (101) direction, the new
lattice vectors are r'= (I+r1) r, where now

1 0
I+g= (1—-'y') "' 0 1

.~v

and the appropriate elastic constant is

C= (O' W/ cyj') =0 ~

27
0 (6)

(7)

A. Electrostatic Terms

Thirty years ago, Fuchs" calculated Cz and Cz' for a
fcc lattice of positive ions each with charge Ze in a
uniform background of electrons. His result was

We consider the total elastic strain energy t/I/' of the
solid to be made up of three additive contributions: 8'~
arises from electrostatic interactions between ions im-
mersed in a sea of electrons which maintains over-all
charge neutrality; t/t/'& is the energy from exchange
repulsion between neighboring ion cores; and 8"~ is the
total kinetic energy of the electrons which we will refer
to as the Fermi energy. It follows immediately that the
elastic shear moduli also have three components;

C= Cs+Cii+C»,
C'= Cz'+ Ca'+ Ca'.

namely, that a rigid-band model can be used to describe
the band structure, for this implies perfect uniformity
between unit cells in the direct lattice and hence a uni-
form ionic charge distribution. Also we are considering
alloys with up to 35-at.% solute, and when every third
or fourth ion is an impurity, it is surely incorrect to
consider them as being independently screened by the
electrons. The screening problem becomes completely
nonlinear and the simple assumption of a uniform
density of electrons may again be valid. Whether Z is
taken to be always unity, as has been suggested, or
equal to e/a does not matter a great deal numerically
here because of the predominance of the repulsive and
Fermi contributions.

B. Exchange Terms

We represent the ion-ion exchange repulsion by an
energy of interaction Wri(r) between any pair of ions a
distance r apart. Then the contributions to the shear
moduli from nearest neighbors in a fcc lattice are

C= r'd'Wa/dr'+3r(dWa/dr)
C'= 'r'd'W///dr'-+-'r(dWr//dr) .

We make no specific assumptions about the form of
Wa(r), but treat the two derivatives dW/i/dr and
d'Wr//dr' as parameters to be fitted using the measured
shear moduli of the pure solvent metal and then kept
constant when the metal is alloyed, i.e., we assume
identical ion cores for the isoelectronic sequences.
Interactions between more distant neighbors are
neglected.

C. Fermi Terms

The Fermi energy of the electron distribution is

Cz =0.9479Z'e'/-'a' dyn cm—'

C&'——0.1058Z'e'/-,'a' dyn cm '.
(9) $(E)EdE,

where E(E) is the density of states and Er is the Fermi
level. For a completely free-electron system with a
spherical Fermi surface and no zone boundaries, 8'g is
independent of all strains which conserve volume and
the electrons do not contribute to the shear moduli. In
the past this has been assumed to be the case for the
noble metals and previous theoretical treatments for
Cu, Ag, and Au have always neglected contributions
from the conduction electrons to the shear moduli (e.g.
Refs. 10—12.) But we have known since 1957 that the
Fermi surface in Cu,"and, more recently, "in Ag and
Au, is greatly distorted from spherical and contacts the
zone boundary over an appreciable area in the (111)
directions. It follows that the Fermi energy is a function
of strain and will in general contribute to the shear

In a metal the electron density is not constant over
the unit cell and in an alloy the valency Z varies be-
tween cells which suggests that Fuchs's formulas should
be modi6ed. Specihc procedures for the calculation of
an effective valency Z,«have been given, for example,
by Leigh" and by Huntington'4 to allow for this non-
uniformity of the charge density. Arguments about the
extent of electron screening of impurity ions and the
associated long-range Quctuations in electron density
are also relevant here."We take Z to be the mean
valency of the ions, i.e., Z= e/a. This is consistent with
the assumption underlying this whole calculation,

"K. Fuchs, Proc. Roy. Soc. (London) A153, 622 (1936);A157,
444 (1936)."R. S. Leigh, Phil. Mag. 42, 139 (1951).

'4 H. B. Huntington, Solid State Phys. 7, 213 (1958).
"See, for example, J. M. Ziman, Advan. Phys. 13, 89 (1964).

