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Crystal Dynamics of Copper*
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Department of Physics, McMaster University, IIamilton, Ontario, Canada

(Received 12 August 1966)

The frequency/wave-vector dispersion relation for the symmetry directions [00&],$0&i'j, (fff'), and $0f1)
in copper at room temperature has been determined by inelastic neutron scattering. Interplanar and atomic
force constants have been obtained. First-neighbor interactions are dominant, but longer range forces, ex-
tending to at least sixth-nearest neighbors, are also present. Physically realistic errors have been assigned to
many of the force constants; to our knowledge this has not been done previously. The analysis of the data,
and the excellent agreement between measurements carried out at the Chalk River and McMaster University
reactors, indicate that, on the average, the errors conventionally assigned to frequencies in neutron-scattering
studies are too large by about a factor of 2 to be standard deviations. Frequency distributions have been
obtained and used to calculate various thermodynamic quantities which agree quite well with experiment.
(Discrepancies of a few percent appear to be accounted for by anharmonic eRects. ) Our results are in rather
good agreement with those of Sinha obtained by quite different experimental methods.

I. INTRODUCTION
' "N connection with a recent study of the crystal
~ - dynamics of dilute alloys of gold in copper, ' accurate
values of certain normal-mode frequencies for copper
were required. The frequency distribution for copper
was also needed in order to compare the alloy results
with the predictions of the theory of Elliott and
Maradudin. ' The measurements on copper were there-
fore extended to yield the dispersion relation for the
lattice vibrations with wave vectors along the four
major symmetry directions [00$j, $0iQ Qgi j, and'

L0$1]. All measurements were carried out at room
temperature (296'K). The results have additional
interest in that copper is probably the simplest of the
face-centered cubic metals, and, as such, is a logical
choice for theoretical studies. ' Force-constant models
have been constructed from the results by a procedure
which gives the best mathematical fit to the data, and
which also allows one to assign physically realistic errors
to the largest possible number of force constants. First-
neighbor interactions are dominant, but there is also
a weak longer range force system with interactions
extending to at least sixth-nearest neighbors. Frequency
distributions obtained from the force-constant models
were used to calculate various thermodynamic quanti-
ties which agree quite well with experiment. (The small
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State Commun. 3, 245 (1965).
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Neutrons in Solids and Lifjuids (International Atomic Energy
Agency, Vienna, 1965), Vol. 1, p. 231.
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ences contained in these two articles.
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discrepancies appear to be accounted for by anharmonic
effects. )

Several neutron scattering studies of the lattice
vibrations in copper have been carried out by other
workers, ~s and Jacobsens has studied the dispersion
relation by the disuse scattering of x rays. However,
except for the work of Sinha and Squires, 4 the results
of these studies have been incomplete and somewhat
inaccurate. Sinha and Squires' have carried out exten-
sive measurements (476 frequencies), largely at off-
symmetry positions in reciprocal space. Although their
results for the symmetry directions are unevenly
distributed as to wave vector, branch, and direction,
and their quoted errors are two to Ave times larger than
ours, there is generally good agreement where overlap
with our results occurs. Even more important is the
good agreement between their force constants, deter-
mined mainly by o6-symmetry results, and our force
constants, determined completely by results for the
symmetry directions.

Work on copper at room temperature and at lower
temperatures is also in progress at Oak Ridge National
Laboratory. "

The frequencies v and wave vectors g of the normal
modes of vibration of a crystal are connected by the

4 S. K. Sinha, Phys. Rev. 143, 422 (1966); see also S. K.. Sinha
and G. L. Squires, Lattice Dynamics, edited by R. F. Wallis
(Pergamon Press, Ltd. , London, 1965), p. 53.

D. Cribier, B.Jacrot, and D. Saint-James, in Inelastic Scatter-
ing of Neutrons in Solids and Liquids (International Atomic
Energy Agency, Vienna, 1961),p. 549.

E. Maliszewski, J. Sosnowski, K. Blinowski, J. Kozubowski,
I. Padlo, and D. Sledziewska, in Inelastic Scattering of Eeutronsin
Solids and Liquids (International Atomic Energy Agency, Vienna,
1963), Vol, 2, p. 87.

E. Z. Vintaikin, V. V. Gorbachev, and P. L. Gruzin, Fiz.
Tverd. Tela 7, 367 (1965) /English transl. : Soviet Phys. —Solid
State 7, 296 (1965)g.

T. Schneider and E. Stoll, Solid State Commun. 4, 79 (1966).
s E. H. Jacobsen, Phys. Rev. 97, 654 (1955).
1o R. M. Nicklow and L. J. Raubenheimer (private communica-

tions); see also R. M. Nicklow, G. Gilat, H. G. Smith, L. J.
Raubenheimer, and M. K. Wilkinson, Bull. Am. Phys. Soc. 11,
263 (1966).
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dispersion relation

v= vi(q),

where j is a branch index. (Throughout this paper we
will consider only Bravais crystals so that j=1,2,3.)
The dispersion relation can be discovered by processes
in which slow neutrons interact with the crystal and
either create or annihilate one quantum of lattice
vibration (phonon). These "one-phonon" processes are
governed by the equations of conservation of energy
and wave vector (momentum/h) between neutron and
phonon,

E(} E =+hP= +AM ) (2a)

where a, P=1, 2, 3 refer to Cartesian components, M
is the atomic mass, and the D p(q), the elements of the
dynamical matrix, are given by

&o—k'=Q= 2~~+ q, (2b)

where (Es,E') and (its,k') are the incoming and outgoing
neutron energies and wave vectors, respectively, and z
is a reciprocal lattice vector. Hence, from the groups in
the distribution of neutrons inelastically scattered by
the crystal in "one-phonon" processes, one can infer
the existence of normal modes of vibration of the crystal
with frequencies and wave vectors given by Eqs. (2).

The dispersion relation thus determined may be
analyzed in terms of atomic force constants by means of
the Born—von Karman theory of lattice dynamics. "
According to this theory the angular frequencies ~ and
the polarization vectors g of the normal modes of
vibration of the crystal satisfy the equation

M~'t-= Z 4D-p(q)

tiolls of tlie —.C' p(Rr) for which q Rr, is constant.
Since (q Rr, ——const) defines a plane, the C„are con-
ventionally called interplanar force constants. "

The condition for a nontrivial solution of Eq. (3) is

det)D. p(q) —Mce'b. p~ =0, (6)

where b p= 1 if rr=P, and is zero otherwise. If the atomic
force constants are known, then so are the D,p(q) from
Eq. (4), and, solving Eq. (6) for a great many values
of q in the irreducible 1/48 of the first Brillouin zone,
a histogram representation of the frequency distribution
g(v) can be obtained. Various approximate methods,
which greatly decrease the computational time required
to calculate a given number of frequencies, are
available. "'4

Having obtained g(v), one may readily calculate the
moments of the frequency distribution

and the Debye frequencies

v =L(v+3)M /3$"" for I/O, —3, (8a)

vs ——exp -+ g(v) lnvdv
3

v s= (hp/h) en(0'K) = (3/b)'", (8c)

where b is determined by the low-frequency expansion
of g(v),

g(v) =bv'+

D p(q)= g (—C' p(Rz)}(1—cosq Rz}, (4)
One may also calculate the lattice specihc heat at
constant volume,

where the Rl, are the vector coordinates of the atoms
at their equilibrium positions with respect to the atom
at the origin (1.=0), and the —C p(Rr, ) are the atomic
force constants. Physically, —C p(Rz) is the force on
thc atom at thc oI'lglll ln thc direction o. when the atom
at position Rl, is given a unit displacement in the
direction P. From the dispersion relation the forces
between atoms in the crystal can therefore be calculated
by Eqs. (3) and (4). For a particular branch in a
particular symmetry direction, Eqs. (3) and (4) reduce
to the form

Mcv'=Q 4 L1—cos(rid. q/qsr) j,

where q~ is defined to be one-half the distance from the
origin to the nearest reciprocal lattice point in the
direction of q, q=

~ q~, and the C„are linear combina-

"See, e.g., M. Born and K. Huang, Dynam& al Theory of Crystal
I.attices (Clarendon Press, Oxford, England, 1954).

