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The elementary algebraic solution of the Boltzmann equation in the theory of metals, for the case where
the kernel is of finite rank, is extended to the case where an external magnetic field of arbitrary strength is
present. A closed expression is derived for the magnetoresistance tensor which is valid for arbitrary form of
the energy surfaces and which does not depend on the relaxation-time approximation. As an illustrative
study of the effects of scattering anisotropy, the high-field longitudinal magnetoresistance is calculated
for cubic metals with spherical Fermi surfaces, when fourth-order terms are kept in the expansion of the
scattering probability in powers of the wave-vector components. The results suggest that experiments on
magnetoresistance in single crystals of the alkali metals may give information on the form of the scattering

probability.

1. INTRODUCTION

HE magnetoresistance of metals in high magnetic

fields has been extensively studied in recent years
as a useful indicator of the topological structure of the
Fermi surface.! Now that the form of the Fermi surface
can be determined experimentally by a wvariety of
methods, in some cases with considerable -accuracy,
interest is turning to the possibility of determining
experimentally other important parameters character-
izing electron transport processes—in particular, the
relaxation time for scattering, or, more generally, the
transition probability p(k,k’) for scattering between
states k and k' on the Fermi surface. Pippard,? in
particular, has pointed out the striking sensitivity of
the longitudinal magnetoresistance to the form of
p(k,k’) in the noble metals.

Standard magnetoresistance theory® is based on a
Boltzmann equation in which a constant time of relax-
ation is assumed to exist, so that scattering anisotropy
is ignored. Approximate solutions under more general
conditions may be obtained by the variational method,*
by assuming that an anisotropic relaxation time can be
defined,® or by direct numerical solution of the Boltz-
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mann equation.’ However, it is difficult in practice to
estimate the accuracy of the results obtained by these
methods. In the present paper, we study the exact
solution of the Boltzmann equation in the case where
p(k,k’) can be written as a finite sum of products of a
function of k with a function of k’. Sondheimer” has
recently pointed out that for this form of p(kk’), the
Boltzmann equation reduces to a set of linear equations
with a singular matrix; his method of solution was
subsequently simplified by Chambers.® The work of
Sondheimer and Chambers referred to zero magnetic
field, and in Sec. 2 of the present paper we extend their
algebraic method of solution to the case where an
applied magnetic field H of arbitrary magnitude is
present. We derive an exact formal expression for the
magnetoresistivity tensor p [Eq. (2.18)] which is valid
for arbitrary energy surfaces and all values of H. (In
a recent note on the same problem,? the equation given
is singular.)

The theory allows p to be calculated by quadratures
for different forms of p(kk’) if the Fermi-surface
geometry is known. Ideally, one would like to work
backwards from measurements of the anisotropy of p to
deduce the form of p(kk’). We have not, however,
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found any way of doing this systematically, and it
seems that in practice one will have to proceed by
trial and error, evaluating  for various assumed forms
of p(kk’), until agreement with experiment is ob-
tained. This is likely to be a very laborious task.

Equation (2.18) has a wide variety of possible
applications. In general, the anisotropy of the compo-
nents of p depends in a complicated way on both the
Fermi-surface geometry and the form of the scattering
probability. For an illustrative study of the effects of
scattering anisotropy alone, we consider, in Sec. 3,
the simplest special case in which nontrivial results are
obtained. We use (2.18) to calculate the longitudinal
magnetoresistance, in the limit of high magnetic fields,
for a cubic metal with a spherical Fermi surface, using
an expansion of p(k,k’) in powers of the components of
k and K/, in which terms beyond fourth powers are
neglected. For this model, which is applicable to the
alkali metals, there can be no large effects of the type
of those studied by Pippard? for copper, which depend
on the presence of “necks” on the Fermi surface.
Nevertheless, we find in Sec. 4 that measurements of the
anisotropy of the longitudinal magnetoresistance may
give useful information on the coefficients in the expan-
sion of p(k,k’). We make no attempt in this paper to
discuss the physical mechanisms which lead to particu-
lar forms of p(kk’), but regard this function as one to
be determined by experiment. We conclude in Sec. 5 by
comparing the exact solutions with the results obtained
in the relaxation-time approximation.

2. A GENERAL EXPRESSION FOR THE
MAGNETORESISTIVITY TENSOR

The electron distribution function in the presence of
uniform electric and magnetic fields E and H is fo(ex)
+g(k)d fo/ dex, where fo is the equilibrium distribution,
and where, to linear accuracy in E, g satisfies the
Boltzmann equation

a2y f (e0— g} P k) m ev-E. (2.1)
XH-— o+ [ (50 —g(K))p(kk)——=ev-E. (2.