'6A. B. Pippard, Phil. Trans. Roy. Soc. London A250, 325
(1957).
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E(us y')

X;,(E(p,,),p, ,)dE, (12)

where we allow the density of states to be both an
explicit and an implicit function of p in each segment of
the zone. We require second derivatives of the Fermi
energy 8'+ with respect to a strain parameter x taken
at constant electron density m. These may be evaluated
in terms of partial derivatives of H/"J and m with respect
to x taken at constant Fermi level E as follows.

We express the constancy of the electron density by
the equation

d22 dE dn;; dp;,—=0=$(E) +Q
dx dx i dp, r j

(The formal dependence of 22;, on P,; is independent of

j, and all derivatives are evaluated at zero strain. ) The
variation of a reciprocal lattice vector g(l gl =2p) with

'~ H. Jones, Phil. Mag. 43, 105 (1952).

moduli. In Eq. (11)above, both the Fermi level E2 and
the density of states Ã are strain-dependent.

The treatment given here follows very closely those of
Leigh, "who in 1951 calculated the contribution to the
elastic constants of Al from the conduction electrons,
and of Jones, '" who made a similar calculation for P
brass. Whereas Leigh at that time had no explicit
information about the Fermi surface of Al and was
forced to assume an arbitrary E(k) relation, we are now
in a position to make a similar calculation for the noble
metals for which the topology of the Fermi surface is
well established. The details of the model zone structure
which is used are given in the following sections; here
we establish the formal equations required to evaluate
Cp and CJ," from t/Vp.

When the metal is sheared at constant volume, the
density of electrons per atom e remains constant and the
Fermi level, though it may change, remains uniform
over the Fermi surface. At the same time, depending
upon the type of shear applied, the eight hexagonal and
six square faces of the Brillouin zone a,ll change their
distances p from the origin. of reciprocal space by
differing amounts. A change in p in turn leads to a
change in the distance of the Fermi surface from the
zone boundary and hence to a change in shape of the
Fermi surface. In what follows, therefore, we must treat
separately the electrons in each of the 14 segments of the
zone de6ned by the 14 faces, and then sum to And the
total changes in the electron distribution and in the
Fermi energy caused by the shear.

Following Leigh, we deGne an index i which refers to
faces of either hexagonal or square shape, and a second
index j which refers to a particular face within the
hexagonal or square group. Then, if E is the Fermi level,
we can write

for C and C' shear. It then follows from the volume-

conservation condition that: for C shear

for C' shear

(
dp~ dpi'=o, —

l
=o;

dx& hsu dxl square

(
dP& (dp—

l
=0, EI—

dxi,, '
kdx „„„,

There is consequently no 6rst-order change in the
Fermi level and

dE/dx= 0.
There is, however, a second-order change in the Fermi
level and this is found by setting the total second
derivative of e with respect to x equal to zero. Ke get

d'E 1 /8222

@is)&ssI

1 d222,; -t'dp, , ' d22,; d'p, ,z —,Zl +
E(E) ' dp, r2 r k dx dp;, r' dx'

If we now differentiate the Fermi energy

twice with respect to x and incorporate the above re-

sults, we And
dW p/dx =0, (19)

(d2+T /dx2) (g2lfT (P)/gx2) E($222(P)/gx2)@
= (82W p(p)/Bx2) g,

where W p=8'I; —Ee.
(2o)

Since we know how p depends on strain, we can 6nally
express Cg and Cp' as derivatives of 8'p with respect to
p. If m2 is the contribution to 8'2 from one segment of
the zone, we have

16 Bw 8 8'w- Bw
C~= P+ P' —— + 2P-

~p 9 rip -hex — rip —square
(21)

8 Bw Bw 82w
c~'= p+ p -+p'

~p —hsx — rip rip —square

where the subscripts refer to the two types of zone face.
As Jones" has pointed out, these equations have the

same structure as those for C~ and Cg' for a body-
centered-cubic (bcc) lattice with nearest and next-

strain is found by using the appropriate inverse
transformations

S'=a (I+~)-'
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nearest neighbor interaction. The Fermi energy W&(p)
arises from a central force interaction in reciprocal space
because we have chosen p =—,

'
~ g ~

as the strain-dependent
variable which governs the energy-band structure. This
is shown explicitly in Sec. III.