C„{T) {Phv)'g(r) exp(Phv)dv

3Xh& Lexp(J3hv) —1J'
(10)

{where 0= 1/hnq and hs is Bol«mann s co»«nt) and
the Dcbye-%aller coeKcient,

2W(T) = vg v
—' coth(-,'phv)g(v)dv,

c(r)
I r)' ' '" dedx

3Ãha ~OD o (e*—1)'

"A. J. E. Foreman and W. M. Lomer, Proc. Phys. Soc. (Lon-
don) 870, j.143 (1957).

'3 G. Gilat and G. Boiling, Phys. Letters 8, 304 (1964).
'4 G. Gilat and L. J. Raubenheilner, Phys. Rev. 144, 390 (1966).

where hvar = O'Q'/2M is the recoil energy of a free atom
of mass M'. Using C„(T) calculated from Eq. (10}and
the Debye-theory formula,
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one obtains the Debye temperature Oo (T) by
iteration.

In Eqs. (7)-(11)it is assumed that g(v) is normalized
so that J'g(v)dp=1, and the integration is over the
range 0~& p~& p~ where v~ is the maximum frequency
in the spectrum. In performing the calculations, one of
course replaces the integration by a summation and
expands the integral of Kq. (12) in the series that con-
verges most rapidly for the range of int.crest of n/T.

(I 0 0) PLANE
Al

0 /
A4 + oA

0A
0

022

020 000

The majority of the measurements were carried out
using the triple-axis crystal spectrometer at the N.R.U.
reactor at Chalk River in the "constant-Q" mode" of
opelatlon with 6xed E. In order to avoid spurious
neutron groups arising from second. -order reflections
from the analyzing crystal (i.e., reflections for which
Es+hv=4E'), and to also maintain good resolution,
almost aH of the work was done with the analyzing
crystal set at 28~= 47'. L8~ is the Bragg scattering angle
and the (111) planes of an aluminum analyzer were
used. $ The (200) planes of an aluminum monochromator
were used throughout, and all measurements were made
at neutron energy loss (phonon creation). Two specimen
crystals were employed, and each was studied in two
orientations —with either a (100) or a (110)plane of the
reciprocal lattice in the plane of the spectrometers. The
crystals were supplied by Research Crystals Incor-
porated, Richmond, Virginia. The crystal used for most
of the measurements was a cylinder, i in. in diameter
X2-ssin. long, with a (100) crystallographic axis about
1' off the cylinder axis. The other crystal was an
approximate sphere of 1-in. diameter which had been
machined from another cylindrical crystal. Extensive
measurements of the t GOAT branch carried out using
the second crystal have been published previously. '

The low-wave-vector regions of the Lo]]]Tt and I.
branches have been studied on the new triple-axis
spectrometer at the McMaster University reactor. The
T~ branch was studied at high resolution —6xed Eo, with
28~ ——61.86', and variable 8', with 62'~&28~ &~ iso'.
$8~ and 8sr are the Bragg scattering angles for the
analyzer and monochromator respectively, and (200)
planes of copper crystals were used for both.] The L
branch was studied using the same analyzer and
monochromator, but at a lower resolution —28~ ——48.9'.
Both "constant-Q" and "constant-E" modes of opera-
tion" were employed.

In Figs. 1 and 2 the (100) and (110) planes of the
reciprocal lattice of copper are shown together with
typical neutron groups measured at Chalk River. The
lines through the points are drawn by hand and do not
represent any fitting procedure. Two groups are shown
for each of the [Ot'[ )Tt and Ts and the (00$jT branches

» 3.N. Brockhouse, in Inel us@a Scattering of ¹Ntroes its Solids
awd Liquids (International Atomic Energy Agency, vienna,
196i), p. 113.
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Fxo. i, The (100) plane of the reciprocal lattice and several
typical neutron groups for copper obtained in "constant-Q"
experiments such as the one shown for group A4. The groups are
labeled with the branch designation and the value of the reduced
wave vector f. Note that the vectors labeled —k'y, etc. are
actually —ok'y/2s; etc. where o is the lattice constant (this also
applies to I"ig. 2).

"M. F. Collins, Brit. J. AppL Phys. 14, &05 (B63).

as an illustration of how the width changes with fre-
quency and slope along the same branch. The change
with frequency is much slower than the change with
slope and arises primarily from the change in energy
resolution as 28sr is varied (~ /Ees268' cot8~,
where lN~ is determined mainly by the collimators
used and is essentially constant). The width changes
rapidly with slope because the focusing" is critically
dependent on the slope. The focusing for transverse
branches is more complete than ~'for longitudinal
branches, as is quite apparent from the groups shown.
In each of Figs. 1 and 2 the initial and Anal vector
diagrams are shown for a "constant-Q" experiment de-
signed to measure one of the neutron groups shown
at the bottom of the 6gure (i.e., group A4 for Fig. 1
and group B5 for Fig. 2).

In several cases the same normal mode was studied
in both planes of the reciprocal lattice and/or in both
crystals and/or at both Chalk River and McMaster



SVENSSON, BROCKHOUSE, AND ROWE

TABLE I. Normal-mode frequencies (iu units of 10"cps)
for the symmetry branches' in copper at 296'K.

TABLE II. Normal-mode frequencies (in units of 10'2 cps) for the
low-wave-vector part of the [01'1grq branch iu copper at »96'K.

[00QT [001']I [0i.i:jr2

0.15
0.2
0.25
0.275
03
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.9
1.0

1.17&0.04
1.56+0.04
1.92+0.04
2.12&0.04
2.30~0.04
2.64+0.04
3.01&0.04
3.30&0.05
3.62~0.04
3.88m 0.05
4.15+0.05
4.34+0.05
4.54&0.05
4.73~0.06
4.86+0.07
5.02~0.07
5.08&0.08

0.15
0.2
0.25
03
0.4
0.5
0.6
0.65
0.7
0.75
0.8
0.85
0.9
1.0

1.90+0.09
2.42+0.07
3.02+0.08
3.56+0.06
4.47+0.07
5.32+0.07
6.05+0.08
6.37+0.08
6.60+0.08
6.77&0.12
6.99+0.13
7.14+0.14
7.17+0.12
7.19+0.12

0.1
0.15
0.2
0.25
03
0.4
0.5
0.6
0.65
0.7
0.75
0.8
0.9
1.0

1.11a0.03
1.69~0.04
2.27+0.04
2.82&0.04
337&0.04
430m 0.05
5.07+0.06
5.71+0.06
6.04+0.06
631+0.07
6.54+0.10
6.80+0.11
7.13+0.15
7.19+0.12

0.2
03
0.4
0.5
0.6
0.7
0.75
0.8
0.9
1.0

1.35~0.04
2.03+0.04
2.70+0.04
3.34~0.04
3.89+0.05
4.34+0.05
4.55+0.05
4.75+0.07
5.03+0.08
5.08~0.08

0.1
0.2
0.3
0.4
0.5
0.6
0,7
0.75
0.8
0.9
1.0

V

2.03+0.10
3.70+0.08
5.11+0.07
5.97+0.08
6.36~0.10
6.38+0.12
5.91+0.10
5.73+0.08
5.51~0.07
5.19~0.07
5.08+0.08

V

0.05 1.24+0.06
0,075 1.86+0,07
0.1 2.46~0.07
0.125 2.99+0.06
0.15 3.59+0.06
0.2 4.54~0.06
0,25 5.43+0.07
03 6.14~0.07
0.35 6.67~0.08
0.4 7.06+0.10
0.45 7.25+0.13
0.5 7.40+0.13

[oi 1/A

P

0.075 0.79+0.04
0.1 1.01+0.05
0.125 1.23+0.06
0.15 1.47+0.06
0.2 1.87+0.06
0.25 2.29+0.05
0.3 2.66%0.06
0.35 2.97+0.06
0.4 3.17+0.07
0.45 3.34+0.07
0.5 3.37+0.07

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

7.19+0.12
7.17+0.15
7.07+0.14
6,80+0.09
6.44+0.09
6.10~0.08
5.77+0.08
5.47+0.08
5.27+0.08
5.13+0.08
5.08+0.08

0.0
0.1
0.2
0.3
0.4
0.5

5.08+0.08
5.03+0.08
4.99+0.07
4.97+0.08
4.89+Q.09
4.89+0.08

& The polarization vectors for the $0+')T1 and T» branches are parallel
to LOg'j and O'Ooj, respectively.

and/or at different equivalent points in the same plane
(including both focused and defocused positions). In
all cases agreement to well within the assigned errors
was obtained. This serves as a check on the alignment
and calibration procedures and on other instrumental
effects.