%

Here, € is the one-electron energy, k the wave vector,
and v=17"19¢/dk the electronic velocity. The scattering
is assumed to be elastic, and p(kk’) is the probability
per unit time for the transition from a state k on the
energy surface e,=constant, to a state k’ in the region
dS’ of the same surface where the magnitude of the
velocity is o'.

The integro-differential equation (2.1) is singular,
since the homogeneous equation obtained by writing
zero on the right-hand side has the nonzero solution
g(k)=constant. The solubility condition, however, is
satisfied,” and we obtain a nonsingular equation® by
retaining in (2.1) only those parts which are odd in k.
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This gives the equation
e g1 as’
St g [l
—/gl(k’)pl(k,k’)%=ev~E, (2.2)

where gi(k)=1{g(k)—g(—k)} is the odd part of g,
and
polk,k)=3{p(k,k)+p(k, —k")},
pilkk)=3{p(kk)—p(k, —k)}

are the parts of p(kk’) which are, respectively, even
in both k and k’, and odd in both k and k’. Here, it is
assumed that p(k,k’) is independent of the magnetic
field, and therefore® satisfies the symmetry relation
p(k,k")=p(—k, —k’), which follows from the principle
of microscopic reversibility p(k,k’)=p(k’ k), and the
reciprocity theorem p(kk’)=p(—k’, —k).

We assume that p1(k,k’) can be written as a finite
sum of products of a function of k with a function of
K. Since p1(k,k")=p:(k’,k), p1(kk’) thus has the form

(2.3)

(2.4)

,J=

prl k)= flbﬁqu)qj(k/),

where b;=0;;, and ¢;(k) (=1, 2, ..., N) is aset of N
arbitrary functions of k of integrable square. We write
this in algebraic notation as

pi(k k) =(q(k)| B|¢(K")),

where |g) is the column vector with components ¢;
and B is the N XV symmetric matrix with elements d;;
(¢, 7=1,2, ..., N). With

2.5)

’

d e a
Pok =/ kk)—, M=——vXH-—, (2.6
o0)= | pollk)— SYXH—, (26)

Eq. (2.2) becomes

(M+Pogi—{q|B|C)=ev-E,
A
|C>= / |Q>g1%’

and is independent of k and k’. Equation (2.7) can be
solved formally for g; to give

2.7

where

(2.8)

g1=(M+Po){ev-E+(q| B|C)}, (2.9)

and, substituting this back into (2.8), we obtain the
finite system of linear equations

|C)=¢|W)-E+4B|C), (2.10)
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wherel®

W)= M-4Py)t a5
| >—/|q>< R »

as
- / | +Poglo.
hv

It is shown in Appendix A that it follows from the
condition p(k,k’)>0 that the matrix I—AB (where I
is the unit N XN matrix) is nonsingular if the functions
gi(k) are linearly independent. The system (2.10),
therefore, may be solved for |C) to give

|C)=e(I— AB)~'| W)-E (2.12)

and substituting this into (2.9), we obtain, as the
solution of (2.7),

gi=e(M-+Po)~'v-E

+e(M 4Py g| BU~AB)'|W)-E. (2.13)

The conductivity tensor ¢ is defined by J=¢"E,
where, for a metal,

J e aS (2.14)

= —— glv-——’ 2.
473 fw

the surface integral going over the Fermi surface.

Combining (2.13) and (2.14), we have

=§+(S|B(I— AB)|W), (2.15)
where
$ < M-+ Pyt a5 2.16
S—;;é V( + 0) VZ;) (' )
and
e? as
Sl=— [vor+rr=. @

It is usually more convenient to express E in terms of
J by the magnetoresistivity tensor p, which is the
inverse of ¢. It is shown in Appendix A that the matrices
§ and I—AB+|W)-7 (SlB (where 7=$-1) are non-
singular. From (2.15) it is then easily verified that the
inverse of ¢ is given explicitly by

—7-(S|B{I—AB+|W)-7-(S|B}~!|W)-7. (2.18)

10 We use boldface letters to denote vectors in 3 dimensions,
carets for 3X3 matrices (tensors), and Greek suffixes to denote
vector and tensor components in 3 dimensions. In V dimensions
the bra, ket notation is used for vectors, ordinary capitals for
NXN matrices, and Latin subscripts for vector and matrix
components. Thus, in (2.11), |W) is an N X3 matrix with elements

Wia, and 4 is an N XN matrix with elements A G, 5=1,2, ...,
N;a=z, v, 2), where

s _,. ds
Wi [aQr+Py 0, ds= [a0r+Pomas.