III. MODEL BRILLOUIN ZONE

gik r+p gi(k+g) ~ r (22)

We define a set of energy surfaces in momentum space
using the approximation of nearly-free electrons. We
further assume that the surfaces within each segment of
the Brillouin zone are axially symmetric about the
reciprocal lattice vector through that segment and thus
approximate the true zone by a series of cones based on
the zone faces. With this assumption, the energy sur-
faces within each cone can be specified in terms of a
single variable, and the complete calculation including
the double differentiation of the Fermi energy can be
carried out analytically. The model Brillouin zone for
the fcc structure is therefore made up of eight cones
based on the hexagonal {111}faces and six cones based
on the square {200}faces. This "8-6 cone" model is

closely related to the "8-cone" model used by Ziman' in
a review of the transport properties of the noble metals.
Ziman has discussed the cone model at length and
reference should be made to his paper for fuller details of
the formulas used below. Figure 2 defines the important
parameters of the reciprocal space geometry.

We choose the wave function of an electron in state k
to be a linear combination of two plane waves with
wave vectors k and (k+g), where g is the reciprocal
lattice vector through the zone face nearest to k, i.e.,

The energy Ek is then

Ek ——-', [Ek'+8k+5'+ ((Ek+g' —Ek')'+4Vg')'"], (23)

where

E o AolP/2m,

and V, is half of the energy band gap across the center
of the zone face. Physically, V, is the Fourier coeKcient
of some effective potential seen by the electrons,
but we regard it as a parameter which governs the
departure from sphericity of the energy surfaces
within a cone, and which is to be fixed by reference to
the known shapes of the Fermi surfaces of Cu, Ag, and

Au. Since we are using two sets of cones to constitute the
model zone, there are two parameters Vyyy and Vgoo to
be fitted. The fitting procedure is described below.

It is convenient to calculate the electron densities and

energies in terms of the following dimensionless quanti-
ties usin. g p=-', }g} as the scaling parameter for each

cone:

(x,y,s) =k/p,
U, = V,/(I)5'p'/m),
8=Ek/(O' P'/m) (25)=

o {*'+y'+1+(1—z)' —2((1—z)'+ U')'"}
= -'{s ' tan'a+ 1+(1—sg)' —2 ((1—sg)'+ Uo')'~'}

=—',{1+(1—sg)' —2 ((1—so)'+ Uo')'"} .

The last equation defines the projections s& and s2 of
the surface Ek on the cone axis (see Fig. 2). The density
of states E per unit volume per unit energy range, the

density m of electrons per atom, and the Fermi energy

W+ are then given by

P (sg —sg),
2+$2 cones

~%3 -1
—sP tan'55+ (28—1)(s&—s~)+-'5 (1—s&)'—-', (1—s~)' —(1—so) ((1—so)'+ U,')'"

cones 3

1—si+ ((1—si)'+ Uo')'"
+ (1—sy) ((1—zg)'+ U ')'"+ U ' ln

1—so+ ((1—sg)'+ U,')'"- (26)

jgop5

Wg —— P [{2(P—U ')s —-'s+ —,', (1—s)'+ (1—s)'—-', (1—s) ((1—s)'+ Uo')'"
8+m cones

—(1—~~U )I(1—s)((1—s) +U 5)'5+U sinh '{(1—s)/U }I,rr+~~~s&5tan555+tano55{oso ——,s'(1—s)'

—1oz(1—s)'—(1/30) (1—s) '+ (1—5' U,')}I (1—s) ((1—s)'+ U,')' 5

+U ' sinh '{(1—s)/ U,}}—~~ (5+3s) ((1—s)'+ U,') g~' }o*'] .

In this last equation the expressions are to be evaluated
at the limits z2, s&, and s&, 0 as indicated by the super-
scripts and subscripts. Finally, where the Fermi surface
contacts the zone boundary the radius r of the circle of

contact is given by
rg= pg(2h+2U, —1). (27)

The mathematical procedure is as follows: The semi-
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FIG. 2. Parameters which de6ne the reciprocal space geometry
of the model. One segment only of the zone is shown in cross
section.

angle a of each cone is chosen so that the base of the
cone is equal in area to, and lies in the same plane as, t e
zone face which it replaces. With this criterion the tota
volume and total solid angle of the model zone are
within parts in 10' of 2 electrons/atom and 4Dr sr, re-

spectively, and the maximum overlap of neighboring
cones is only 3 to 4 degrees of arc. Agreement between
these gross features of the model zone and the true zone
is much better in all respects than with the simpler 8-
cone mone model in which the six {200}segments are a-