The normal-mode frequencies v and reduced wave
vectors l for the symmetry direction are given in
Tables I and II. The results of Table I were obtained
at Chalk River, and the results for the low-wave-vector
region of the $0@jT~ branch given in Table II were
obtained at McMaster. The latter study was under-
taken partly to check. the performance of the new
McMaster triple-axis spectrometer and partly to study
in detail the fog)T~ branch in which an anomaly had

0.075 0.51+0.03
0.100 0.67+0.03
0.125 0.81~0.03
0.150 0.99~0.03
0.175 1.16+0.Q3
0.200 1.31+0.03

0.225 1.48a0.03
0.250 1.64&0.03
0.275 1.82w0.03
0.300 2.00+0.03
0.325 2.18+0.03
0,350 2.34~0.03

0.375 2.50a0.03
0.400 2.67a0.04
0.415 2.77~0.04
0.425 2.89+0.03
0.435 2.93+0.03
0.450 3.01~0.03

"A. P. Miller, B.N. Hrockhouse, aud J.M. Rowe, Phys. Canada
22, 24 (1966)."B.N. Brockhouse, T. Arase, G. Caglioti, K. R. Rao, and
A. D. B. Woods, Phys. Rev. l28, 1099 (1962).

~9A. D. B. %'oods, B. N. Brockhouse, R. H. March, A. T.
Stewart, and R. Bovrers, Phys. Rev. 128, 1112 (1962).

'0 R. J. Birgeneau, J. Cordes, G. Dolling, and A. D. B.Woods,
Phys. Rev. 136, A1359 (1964)."G. F. Koster, in Solid State Physics, edited by F. Seitz and D.
Turnbull (AcadeIuic Press Iuc. , New York, 195'7), Vol. 5, p. 1'l5.

been found in similar measurements on palladium. '7

Where equivalent results are given in Tables I and II,
it is seen that they agree to well within the combined
errors. The errors were assigned to the frequency values

by considering the widths and shapes of the correspond-
ing neutron groups, the counting statistics, and possible
systematic errors. There is no simple recipe for making
these assignments; our (later) analysis indicates that
the errors given in Tables I and II, which were arrived
at following the philosophy used in several earlier
studies, ""are almost certainly overestimates (in the
sense of standard deviations), perhaps by as much as a
factor of 2.

It has been noted"' that the normal-mode frequencies
of nickel bear a roughly constant ratio to those of
copper. A direct comparison of the results of Tables I
and II with those of Ref. 20 gives an average value
=1.24 for the ratio vN;/vc„. However, appreciable
deviations (up to about 20% for the low-t part of the
$0gjT~ branch) from this average value do occur.
Using the I,indemann melting criterion one finds that

p(T„/Ma') N;/(T„/Ma') o„j"= 1.205,

which agrees quite well with the above value. (T is
the melting temperature, M the atomic mass, and u the
lattice constant. )

The results of Table I are plotted in Fig. 3 to give
the dispersion relation for copper in the major symmetry
directions. The diagram is labeled with the group-
theoretical notation of Koster, 2' and the coordinates
of q for the major symmetry points are shown at the
bottom. The solid curved lines are the result of a fourth-
neighbor general force constant analysis of the data of
Table I which is discussed more thoroughly in the next
section. These curves give an excellent fit to the data
intersecting all but six of the experimental values
inside the given errors —this in itself is evidence that
the quoted errors are overestimates in the sense of
standard deviations. The dashed lines for the H and A
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Fzo. 2. The (110) plane of the reciprocal lattice and several
typical neutron groups for copper obtained in "constant-Q"
experiments such as the one shown for group 35. The groups are
labeled with the branch designation and the value of the reduced
wave vector g.

branches are constructed from the known symmetry
about 8'. The straight lines drawn from the points j.
represent the velocities of sound for the various branches
calculated from the elastic constants of Overton and
Gaffney" (see Table III). The points nearest I" on all

except the LOg7T) branch agree very well with the
velocity of sound values. The points on the T~ branch
are significantly high.

In I'ig. 4 the low-wave-vector region of the LOg7T)
branch is shown together with a typical neutron group
measured with the McMaster spectrometer. (After the
original study, five groups on the low-[ part: of this
branch were remeasured with the vertical collimation
increased by about a factor of 3. It was found that for
/&0 3th. e original frequencies were lowered by about
0.015&&10" cps; the values of Table II have been
corrected accordingly, but the points plotted in Fig. 4
represent the original uncorrected values. The groups
taken with the higher vertical resolution were also
about 20'Po narrower. The higher energy resolution and
the increased vertical collimation used in the experi-
ments at McMaster University easily account for the
frequencies in Table II being slightly lower than the
corresponding frequencies in Table I.)

The T} branch is of particular interest for several
reasons: (i) It is very nearly a straight line up to at
least ] =0 5 (Th.er.e is evidence for this in I'ig. 1 where
it is seen that the neutron groups for t =0.2 and 0.5
have almost equal widths which implies that the slope
of the dispersion curve is almost identical for the two
values of ].) (ii) The slope of this almost straight line is
about 5% greater than the velocity of sound for this
branch which is determined by the shear elastic constant
C'= (c)t—c)s)/2. (This does not necessarily imply that
either the elastic constants" or the neutron-scattering
results are incorrect since the elastic constant measure-
ments correspond to very much smaller velues of [ than
any of the neutron results. ) (iii) The ratios of the
nickel to the copper frequencies are highest for the low-]
part of this branch. (iv) The low-] part of this branch
in palladium'7 has been found to have an anomalous S
shape. (v) A Kohn anomaly" might possibly appear in
this branch at )=0.45, corresponding to transitions
across the "belly" of the Fermi surface. "

The low-] part of the Ti branch thus appears to be

FIG. 3. The dispersion
curves for copper in the
four major symmetry direc-
tions at 296'K. The dia-
gram is labeled with the
group theoretical notation
of Koster (Ref. 21) and the
straight lines through the
points I' give the initial
slopes of the dispersion
curves as calculated from
the elastic constants (Table
III). The solid and dashed
curves are the result of an
analysis in terms of general
forces to 4th-nearest neigh-
bors (model M1 of Table
IV).
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"))V.C. Overton, Jr., and J. Gaffney, Phys. Rev. 98, 969 (1955).
» Q. Segall, Phys. Rev. 125, 109 (1962).
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TABLE III. Some physical constants of copper at 296'K. 25 ~ I & I
' I

'
I

'
I

'
I

Mass =63.54 amu
Lattice constant=3. 6147 A (face-centered cubic)
Elastic constants in units of 10"dyn/cd:

c11——16.85&0.2 j~, c1~——12.15&0.44%, c44= 7.55&0.25%

2O-

V)

O l5-
Ol

O
JO-

l t

+ ss". ,

somewhat of a "misfit" among the results for copper
and also for palladium. "The straightness of the dashed
line in Fig. 4 (which does not represent any fitting
procedure) indicates that there is no significant S eBect
in copper. There is no evidence for the existence of a
Kohn anomaly.

A search has also been made for a Kohn anomaly in
the [0$$]L, branch; one might conceivably appear near
t =0 22 corresponding to transitions across the "neck"
of the Fermi surface ss The slope, (p; q;)/(—I; f,), o—f
the low-I part of this branch is shown in Fig. 5. Points
are shown for j=i+1 and j=i+2, and are plotted at
the positions I;,=(I,+I;)/2 Ad.ifferent notation is
used for diKerent sets of measurements —i.e., Chalk
River "constant-Q", McMaster "constant-E" etc. Since
it was necessary to relax the energy resolution in order
to measure this branch under good focusing conditions
Lbeyond the point (022) in Fig. 1], and since the
focusing is never complete for longitudinal branches,
the widths of the neutron groups for the lowest values
of t are not negligible compared with the phonon
frequencies. Nontrivial corrections are then required in
order to obtain the correct phonon frequencies, so we
have omitted the results of this study from Tables I
and II. However, the measurements are adequate for
detecting any abrupt changes in slope —i.e., Kohn
anomalies. Within the sensitivity no anomaly was
observed.