A dot [as in (2.10)] denotes an inner product in 3 dimensions;
(S|A|W) is a 3X3 matrix whose o element is 3i; Said:;Wis,
and |W)-#- (S| is an N XN matrix whose ¢5 element is

2ap WiarapS 8i+

MAGNETORESISTANCE ANISOTROPY

569

This formula represents an exact formal expression for
the magnetoresistivity tensor, based on the Boltzmann
equation (2.1) and the expression (2.4) for the scatter-
ing probability.

We note for later use that the NXN matrix
I—-AB+ |W)-#-(S|B, whose inverse occurs in Eq.
(2.18), is particularly simple to invert explicitly when
p1(k,k’) has the special form

Pl k) =av(k)-v(k')
+8{v(k)-u(k)+vK)-ul)}, (2.19)
where u is an arbitrary vector function of k. In this

case, N=6, and we have, in an obvious notation,

(g(k)| = (v(k),u(k)), (2.20)
of Bl (4m3/e?)s (47r3/ e9)S

Bz(ﬁf 0)’ A_( ) @21)

S|=

a

w

where [ is the unit 3X3 matrix and, from (2.11) and
(2.17), W, A, and S are the 3X3 matrices:

(,9), (2.22)

) is ds
W=/U(M+Po)—lv—, =/u(M+Po)_lll—‘,
fw v

. e daS
S=— / v(M+Po) lu—. (2.23)
478 /2]
In terms of these,
{I—AB+|W)-7-(S|B}™!
(i 0\~!
\—pA—WW-#-3) f)
I 0
() e
BA—-W-7-S) I
and Eq. (2.18) becomes
p=7— (4n’a/e?)[— (4n3/e?)%?- S—BW -7
—(4r%82/e)(A—W-#-5). (2.25)

3. HIGH-FIELD LONGITUDINAL MAGNETO-
RESISTANCE FOR METALS WITH
SPHERICAL FERMI SURFACES

To evaluate (2.18) or (2.25) explicitly, we require
the result of operating with (M+Py)~! on a given
function of k. Now, if P, is identified with 77, the
differential equation

(M+Po)F (k)=G(k) 3.1)

is the Boltzmann equation of the standard theory of
magnetoresistance, in which it is assumed that a relax-
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ation time 7(k) exists. As is well known,! the solution
of this equation is conveniently expressed in terms of
variables defining orbits = constant, k-H constant on
the Fermi surface. For closed orbits, the solution is a
periodic function of a phase angle ¢ defining position
in the orbit and takes the explicit form

F(¢)=M~+Poy)'G
1

" ) exp[i / g Po<¢">d¢"}d¢', (32)

We J — Wed ¢

where w, is the cyclotron frequency for the orbit. For
a completely closed Fermi surface, then, §, (S|, |W),
and 4 may be explicitly expressed as integrals over the
Fermi surface and evaluated by quadrature if the
Fermi-surface geometry is known.

To proceed further we make the following simplifying
assumptions:

(i) The energy surfaces are spherical, with

a=7%%k|%/2m, v=1%k/m, (3.3)
where m is an effective mass. |v| and |k| thus have
constant values, vy and % say, on the Fermi surface.
It is well known!? that a degenerate electron gas with
the energy spectrum (3.3) has zero magnetoresistance
if the relaxation time is constant, so that with the
assumption (3.3) both the existence and the anisot-
ropy of a nonzero magnetoresistance effect are entirely
ascribable to the scattering anisotropy. The assumption
of a spherical Fermi surface seems to hold with con-
siderable accuracy for the alkali metals.'?

(i) We assume that p(k,k’) has cubic symmetry, and
expand it in powers of the products of the direction
cosines kq, ko’ of k and Kk’ relative to the cubic axes,
keeping powers up to and including the fourth. (This is
the lowest order in which anisotropic effects appear.)
Since Y ko? is constant on the sphere [Eq. (3.3)], the
most general form of p(kk’) is, to this order,

P )= a0+ {corara’+ aalkatdka )+ akaia’

Fca(kadd +raka®) }+ D eaangra’xg, (3.4)
akf

where @, ¢2, @4, b4, cs, and e, are constants. This expres-
sion is sufficiently general to represent a variety of
possible scattering functions p(k,k’), provided that the
variation with k and k’ is not too singular.