0sorbed into the neighboring {111}cones. The wo
parameters Vii] and Vgpp are then fixed by requiring
that the energy surface in the model zone which just
contains one e/a should also have a neck radius r at the
{111}zone boundary and a Fermi radius k2DD equal to
those measured experimentally for the noble metals. In
practice, contours of constant r and happ can e p o ebe lotted
for v=1 on a grid of (Vttt, VDDD) points and a solution
found for each metal by interpolation. The choice o
Viii and V2pp is unique, but there is some uncertainty in
Vgpp which is very sensitive to variations in the pub-
lished experimental values of k2pp. Figures for eac
metal are given in Table I.

With Vttt and VDDD fixed and kept constant (rigid
band assumption) a complete set of energy surfaces is

de'fined by Fq. (25) for each metal and its alloys, the
position of the Fermi level for each being Axed by the
e/a ratio. Figure 3 is a cross section of three cones
showing the shape of the energy surfaces given by t is
model, while Fig. 4 shows the density of states for each
system as a function of e/a. If x is the electron/atom
ratio, we note that d 1nlV/d lnx at x= 1 is still negative,
in apparent contradiction to the behavior deduced from
meaeasurements of. the electronic heat capacities, an t at
there is a second cusp in the curves near the x value a
which the n/P phase boundary occurs. This agrees with
a recent suggestion by Burne-Rothery and Roaf2' that
the phase transition might occur when the Fermi
surface is about to contact the {200} faces of the
Brillouin zone.

The remainder of the calculation is a straightforward
( ~

but tedious analytical evaluation of Cp and Cp in
terms of the derivatives of W p and of n with respect to p
using Eqs. (21)-(27).Although shear strains change the
sizes of pttt and pDDD and hence both the position, an
shape of the energy surfaces, we assume that they do not
a6ect the parameters Viii and V2pp.

IV. SHEAR MODULI

A. General Remarks

When the lattice is strained, the position of the Fermi
level and the shape of the energy surfaces change as
various zone faces approach or recede from the zone
center. Electrons redistribute themselves in reciprocal
space so as to fill up again the states of lowest energy,
and this in general causes a change in the Fermi energy
and so contributes to the elastic moduli.

The C shear defined in Eq. (4) causes first-order shifts
in the distances of the {111}zone faces from the zone
center but only second-order shifts in the positions o
the {200}faces. As a consequence, the value of CD is
governed largely by the behavior of electrons in energy
levels near the {111}faces and hence by the size o
Viii. It is relatively insensitive to V&pp. This is illus-
trated in Fig. 5 (a), where Cp is plotted as a function of x

ENERGY SURFACES

FOR COPPER

r/Pill IDDDD/P2DD +ill

Cu' 0.162—0.180 0.805—0.844 0.235+0.02
(4.06 ev)

A & 0.122-0.128 0.805-0.836 0.200+0.01
(2.70 eV)

~200

0.330+0.03
(5.70 eV)

0.295+0.03
(3.99 eV)

TABLE I. Parameters used to de6ne the energy surfaces in the
model zone. Band gaps t/'111 and V200 are chosen to make the model

radius r and Fermi radius 0200. Distances from the zone center to
the zone faces are pill and p200.

U
E ZONEQ

ECTRON /ATONI

Fre. 3. Typical
surfaces of constant
energy in the cone
model of the zone
The heavy line shows
the surface which
contains one elec-
tron/atom; the other
surfaces are drawn
at intervals of 0.1
e/atom.

Au~ 0.160-0.171 0.836-0.883 0.245+0.01
(3.31 eV)

0.365+0.02
(4.'94 eV)

a See Ref. 18. ' W. R. Burne-Rothery and D.J.Roaf, Phil. Mag. 6 55 1961.
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FIG. 4. Density-of-states curves for Cu, Ag, and Au lattices
shown as functions of the e/o ratio and caicuiated using the 8-6
cone model.

for vallous VRlucs of Vyyy Rnd Vgoo fol R metal with thc
lattice constant of copper. When both parameters are
zero we have a sphere of free electrons in an empty
lattice, i.e., a reciprocal lattice with no energy dis-
continuities at the zone faces, and there can be no
contribution to the shear modulus until the sphere
touches the zone boundary. This happens when x 1.38
in a face-centered lattice. Thereafter, C strain increases
the Fermi energy t/I/'g as electrons redistribute around
the truncated Fermi surface, and the contribution Cp is
posltlvc. This was thc case studlcd by Raync Rnd thc
present calculation agrees with his result.