In Table III some relevant physical constants for
copper are listed.
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FIG. 4. The low-wave-vector part of the $0@'jT1 branch and a
typical neutron group measured with the McMaster spectrometer.
The solid straight line is the velocity of sound calculated from the
elastic constants (Table III).The results for t &0.3 have not been
corrected for the effects of vertical resolution and are probably
too high by about 0.015&(10"cps.
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III. ANALYSIS OF RESULTS AND DISCUSSION

A. Force-Constant Models

An extensive analysis has been carried out in an
attempt to determine the best possible force-constant
model(s) from the measured frequencies and to assign
physically realistic errors to the atomic force constants.
A detailed discussion of this analysis is given in
Appendix A; the main results are outlined in this
section.

Several force-constant models (M1—MS) determined
from the results are given in Table IV together with the
sixth-neighbor general force-constant model (M6) of
Sinha. 4 Various other models have been proposed for
copper, ' ""but the present work. and that of Sinha
both show that these models are inadequate. We will
not consider them further. The atomic force constants
—C s(R') of Eq. (4) are here written in the notation
indicated by the matrix of Table IV where e refers to
eth-nearest neighbors. Errors are assigned to each force
constant for models M2—M4; these errors are deter-
mined by the errors assigned to the measured fre-
quencies and elastic constants and the weights assigned
to any constraints imposed during the least-squares
fitting procedure. The mathematical procedure for
calculating the errors in the force constants is outlined
in Appendix B.As outlined in Appendix A, these errors
are only physically significant if an adequate fit to the
data is obtained. We have previously suggested that the
quoted errors in the measured frequencies are probably
two standard deviations; in this case so are the quoted
force-constant errors.

An adequate fit to the measurements is not obtained

'4 G. W. Lehman, T. Wolfram, and R. E.DeWames, Phys. Rev.
128, 1593 (1962)."R. E. DeWames, T. Wolfram, and G. W. Lehman, Phys. Rev.
131, 528 (1963).

"H. C. White, Phys. Rev. 112, 1092 (1958).

FIG. 5. The slopes for the low-wave-vector part of the $0ggL
branch. The points labeled (McMaster "constant-Q" g 1) refer
to measurements beyond the point (022) in Fig. 1, and those
labeled (McMaster "constant-Q" g2) refer to measurements
before this reciprocal lattice point. The initial slope as given by
the elastic constants is shown as a dashed line.
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TABLE IV. Atomic force constants for copper at 296'K in units of 10' dyn/cm.

AFC

1XX
1ZZ
1XF'

2XX
2F F'

3XX
3FF
3FZ
3XZ
4XX
4ZZ
4XF'

5XX
5FF
5ZZ
5XF
6XX
6FZ
7XX
7FF
7ZZ
7FZ
7XZ
7XF
8XX
8F'F'

1.3109—0.1315
1.5037
0.0215—0.0251
0.0529
0.0279
0.0014
0.0400—0.0024—0.0310—0.0043

1.3141+0.0110—0.1229&0.0150
1.4983+0.0203
0.0062+0.0224—0.0106+0.0140
0.0444+0.0072
0.0317~0.0059—0.0175+0.0077
0.0358+0.0045—0.0064~0.0064—0.0462~0.0110
0.0066&0.0093

1.3102+0.0120—0.1417&0.0186
1.4820+0.0240
0.0361&0.0246—0.0238~0.0147
0.0642&0.0103
0.0315+0.0068
0.0190&0.0133
0.0385+0.0052
0.0104&0.0080—0.0284+0.0132
0.0396+0.0206—0.0137&0.0058
0.0009+0.0074—0.0016+0.0079—0.0055+0.0032—0.0138&0.0063—0.0232&0.0087

1.3160+0.0192—0.1489&0.0330
1.4880&0.0337
0.0453+0.0295—0.0345+0.0170
0.0573~0.0228
0.0321+0.011.7
0.0252&0.0154
0.0342&0.0077
0.0099~0.0089—0.0190+0.0154
0.0424~0.0301—0.0121&0.0195
0.0015&0.0086
0.0032+0.0114—0.0051+0.0097—0.011.1+0.0079—0.0337+0.0134
0.0031+0.0102
0.0039+0.0111—0.0089+0.0048
0.0009&0.0012
0.0013&0.0018
0.0026+0.0036—0.0201+0.0123
0.0054&0.0088

1.3224—0.1570
1.4794
0.0278—0.0170
0.0758
0.0229
0.0176
0.0353
0.0118—0.0296
0.0414—0.0212—0.0006
0.0019—0.0077—0.0095—0.0265
0.0018
0.0000—0.0010
0.0007
0.0010
0.0021—0.0048
0.0018

1.3478—0.1215
1.4982
0.0018—0.0048
0.0507
0.0239
0.0159
0.0378
0.0267—0.0032—0.0036—0.0110—0.0203
0.0037
0.0018—0.0157—0.0058

Constraints

M1 and M2 General forces
M3 8(5XF)=3(5XX)—3(5F'F')
M4 8(5ZZ) =9(5YF)—5XX; 3(7VZ) =7XF'

8(3XF)=3(3XX)—3(SFF); 2(7XZ) =7XF
M5 Axially symmetric forces
M6 General forces—S. K. Sinha (Ref. 4)

Force-constant matrix

(
IXX NXF ~XZ~
sxF s,FF eFZ

iexz n FZ ezzj

Reference atoms
(o/2) (hM), h&k&$&0

until at least sixth-nearest neighbors are included, hence
the errors given in M2 are too small. M1 and M2 are
fourth-neighbor general force-constant models which
represent fits to the data of Table I and all the data,
respectively. Mi was used to calculate the solid and
dashed curves of Fig. 3. The force constants for these
two models do not agree within the errors given in M2;
this is expected since different data were used for the
two models, since the errors in M2 are too small, and
especially since a different weighting procedure was
followed in obtaining the two models (see Appendix A).

There is not sufhcient orthogonal information in
measurements made only along the symmetry directions
to do a completely general force-constant analysis
beyond fourth neighbors. When 6fth neighbors are in-
cluded it is necessary to impose one constraint in order
to separate SXF from 1XV and 4XV (otherwise we
have only two independent equations in these three un-
knowns). For M3 we have imposed the axially-sym-
metric'4 constraint 8(SXF')=3(5XX)—3(57I'). The
particular constraint imposed affects the values of 1XV,
4XI", 5XI", and especially their errors, so we cannot
say with certainty that the errors assigned to these
three force constants are physically realistic. Fortun-
ately, the particular constraint imposed does not affect
the values of the other 15 force constants in M3 or their
errors, and, since M3 represents an adequate 6t to the

data, these errors are probably physically realistic. The
first-neighbor force constants, which are quantitatively
determined, are dominant; they indicate strong forces
between first-nearest neighbors which probably arise
from the interaction of the d shells on adjacent copper
ions. The force constants for more distant interactions,
none of which are much larger than 4% of 1XF, are at
best a few times as large as their errors. There is a weak.
long-range force system in copper about which we can
say little except that it exists and extends to at least
sixth-nearest neighbors. This is the expected effect of the
conduction electrons in copper.

Sinha4 measured a great many off-symmetry fre-
quencies and fitted his results by a model involving
general forces extending to sixth neighbors —model M6
of Table IV. Comparing M3 and M6, we see that there
is in general good agreement. Sinha has not assigned
errors to his force constants and in fact does not attach
any physical significance to these force constants, but
rather gives them as an interpolation formula. We feel
that his force constants do have physical significance
and should have errors somewhat larger than those of
M3 because of the larger values of hv assigned to his
measured frequencies. The force constants of M3 and
M6 would then agree within the combined errors. We
have previously mentioned the importance of the agree-
ment between our measured frequencies and Sinha's
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TABLE V. Interpianar force constants 4„ for copper at 296'K in units of 10' dyn/cin. '

Branch

$00$jL

I:QH'j»

LQH' j»

L0$11Q

Lp)i jA,

e ~ ~ 10.94 &0.17
10.99(10.91)

~ ~ ~ 5.41 +0.08
5,38 (5.40)

0 0 0 4.60+0.12
4.75 (4.75)

~ 0 ~ 5.36+0.09
5.36 (5.35)

10.61 +0.21
10.62 (10.64)

~ ~ ~ 11.26 &0.20
11,22 (11.21}

0 0 ~ 2.36&0.06
2.35 (2.35)

21.52+0.72 -5.57 &0.26
21.77 (21.73) -5.50( —5.59)
10.V4 +0.34 ~ ~ ~

10.75 (10.76)

0.49 +0.16
0.56 (0.60)
0.02 +0.07
0,02 (0.02)

5.80+0.18
5.74 (5.79}

-0.40 &0.07-0.39( —0.39)
-0.09 +0.18
-O.OS ( —0.08)

0.50+0.18
O'. 68(0.69}

—0.09+0.05—0.07 ( —0.06)
-0.37 &0.23—0.48 ( —0.40}
—0.36+0.19—O.47 ( —O.44)

-0.07 +0,15-0.11( —0.05)
-0.03 +0.06—0.00 ( —0.02)

O.V2 +0.17
0.63 (0.58)

0,05 +0.06
0.01(O.02)

0.32 +0.14
0.26 (0.29)

—0.02 +0.17—0.12 ( —0.13)
0.00+0.05
0.02 (0.02)

0.11+0.22—0.01 (0.11)

0.14&0.15
~ ~ o ( Q P4)

0.00 +0.06
(o.oi)

—0.09+0.15—0.10( —0.16)
-0.06~0.06—0.02 ( —0.Q4)

—0.06 &0.13—0.12 ( —0.06)
—0.01+0,17

0.01 &0.05

0.12 &0.22
~ ~ ~ (Q 01)
0.01+0,18

~ ~ ~ ( Q Q4)

—0.02 &0.15

-0.02 +0.06

0.01&0.15 —0.09+0.15 0.06 &0.14

0.02 &0.07 -0.01&0.07 -0.00+0.06

0.10+0.17
~ ~ o (Q 05)

0.00 &0.06
~ ~ ~ (0 01)

—0.08 +0.14
~ ~ ~ ( Q P7)

0.04 +0.17

—0.02 +0.17 —0.10+0.16 0.07 +0.17

0.05 ~0.07 -0.03 &0.07 0.01 ~0.06

0.02 +0.15 —0.03 +0.15 0.05 +0.15

-0,03 +0.17 0.02 +0.17 -0.07 &0.18

0.05 &0.22 —0.02 &0.21 -0.01&0.23

—0,06 &0.18 —0.06 &0.19

0.02 +0.05 -0,00 &0.05 —0.00 +0.05 0.01 &0,05

"The numbers in the second line for each branch are the appropriate sums of atomic force constants for models M3 and M4 (in brackets).
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FIG. 6. The frequency distribution for copper from model M3
(solid curve) and from Sinha's model M6 (dashed curve}. The
two distributions are normalized to the same area.

symmetry-direction frequencies in view of the different
experimental methods used. (Sinha used a time-of-fhght
spectrometer. ) The agreement between M3 and. M6 is
also very important because Sinha's model was deter-
mined primarily from o6'-symmetry measurements, and
M3 was determined completely from measurements in
symmetry directions.

M4 represents the best possible mathematical 6t to
the measurements using forces extending to 8th
neighbors. However, it is little better than M3 for
copper, and may have less physical significance since
all but 10 of the 26 force constants are directly affected
by the four constraints imposed (which are listed at
the bottom of Table fV). MS is an eighth-neighbor
axially symmetric model which gives a poorer fit than
does M3. For this and other reasons (see Appendix A)
we feel that the forces in copper are probably not exactly
axially symmetric. (They are not central since the
Cauchy relation is not satisfied. )

The interplanar force constants C„ for each of the
nine symmetry branches presented here are given in
Table V together with the appropriate sums of atomic

force constants'7 for models M3 and M4. The agreement
between the 4 and these sums is usually inside the
errors of the C„indicating that models M3 and M4 give
an adequate fit to each branch as well as to the entire
symmetry-direction dispersion relation. When errors
are calculated for the force constant sums, the agree-
ment is always inside the combined errors. The errors
in Table V have the same meaning as those in Table IV
but are larger because of the smaller overdeterminacy
in the interplanar fits.

B. Frequency Distributions

Frequency distributions have been calculated for
each of the models M1—M4. The distribution for M1 was
calculated by the method of Gilat and Boiling" using
the program at Chalk River. The calculation gave an
effective number of frequencies equal to 35 831 808 in
the 6rst Brillouin zone; the procedure was identical
with that used for nickel' and is described in detail in
Appendix A of that paper. The distributions for models
M2, M3, and M4 were kindly calculated for us by
Dr. L. J. Raubenheimer at Oak Ridge National
Laboratory using the program described in Ref. 14.
These three distributions are each normalized to 10'0

effective frequencies. The four distributions are quite
similar. The exact positions of the critical points, their
relative magnitudes, and the curvatures of the sections
between the various critical points are, however,
slightly model-dependent.

The frequency distribution for M3 and for Sinha's
model' M6 are shown in Fig. 6 as smooth curves drawn
through the histograms" calculated with a "bin-width"
of 0.01&1012 cps for M3 and 0.035&(1012 cps for M6.

27See Ref. 18 for an interplanar decomposition in terms of
atomic force constants to 5th-nearest neighbors; a table to 8th-
nearest neighbors is available on request.

"Tables of numerical values for the frequency distributions
calculated from models M1-M4 are available on request.
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FIG. 7. Comparison of the Debye frequencies v determined
from model M3 and from experimental thermodynamic results by
Salter. Salter's results are for O'K whereas the M3 results are
for 296'K (see text).

The distributions are normalized to the same area, and
the agreement is quite good as expected from the agree-
ment of the force constants in Table IV. The critical
points displayed may be correlated with the stationary
values and crossover points of the dispersion relation
(Fig. 3). Other estimates of g(i ) for copper are given in
Refs. 9 and 29—32; however, these are based on un-
realistic models.

The moments of the frequency distributions have
been calculated for —3 &~ e ~&34, but, since they vary in
magnitud. e over a range =10', it is more convenient
to present the Debye frequencies v given by Eqs. (8).
A plot of the v for the M3 distribution for —3~&e&~20
is shown in Fig. 7 together with the results of Salter"
obtained, from experimental thermodynamic data.
Salter's results are for the equilibrium volume at O'K in
the quasiharmonic approximation and are therefore
higher than our results calculated from a room-
temperature g(i). The two sets of results do however
have the same general shape throughout the range of
overlap and can be brought into quite good agreement
by approximate corrections for anharmonic effects.
For example, using the values 1.96 and 1.63 for the
thermodynamic Griineisen parameter for copper, '4 and
the value 14.09&(10 '/deg for the linear expansion
coeKcient, 35 one estimates that Salter's results should
be decreased by 2.0—2.5%%u~. This estimate is probably
not very accurate; a much better correction to v 3 is
obtained by calculating the value of O~&(0'K), the
Debye temperature at O'K, which corresponds to the
room-temperature elastic constants and lattice constant
of Table III. Using the method of de I.aunay, 36 one

~9 P. A. Flinn, G. M. McManus, and J. A. Rayn. e, Phys. Rev.
123, 809 (1961).' K. C. Sharma and S. K. Joshi, Phys. Rev. 132, 559 (1963).

8' P. L. Srivastava and B.Dayal, Phys. Rev. 140, A1014 (1965).
"Y.P. Varshni and R. C. Shukla, J. Chem. Phys. 43, 3966

(1965).
33 L. S. Salter, Advan. Phys. 14, 1 (1965).
34 C. Kittel, Ietroductioe to Solid State I'byes (John gfiley Bt

Sons, Inc. , New York, 1956), 2nd ed. , p. 155."IIandbook of Chemistry and Physics, edited by C. D. Hodgman
et al. (The Chemical Rubber Publishing Company, Cleveland,
Ohio, 1960), 42nd ed. , p. 2241."Jules de Launay, in Solid State I'hysics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1956), Pol, 2,
p. 219.