For electrons which are not free, the m,et Hfect of the
movement of the {111}faces before contact occurs is to

make available to the electrons regions of the surface
with an increasingly higher density of states. The
energy H/'p decreases and Cg is negative. After a cusp at
the value of x at which contact occurs, CJ becomes
increasingly positive and, in fact, follows very closely an
extension of the empty-lattice behavior. That is, once
the Fermi surface has contacted the zone boundary, it
is the area of contact rather than any precise details of
the level structure which determines the elastic re-
sponse. Distortion of the energy surfaces is only of
secondary importance. The over-all shape of the Cp-
versus-x curve reQects the inverted density-of-states
curve in so far as it is affected by the {111}faces;
contact with the {200}faces at higher x has virtually no
effect on Cp, whereas it causes a second cusp to appear
in X(E).

The general trend of Cp' as a function of the shape of
the Fermi surface is less clear cut t Fig. S(b)$. The C'
shear of Eq. (6) produces erst-order changes in the
positions of the {200}faces and second-order changes in
the positions of the {111}faces, so that we expect the
controlling inhuence on, Ce' to be the {200}faces (and
this is, of course, why the 8-6 cone model is needed
rather than the simpler 8-cone model). But the vastly
increased contribution to X from energy states near the
{111}faces when there is contact or near contact
countcrbalances the second-order shif t of the zone faces,
and the net result can be either a positive or a negative
Cg' depending upon the precise values of V~~i and V~00.

Again the empty lattice case shows no contribution to
C' until x 1.38; thereafter there is a small negative C~'
which is initially quadratic in (x—1.38).This is again in
agreement with Rayne, ' who found Cg' to be zero to
first order. As the Fermi surface approaches the {200}
faces, Cg' becomes increasingly negative with a cusp at
contact and thereafter increases algebraically as does
C~. In this region, Cp' reQects an inversion of the cusp
in the density-of-states curve due to the {200}faces.

El ECTRONIC CONTRIBUTION TO

C&4 FOR "COPPER

n
ELECTRONIC CONTRIBUTION TO

6 —
y{CII CI2

} FOR "COPPER"

2,{ II I2}

Fxo. 5. Contributions to the shear
moduli from the conduction electrons
calculated using the 8-6 cone model for
a metal with the lattice constant of
Cu, plotted as a function of e/o ratio
for various choices of the pair of
parameters (t/'1. 1i,Vqoo}. Curves show
how Cy and Cg' vary with the amount
of distortion of the Fermi surface from
a sphere. The curve {0.24, 033) corre-
sponds to Cu itself while (0.20, 0.30}
gives the value for Ag if the ordinate
scale is multiplied by {oc„/use)'
=0.54.
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FIG. 6. Reduced elastic shear moduli
for a-phase alloys of Cu and of Ag.
Curves labeled (1) in Fig. 6(b) are
calculated using the mean V111 and
V200 given in Table I, and those
labeled (2) use the lower limit for V111
and V200 to show the sensitivity of C'
to the choice of V,. The experimental
points have been scaled to O'K. and
corrected to constant volume.
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But by this time we have passed the n/P phase boundary
for these alloys and the calculation is no longer relevant.

B. Numerical Results for Cu and Ag

Because there do not seem to be any measurements
of the shear moduli of gold-based alloys, we confine
ourselves now to alloys of Cu and of Ag. In Table II we
show how the figures for the repulsive contribution to
the shear moduli of the pure metals are obtained by
subtracting the theoretical values of the electrostatic
plus Fermi terms from the measured values. If the re-
pulsive interaction between a pair of ion cores is as-
sumed to have a Born-Mayer form

g &(y) gg—0,(r0—r)/ro

where ro is the equilibrium nearest-neighbor distance,
then we Gnd from Eq. (10) that

for copper A =0.096 eV/(ion pair), n= 13.68;
for silver A =0.085 eV/(ion pair), a=14.20.

These numbers have no great physical significance, but
it is interesting to note that they do fit into the empirical

scheme of 3 and n values drawn up by Mann and
Seeger" in their survey of a number of methods which
have been used to estimate the elastic moduli of copper.
We also compare our contributions to C and C' for
copper with those of Sinha" and of Toya, "who screened
the bare ion-ion electrostatic interaction with a free-
electron gas and so calculated C~+~ and C~+~' as a
dielectric problem. The entries for C~ and Cp' attributed
to these authors in Table II have been found by sub-
tracting Fuchs's value for C~ and CE' from their total
screened-ion contribution and calling the remainder the
Fermi term.

With this choice of C~ and Cg', all parameters in the
calculation are fixed and we can go on to evaluate the
shear moduli for x different from one. The results for the
Cu and the Ag systems are shown in Fig. 6. We have
used C~ and C~' calculated from our model and have
kept Cg and Cg' constant; in the electrostatic terms we

' E. Mann and A. Seeger, J.Phys. Chem. Solids 12, 314 (1960).' S. K. Sinha, Phys. Rev. 143, 422 (1966)."T. Toya, J. Res. Inst. Catalysis Hokkaido Univ. 9, 178
(1961).



INFLUENCE OF CONDUCTION ELECTRONS 67 i

1.10

Free Electron

Io I

p

Pro. 7. Relative variation with eja
ratio of the electronic heat capacity for
n-phase alloys of Cu and Ag. Experi-
mental points for copper-based alloys
(see Refs. -4-and 5) and for silver-
based alloys (see Refs. 5-7) have
been reduced to constant volume for
comparison with theoretical curves of
the density. of states calculated using
the 8-6 cone model (full line), Ziman's
8-cone model (Ref. 9; dashed line),
and the free-electron model (dashed
line). A typical error bar is shown for
one of the more concentrated alloys.
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TABLE II. Contributions to the elastic shear moduli of pure Cu
and Ag. The repulsive term is the difference between the measured
value and the sum of the electrostatic and Fermi terms. Units are
10"dyn cm '.

C
Present Sinha'

C1

Toya Present Sinha' Toya

Experiment'
Electrostat.
Fermi
Repulsive

Experiments
Electrostat.
Fermi
Repulsive

Copper

8.14 8.14 8.14
2.57 2.57e 2.57e—4.25 —0.38' —2.45'
9.82 5.35 8.02

Silver

5.11
1.58—2.32
5.85

2.60 2.60 2.60
0.29 0.29' 0.29'

—Q;75 0.06e 0.19e
3.06 2.01 2.12

1.71
0.18—0.35
1.88

a Reference 30.
h Reference 31.
& Reference 13.
d Reference 14.
e Both Sinha and Toya calculated CE+F. We have arbitrarily split this

into electrostatic and Fermi terms using Fuchs's results for the electrostatic
contribution.

have assumed that the valency Z is equal to x. The
curves labeled (1) in Fig. 6(b) have been calculated
using the mean values of V111 and U2pp given in Table I,
whereas those labeled (2) use the minimum values of
V111 and Vgpp allowed by the uncertainty in the experi-
mental measurements. The large difference is due pri-
marily to the change in V&pp, and shows the extreme

,sensitivity of C&' to this parameter. On the other hand,
the, curves for C are quite insensitive to any variation in
V111 or V2pp.

The experimental points shown in Fig. 6 for Cu-based
alloys'~" and Ag-based alloys" have been modified in
two ways. Firstly, where the measurements were made
at room temperature they have been scaled to O'K
values using the measured ratio for the solvent metals. '
(Since we are using the harmonic approximation. to
calculate 0+, we should strictly use a linear extrapolation
to O'K of the high-temperature elastic moduli rather

than the measured low-temperature values, i.e., we
should consisten, tly ignore the existence of zero-point
energy, but we do not do so because it makes little
difference to the numbers obtained. ) Secondly, all
measuremen, ts, which are made at constant pressure,
have been corrected to constant volume in keeping with
the assumptions of the calculation. If x'is the electron/
atom ratio, we can write

Daniels and Smith" have measured the change in, elastic
moduli with pressure for Cu and Ag, and the variation
of lattice spacing with composition is known for each of
the alloys considered here. "Both of these variations are
linear and we can write for either C or C'

BCv= ACr —(BC/8 1na) 6 in@,

where ~C=Cg, &1py Cp&ven& The constant volume cor-
rection is important and accounts for the greater part of
the observed change in the elastic moduli, so that the
final plot of points on a reduced scale shows very little
variation from unity.