6nds that tlHS value ls 332.7 K) wh1ch corresponds to
i s=6.932X10" cps [see Eq. (Sc)]. The O'K elastic
constants" and lattice constant give the value"
O~n(0'K) =345.3'K (v s=7.194)&10th cps), which
agrees very well with the value co 3=4.518&0.014'10"
rad/sec (v s= 7.191+0.022&t', 10"cps) given by Salter, »
It appears that Salter's value for p ~ should be decreased
by about 3.6%%uo. If this correction is applied, there is
excellent agreement with the values [i s in the range
(6.921—6.932)X10" cps] for models M2—M4. The
value for M1 is about 2% higher because M1 gives
elastic constant values which are signihcantly higher
than the experimental room-temperature values. "

The v„ for e& —3 are not so easily corrected, but,
from the agreement obtainable at e= —3, and the
agreement in shape of the curves of Fig. 7, we feel that
the over-all agreement is adequate. The v for models
M1—M4 are very similar, exhibiting only the above-
mentioned differences arising from the different elastic
constants corresponding to the different models, and
small differences at larger I (0.5%%uz at I=20) arising
from the different "cutoff" frequencies of the different
models. The p„ for copper are quite different from those
for nickel, 2 which are relatively much higher for
negative e and which increase very slowly for e&5.

Pote added sys manuscript: A complete description,
including a zoRTRAN 63 source language listing, of the
Oak Ridge frequency distribution program is now
available as an Oak Ridge National Laboratory report
(ORNL-TM-1425 by L.I.Raubenheimer and G. Gilat).
Recently this program has been rewritten in FORTRAN

IV for use on the IBM 7040 computer at McMaster
University. Modifications, which signihcantly improve
the accuracy of the distributions at low frequencies (by
as much as a factor of 3 for the first bin of the histogram)
and which completely eliminate the negative frequencies
given by the original program, have also been made at
McMaster. The frequency distributions now obtained
are essentially Debye distributions [g(v) =@i'] at low

frequencies. The accuracy of the g(v) calculation for
higher frequencies may be checked by comparing the
value of the second moment obtained from the g(i)
histogram via Eq. (7) with the value obtained directly
from the atomic force constants. For a face-centered
cubic substance, the second. moment may be expressed
in terms of the atomic force constants as

Ms ——(2m'M) '(2[2(1XX)+1ZZ]+2XX+2(2FF)
+4[3XX+2(3FF)]+2[2 (4XX)+4ZZ]
+4[5XX+5FF+5ZZ]+4(6XX)
+8[7XX+7FF+7ZZ]+SXX+2(8FF)+ ~ .},

where M is the atomic mass, and the notation is the
same as in Table IV. For both the original and. the
improved g(v) programs, the two values of 3IIs agree
to within 0.006%.
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Fro. 8. Comparison of calculated (M3) and experimental
values of the Debye temperature (see text).

"W.F. Giauque and P. F. Meads, J. Am. Chem. Soc. 63, 1897
(1941)."J.P. Franck, F. D. Manchester, and D. L. Martin, Proc.
Roy. Soc. (London) A263, 494 (1961).

39 D. L. Martin, Can. J. Phys. 38, 17 (1960).~ D. L. Martin, Phys. Rev. 141, 576 (1966)."W. S. Corak, M. P. Garfunkel, C. B. Satterthwaite, and A.
Wexler, Phys. Rev. 98, 1699 (1955).

C. Thermal Proyerties

The Debye temperature 0'n(T) for O'K & T & 300'K,
calculated using Eqs. (10) and (12) and the M3 fre-
quency distribution, is shown in Fig. 8 together with
the experimental results of various workers. " '0 Where
the values of 0~ (T) were not given, we have calculated
them using the value (0.688 mj/mole deg') of Corak
et a/. 4' for y, the electronic specific-heat coefficient, to
subtract 06 the electronic specific heat. Our calculated
0&(T) (solid line) is almost always lower than the
experimental values; this is expected since we have
used a room temperature g(v) to calculate C, (T) and
O~&(T) for all T without making any corrections for
anharmonic effects. Equation (11)for C,(T) is obtained
under the assumptions dv/dT=O and dg(v)/dT=O, and
the experimental points of Fig. 8 are obtained from the
specific heats by assuming that the value of p deter-
mined at very low temperatures is valid for all tem-
peratures. In view of the fact that none of these assump-
tions are justified, the agreement shown in Fig. 8 is as
good as can be expected. The correct shape of the
calculated curve is more significant than the fact that
it is too low. As mentioned in the last section, we are
low by just the amount we expect at O'K since the
room temperature elastic constants and lattice constant
give O~~(0'K) =332.7'K, and models M2—M4 give
values of O~D(0'K) in the range 332.2—332.7'K. (M1
gives a value 338.6'K because the Mi elastic constants
are too high. ) Martin4s gives 0'~(0'K) =345.6'K, and
quotes the value 345.2'K as the best value obtained

1.5

sr' l0
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l00 200 300 400 500
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FIG. 9. Comparison of calculated (M1) and experimental
(Ref. 29) values of the Debye-Wailer coefhcient divided by the
recoil frequency r z of a free copper atom.

from O'K elastic constants. Above about 15'K, models
M1—M4 give results which differ from each other by
less than 1'K (=0.3%). Due to the errors in the
primary data, and the possible errors introduced in
calculating the force constants, g(v), C„(T),O~D(T), etc.,
it is dificult to make useful estimates of anharmonic
corrections from the results given in Fig. 8.

The Debye-Wailer coefficient 2W(T) has also been
computed. The calculated curve for 2W(T)/v~ [see
Eq. (11)7 is shown in Fig. 9 together with the experi-
mental results (from x-ray intensity measurements)
of Flinn et al." taken from Ref. 25. The results for
models M1—M4 never differ by more than 0.8% over
the range shown.

IV. CONCLUSIONS

It has been demonstrated that the 1st-neighbor
interactions in copper are dominant, and that there
exists a weak longer range force system extending to at
least 6th-nearest neighbors. Physically realistic errors
have been assigned to most but not all of the force
constants. Our force constants agree substantially with
those of Sinha, but disagree with earlier estimates. The
analysis indicates that the forces in copper are not
completely axially symmetric. The analysis has also
indicated that the errors conventionally assigned to the
frequencies obtained in neutron scattering experiments
are too large by about a factor of 2, if the errors are to
have the sense of standard deviations. When the Oak
Ridge results' are available in final form, a statistical
comparison with our results should give an answer to
this important question. Unless the assigned errors
differ from standard deviations by a constant factor, a
least-squares method of analysis is of course not
strictly justified.

No Kohn anomalies were observed in copper though
they probably exist and might be seen at lower tem-
peratures and/or under very high resolution.

Thermodynamic quantities calculated from the fre-
quency distributions agree as well as can be expected
with the experimental quantities; the small discrepan-
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cies (never more than 4%) appear to be accounted for

by anharmonic effects.
O. I 4—
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APPENDIX A: DETAILED STUDY OF
FORCE-CONSTANT MODELS

The atomic force constants (AFC's) were determined
from the experimental frequencies by a least-squares
analysis based on Eqs. (3) and (4). (In view of the
somewhat arbitrary method of assigning errors to these
frequencies, it is of course not certain that a least-
squares method is fully justified. ) Except for model M1
of Table IV, weights were assigned according to the
least-squares prescription —i.e., the values of 3for
were weighted relatively as (i,hv;) ', and the values of

(aC;) were weighted accordingly (the C, are the elastic
constants, u is the lattice constant, and the v; and hv;
are the frequencies and errors of Tables I and II.) For
model M1, the values of 3E~,' were weighted relatively
as (p;Av;) ', and the values of aC, were assigned rather
low weights. This easily accounts for the differences
between models M1 and M2. Although M1 was ob-
tained from the data of Table I only, it actually gives a
better fit to all the data of Tables I and II than does
M2, but it fits the elastic constants much less well (see
Table VI).

The force-constant errors given in Table IV for
models M2—M4 are determined primarily by the errors
assigned to the experimental frequencies and elastic
constants. However, where constraints are imposed,
the errors assigned to the force constants affected by
these constraints are determined largely by the errors
assigned to other force constants —e.g., the error
assigned to the force constant 5XI of model M3 is
determined largely by the errors assigned to the force
constants 5XX and 5YI' since 5XF is fixed by the
constraint 8(5XF)=3(5XX)—3(SF'F). The errors

propagate in the standard way as long as fairly large
weights are assigned to the constraints imposed. The
constraints were also fitted by least squares since this
allows one to test (by varying the weights assigned to
the constraints and observing the changes in the fitting
errors) if the data are consistent with the constraints.
We have not found an adequate way to take account of

0.00 I I I I I I I 1

I 2 3 4 5 6 7 8
n~

»o. 10. The statistical quantities ai and a2 Lace Fqs. (A].)
and (A2)] as a function of the number (I) of nearest neighbors
included sn the Gt. The values for models M2, Ma, and M4 of
Table IV are indicated by arrows.

truncation errors so, in calculating the errors in the
force constants, we implicitly assume that we have a
"perfect" model. The force-constant errors are therefore

physically realistic only if an entirely adequate fit to
the data was in fact obtained. Figure 10 shows a plot
of 81, the weighted root-mean-square (rms) error in

Mtois+uC;, and h2, the unweighted rms error in v;, as
functions of the number of neighbors (ri) employed in

the fits. These errors decrease very rapidly up to m=3,
less rapidly to e= 6, and then only very slowly to m =8,
the limit of the analysis. Other errors (e.g. , the fitting
error and the average absolute error in i;) show the
same type of behavior. We take this as an indication
that forces to sixth-nearest neighbors are required, and
are probably adequate, to fit the measurements. The
errors given for model M2 are therefore too small. The
errors increase from M2 to M3 to M4 because, as more
parameters are added by including more distant
neighbors, there is less "orthogonal" data to determine
each parameter.

The errors assigned to the force constants will differ

from standard deviations by the same factor that the
errors in Tables I and II diff er from standard deviations.
Analysis suggests that the errors assigned are too large

by about a factor of 2; this is arrived at as follows:
Even with an exact theory, one would expect the fre-
quencies calculated from the best force-constant model
to be outside the assigned errors for —', of the experi-
mental frequencies if these errors were standard
deviations, and if there were a much larger number of
data points than parameters. There are 124 data points
in Tables I and II, and M4 gives frequencies that are
outside the assigned errors for only 6 (i.e., for 5%) of
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them, for M3 the number is 9 (7%), and even for M2
it is only 14 (11%).Even if we arbitrarily set Av=-,'Av
throughout, the numbers are only 31 (25%), 36 (29%),
and 50 (40%) for M4, M3, and M2, respectively —a
straightforward division by 2 does not appear to be too
drastic a procedure. In addition, predicted and observed
values of certain statistical quantities such as h2, the
unweighted rms error in v;, can be compared. For
predicted values one uses appropriate averages of the
hv; given in Tables I and II, and for observed values
one replaces the hv; by (v,'—v;), where the v,' are the
frequencies calculated from a particular model, and the
v; are the measured frequencies. A comparison of the
predicted and observed values of the quantities h1 —h4

TABLE VI. The statistical quantities' A1-54 calculated from
the force-constant models M1—MS and as predicted frorg the
errors of Tables I and II.

Predicted
M1
M2
M3
M4
M5

~ ~ ~

0.0593
0.0400
0.0324
0.0302
0.0334

0.0734
0.0358
0.0444
0.0342
0.0325
0.0354

0.0673
0.0271
0.0316
0.0254
0.0234
0.0265

0.0665
0.0408
0.0417
0.0338
0.0313
0.0353

a See EqS. (Ai)-(A4).

is given in Table VI. These quantities are defined as
follows:

»=(L 2 w. (3"—3*)')/~&'", (A1)

h2= LN-' P' (v '—v;)']'" (A2)

63=N 'Q'
I
v, '—v, l-, (A3)

and
{[P I w (y, c y~)2]/~~ )I /2 (A4)

where y, =M~ or aC„y is the corresponding quantity
calculated from a particular model, a primed summation
is over the (N = 124) values of Mar, 2, an unprimed sum-
mation is over these plus the three values of aC;,
w;=LA(y;)P', W=g;w;, and W'=g w;. One sees
that the fits are better than expected by about a factor
of 2. This strongly indicates that the errors assigned to
the experimental frequencies are about two standard
deviations. It is not a conclusive proof, however, be-
cause systematic errors could exist for several branches
or parts of branches, and a good fit could still be ob-
tained using the least-squares procedure. The fact that
the measurements carried out at the Chalk River and
McM aster reactors, using instruments of rather
different characteristics, are in good agreement (for both
palladium'r and copper) suggests that systematic errors
are in fact small. Independent data' exist for copper,
but unfortunately they do not lend themselves to a

meaningful statistical comparison such as is needed to
fully justify decreasing the quoted errors. This is
because Sinha's results' for the symmetry directions
are unevenly spaced as to wave vector, branch, and
direction, and his quoted errors are two to five times
ours. However, the good agreement between his and
our results where overlap occurs, and the good agree-
ment between his force-constant model and frequency
distribution and our models and distributions, argues
that the errors assigned to experimental frequencies are
being habitually overestimated. The Oak Ridge" data,
when available in final form, will afford a better sta-
tistical comparison. The results available at present are
in rather good agreement with ours except for certain
limited regions of reciprocal space.

There is not suKcient orthogonal information in the
four major symmetry directions of a face-centered cubic
substance to allow one to carry out an analysis in terms
of completely general forces if neighbors beyond fourth-
nearest neighbors are included in the fit. It has become
conventional to circumvent this problem by imposing
axially symmetric (AS) or central-force constraints,
and to then include sufFicient neighbors to get an
adequate mathematical fit. (The AS model is simply
the central-force model without the requirement that
all forces be derivable from the same potential. ) Such
models may be useful as interpolation formulas for
calculating frequency distributions, etc., but the
atomic force constants so obtained may not be physic-
ally realistic, since there is no reason to believe a Priori
that the forces in a particular substance are central or
even AS. We have extended. our analysis beyond. fourth
neighbors by a procedure which yields the maximum
number of free parameters, hence giving the best
mathematical fit, and which also allows one to assign
physically realistic errors to the largest possible number
of force constants. One constraint is required when 5th
neighbors are included. (The symmetry directions give
only two independent equations for the three force
constants 1XF, 4XV, and 5XV, so one of these must
be fixed at some arbitrary value with arbitrary weight. )
A reasonable procedure would be to fix one of these
force constants by an AS constraint; this can be done
in five ways —three ways for SXY and one way for each
of 1XI' and 4XY. Each of these AS constraints (as well
as any other constraint that suKces to separate 5XF
from 1XF and 4XY) will yield identical fitting errors.
There is of course no reason to believe that an AS con-
straint is more physically meaningful than any other
type of constraint, or that any one of the five AS con-
straints is superior. An AS constraint does, however,
force the AFC being fixed by that constraint to be of a
reasonable magnitude; also, one intuitively expects 1XF
to have stabilized, before fifth neighbors are introduced,
and certain of the AS constraints cause it to change only
very slightly (see Table VII). (One might indeed have
fixed 1XY at the value given by model M2 rather than



CRYSTAL D YNAM I CS OF Cu

TABLE VD. The 6th-neighbor force-constant models for the 6ve axially symmetric constraints
that sufBce to separate SXF from 1XF' and 4XY.~

1.4820~0.0240
1.4848+0.0237
1.5080+0.0905
1.4827~0.0280
1.4519m 0.0272

0.0396&0.0206
0.0367&0.0183
0.0135+0.0856
0.0388~0.0152
0.0696&0.0360

—0.0055&0.0032—0.0040&0.0036
0.0075+0.0443—0.0051&0.0112—0.0205&0.0174

AS& constraint

8 (SXY) =3 (SXX)—3 (5F'I')
3 (SXP)=SXX —SZZ
SXI' =3(5I'I') —3(5ZZ)
4XF =4XX —4ZZ
1XI = 1XX —1ZZ

a The other 15 force constants are identical to those given in model M3 of Table IV.
b Axially symmetric.

use an AS constraint. ) The values of the three force
constants 1XI', 4XP, and SXF', and especially of their
errors, are dependent on the particular constraint im-
posed. Model M3 of Table IV gives the values for the
AS constraint 8(SXF)=3(SXX)—3(SVF); in Table
VII these values are listed again together with the
values for the other four AS constraints. Because of the
dependence on the particular constraint used (and the
absence of a satisfactory criterion for choosing the
"best" constraint), it is difficult to assign physically
realistic errors to 1XI, 4XI", and SXI".The other 15
force constants and their errors in M3 are determined
uniquely by the data, and, because this model gives an
adequate 6t to the data, the errors assigned are probably
realistic. M3 is the most physically meaningful model
obtained thus far for copper; it has seventeen mathe-
matically free parameters, only one less than a com-
pletely general model, and hence gives a better 6t to
the data than a sixth-neighbor AS mod, el with only 12
free parameters.