V. ELECTRONIC HEAT CAPACITY

For completeness we include a plot (Fig. 7) of the
ratio of the electronic heat capacities of the alloys 7T
to those of the pure solvents yp'1 as functions of x. The
lines show the density of states calculated (for the
copper matrix) using the 8-6 cone model and using the
8-cone model, ' and also the density of states for a
distribution of free electrons. The experimental points~~
show the specific heat per mole scaled to the constant
molar volume of the solvent metal so as to provide a

'2 W. B. Daniels and C. S. Smith, Phys. Rev. 111, 713 (1958l.



meaningful comparison with the theoretical density-of-
states curves, i.e.,

Not a great deal can be said about these results. Even
disregarding the low values for one series of CuZn,
alloys, ' there is considerable scatter in the experimental
poin, ts and none of the theoretical curves represents the
observed behavior at all well.

VI. DISCUSSION

A glance at Fig. 6 shows that, given the uncertainty
in V200, the calculated values of C' are in reasonable
accord with the experimental points, but the calculated
C does not agree at all with the measurements. A much
larger variation of C with x is predicted than is actually
observed and this is due to the predominance of the
Fermi term. Because of this poor agreement there is no
point in trying to estimate changes in the bulk modulus
or in trying to compute the Debye temperature. The
most disappointing feature of the whole calculation is
that much better agreement with experiment can be
obtained" ""by completely ignoring the electrons and
treating the mean valency and the repulsive term as
variables to be fitted to experiment. r A similar treat-
ment applied to (C,»t,—Cp) and (C, ~~' —Cp') in the
present case gave unphysical, negative values for Z'.j
However, we know that the electrons must contribute to
the shear moduli for metals whose Fermi surfaces are as
distorted as those of the noble metals. We must there-
fore find out where and why the present calculation has
so grossly overestimated the effect of the conduction

,
electrons.

The very rapid increase in Cp with x after contact has
been made with the zone boundary is due to a decrease
in the density of states S.To agree with the experiments
C~ must be a decreasing function of x and E an in-
creasing function of x. We are, in fact, faced with the
same dilemma which has arisen in calculations of the
electronic heat capacity of these alloy systems: The
,theoretical density of states decreases for x&1, whereas
the experimental results indicate that it should increase
more or less as it would for free electrons.

The trouble is probably not due simply to the particu-
lar two-plane-wave form of wave function which we
have used because Cp seems quite insensitive to precise
details of the energy band structure once contact is

made with the zone boundary. It may or may not be due
in part to neglect of the d electrons which, although they
are several eV below the Fermi surface in the pure
metals, do lie right in the center of the conduction band.
These could shift on alloying, modify the energy sur-
faces, and so affect the elastic response of the electrons.

The calculation presupposes the existence of a sharp
Fermi surface for these alloys. Little is known yet about
the energy bands of alloys or even whether a band
structure can be meaningfully deined in, such disordered
systems. The existence of a reciprocal lattice implies
that all unit cells in direct space are identical. But we
know from recent work on electron screening that the
excess charge introduced by alloying is not spread uni-
formly among the cells, but is concentrated around the
charged impurities. Such a lack of uniformity in direct
space leads to a blurring of the electron states in
reciprocal space, i.e., to an unsharp Fermi surface. We
have assumed not only that a band structure and a
sharp Fermi surface exist but also that the bands are
rigid, i.e., that the band gaps or Fourier coeKcients of
the effective potential do not change as the composition
changes. This is almost certainly a bad assumption, but
we have no experimental knowledge of how the gaps
might vary with alloying.

Another assumption which may well be incorrect is
that the band gaps are unaffected by shear strains. We
know from Templeton's measurements" of the de
Haas —van Alphen effect under pressure that the Fermi
surfaces of the noble metals are considerably distorted
when the lattice constant is changed, which implies a
dependence of the band gaps on volume. Almost
certainly they are also shear-strain —dependent, but
again we have no experimental evidence for this.

We conclude then that the calculation has failed to
account for the observed variation of the shear moduli
and hence of the Debye temperature of these Cu- and
Ag-based alloys, and that this probably due to the use
of a rigid-band model. This type of model now appears
unable to explain the behavior of either the electronic or
the lattice heat capacity of the o.-phase alloys of the
noble metals.
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