When seventh neighbors are includ, ed in the 6t, three
additional constraints must be imposed since the sym-
metry directions give only two independent equations
in the three force constants 3I'Z, 6I'Z, and 7XZ; three
in the four force constants 3XZ, 4XY, 6I'Z, and 7';
and seven in the eight force constants 1XX, 1ZZ, 3XX,
3FF, SXX, SZZ, 7XX, and 7FF. (It is assumed that
SXFhas previously been fixed by the constraint of M3.)
We have chosen to remove the 6rst two underdeter-
minacies by fixing 7XZ and 7VZ, since 6I'Z cannot be
fixed by an AS constraint, and we want to retain general
forces for the first through fourth nearest neighbors.
Again we choose to use AS constraints, and 7XZ and
7VZ are fixed by the constraints 2(7XZ)=7XV and
3(7VZ) = 7XF. (Since the AS constraints are also fitted
by least squares, and. since 7XI" and; 7ZZ, and, their
errors, are very well 6xed, by the symmetry direction
data, it is most convenient to 6x the other seventh-
neighbor force constants in terms of these two whenever
seventh-neighbor AS constraints are imposed, .) In addi-
tion one of 5XX, SZZ, 7XX, and 7I'I" must be fixed.
Imposing the AS constraint 8(SZZ)=9(SFF)—5XX
leads to the best stabilization of the force constants, so
we have chosen to use this constraint even though (by
the propagation of errors among the force constants) the
AS constraints that 6x 7XX or 7VI' in terms of 7XY
and 7ZZ lead to smaller errors for several of the force
constants.

For model M4, the three AS constraints given above
and the one used previously for M3 have been imposed.
Various other sets of four AS constraints could have
been used (all yielding the same fitting errors), and
again there is nothing special about AS constraints.
Only ten of the force constants (2XX, 2FF, 4XX,
4ZZ, SFF, 6XX, 7ZZ, 7XF', 8XX, and 8VV) of M4,
and their errors, are not affected by the particular
constraints imposed, and only these ten can be said to
be physically realistic with certainty. Although M4
gives a slightly better 6t4' to the data than does M3,
M3 with 15 physically realistic force constants is
probably more meaningful. Comparing M3 and M4 we
see that only one of the force constants of M3 changes
by as much as its given error when seventh and. eighth
neighbors are added, and this force constant (6FZ) is
directly affected by two of the constraints imposed. in
M4, so the change is not signi6cant.

M5 is an eighth-neighbor AS mod. el. Force-constant
errors are not given for MS because the calculated
errors are very strongly affected by the ten constraints
imposed. MS gives a slightly poorer 6t to the data. than
does M3, so the higher Fourier components inherent in
MS are not needed to 6t the copper data. If the force
constants of MS are compared with the force constants
of M3 and M4 (and the errors of the latter are divided

by a factor of 2 to get standard deviations as indicated
earlier), then it appears that the forces in copper are
probably not quite axially symmetric. If the various
axially symmetric sums Le.g., 1XX—1ZZ —1XF,
3XX—3VF—3(3FZ), etc.j are plotted against the
number of neighbors included in the fit (n), there is
generally a tendency to stabilize at values which are
not zero, as they would be for AS forces, but which
differ from zero by amounts little greater than the
errors in the sums.

Since the calculated elastic constants are very sensi-

tive to small changes in the long-range force constants,
the values of the atomic force constants are quite in-

sensitive to the weights assigned to the measured elastic
constants. For models M2—M4, test runs were made
with relative weights from 0-10 on the (oC;) (with
respect to the weights assigned to the M&0/), and for

4~The importance of obtaining the best mathematical 6t has
recently been emphasized LG. Gilat and R. M. Nicklow, Phys.
Rev. 143, 487 (1966)g; model M4 will give the best 8th-neighbor
Gt to the symmetry-direction data of any fcc substance.
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values greater than 0.01 the AFC's never changed
outside the errors given in Table IV. For values of
0.001 and less, a few AFC's for each model changed by
slightly more than their assigned errors. The (aC,) are
fitted relatively better than the Mcoja (i.e., D1 of
Table VI is less than A4) for relative weightings &0.05;
however, it takes a value of approximately 0.5 to fit all
three of the measured elastic constants within the
assigned errors" (see Table III).The 3IIojja tend to make
the values of c~~ and the shear constant C' too high.
For the models M2—M4 given in Table IV, a relative
weighting factor of 0.125 was used, and for these
models C' is 4-5% higher than the experimentally
determined value to which Overton and Gaffney"
assign an error of 1.8%. This disagreement arises
primarily from the disagreement between our measure-
ments for the [Off']T& branch and the velocity of sound
determined by C'; however, it may not be significant
since it is possible to get very good agreement with the
measured elastic constants without seriously decreasing
the quality of the fit to the experimental frequencies.
There is no reason to suspect the elastic constant
measurements of Overton and Gaffney, " since other
measurements" are in good agreement with them.

In calculating the Cn of Table V, the appropriate
elastic constant combination for each branch was
assigned the same weight as the value of 3foP for the
lowest value of f' on that branch (except for the II
and h. branches).

A data randomization method of analysis was also
used for both the C and the AFC's—i.e., the experi-
mental v; were changed to v;+Av;, v;—hv;, or v; in a
completely random manner, and then the C and the
AFC's were calculated. This was done for several
different randornizations of the data, and it verified
that, if the assigned values of Av, , are realistic, then the
force constant errors of Tables IV and V are realistic.
This is an alternative (but more cumbersome) procedure
for assigning physically realistic errors to the force
constants.

APPENDIX 3: DETERMINATION OF
FORCE-CONSTANT ERRORS

The procedure for assigning errors to the atomic and
interplanar force constants is outlined in this section.
The method is not new. ~

From experiment one has y; =JI~ or aC;, and, using
4' J. A. Rayne, Phys. Rev. 112, 1125 (1958);Y. Hiki and A. V.

Granato, ibid. 144, 411 (1966).a See, e.g., H. D. Young, Statestecal Treatmejtt of Eaperejjjeatal
Data (McGraw-Hill Book Company, Inc., New Vork, 1962),
Chap. IV.

the method of least squares, one sets

a
( 2 ~j(y' —y~)'& =o,

where
y =Z~ktCa,

k

(81)

(82)

Setting

2 ttjjyjctk j=Z c"a Z 'to, ckkj&a j' ~

I j.

&a =Z tjjjyjcckj j

(84)

(85)

and
A aa =Z tjjj'cta jotk j, (86)

and, making use of the fact that Akk. ——Ak. k, Eq. (84)
can be written in matrix form as

X= Ae i.e., e= A—'X= SX.
Therefore,

C'k =P +knxn =P +kn P tejy jetn j,

and, making use of Eq. (83),

~
[+(yj)] 2 Ijkn8kn'jjjjctnjotn'j ~

&ay, i

Finally, using Eq. (86), one has

~C'I
[h(yt)$'= Q Bk.Bk A

Qy n, n'

=&ka= (A ')kk.

(89)

(810)

The left-hand side of Eq. (810) is, by definition, the
error in C~. Hence, the errors in the atomic and inter-
planar force constants are simply the appropriate
diagonal elements of the inverse of the matrix whose
elements are given by Eq. (86). Any constraints im-
posed in obtaining the models presented in this article
were treated as additional input data (y;) and were
assigned a weight (w;).

k may be a multiple index [e.g., L, P of Eqs. (3) and
(4)j, the C'k are the force constants, the nk; are coeffi-
cients involving trigonometric functions like 1—cosq Rr,
[see Eq. (4)j, and the m; are the least-squares weights,

w;= a;
—'= [A(y;)]-'. (83)

Expanding Eq. (81), and making use of Eq. (82) and
its derivative, one obtains the equation