(ili) We confine attention to the saturation value p
of the longitudinal magnetoresistance coefficient for

11 See Ref. 3, p. 515.

12 See Ref. 3, p. 494.

13 C. C. Grimes and A. F. Kip, Phys. Rev. 132, 1991 (1963);
D. Shoenberg and P. J. Stiles, Proc. Roy. Soc. (London) A281,
62 (1964); H. J. Foster, P. H. E. Meijer, and E. V. Mielczarek,
Phys. Rev. 139, A1849 (1965).
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large magnetic fields. For arbitrary directions of the
applied magnetic field H this is
p=lim H-5-H/H", 3.5)

where H is the magnitude of H. There is no difficulty
in principle in calculating for the present model all the
components of the magnetoresistance tensor (including
those representing Hall effects) for arbitrary values of
H. The quantity (3.5) is, however, both the simplest
to calculate and—provided sufficiently large magnetic
fields are available—is likely to be the most usefulin
practice for the purpose of relating measurements of
magnetoresistance to the form of p(kk’). Resistivities
are easier to measure accurately than are Hall fields,
and, since the “two-band” effect in conduction leads
to a non-zero transverse, but zero longitudinal, mag-
netoresistance effect,'* small departures of the Fermi
surface from the spherical form (3.3) are more likely
in the case of the transverse than in the case of the
longitudinal magnetoresistance to mask the effects
which arise from the anisotropy of p(kk’).

With the assumptions (i) and (ii), the calculation
of p, as a function of the orientation of H is straight-
forward. The odd part of (3.4) is

P10 k) =34 {cokara’+calkaha’ +Kakd))}.  (3.6)
This is of the form of Eq. (2.19) with
co=a(liko/m)?, co=Phike/m, u= (ks k%, (3.7)

so that 5 is given by (2.25). To obtain pe, we require
the ordersin 1/H, in the limit  —, of the components
of the tensors #, S, W, and A which appear in (2.25).
These may be obtained by well-known arguments'®
which are summarized in Appendix B. It is found that

(€2/47%) poo= (€2/4T%) 1, — 0— BreaSe— €*/47 %) BW cot'co

_BZ(Aw_erwSoo) 5 (3.8)

where, for any matrix T, T, is defined as in (3.5).

In Appendix C the quantities 7w, Sw, We, and 4,
are calculated for the case when e is given by (3.3),
and p(kk’) by (3.4). Substitution of the results into
(3.8) gives, after some rearrrangement, the final result

pw_{l—vfz(u,§4)}2

—_——————— N—y3(u, 54) . (3.9)
G Is(u,s4)
Here
473 Ca as C4
G= y A=, p=—, v=—
621)02 L L L
(3.10)

L=ao+%d4+%b4 and S4=Z ha4,

14 R, G. Chambers, Proc. Phys. Soc. (London) A65, 903 (1952).

1], M. Lifshitz, M. Y. Azbel’, and M. I. Kaganov, Zh.
Eksperim. i Teor. Fiz. 31, 63 (1956) [English transl.: Soviet
Phys.—JETP 4, 41 (1957)]; Ref. 3, p. 517.
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where h.(a=2x,y,2) are the direction cosines of H
relative to the cubic axes. I3, I, and I3 are functions
of p and s4 defined in Appendix C.

4. EVALUATION AND DISCUSSION OF
THE FORMULA FOR g

A complete evaluation of Eq. (3.9) for all values of
the parameters will not be attempted, and we discuss
only some of the more interesting features of the result.
We note that p.,, depends on the orientation of H only
through the quantity s, which varies between § (when
H is parallel to a (111) direction) and 1 (when H is
parallel to a cubic axis). We define the anisotropy
f(ss) and the relative anisotropy r(ss) of p., as

_fls)— 1)
J®—51)

Peo(54)
pu(®)

fsa)= #(s4) (4.1)

and, on the assumption that f(s;) has a single maximum
Smax, and a single minimum fuia as a function of s4, we
define the fotal variation t as fumax— fmin; this provides
a convenient measure of the over-all degree of anisot-
ropy of py.

(a) Equation (3.9) contains the three parameters
N\, u, and » which correspond, respectively, to the
second-order term in p(kk’) with coefficient cs, the
even fourth-order term with coefficient a4, and the
odd fourth-order term with coefficient c,. \, however,
is merely a constant additive term, so that (3.9) is
essentially a two-parameter expression, and the anisot-
ropy of p, arises entirely from the two fourth-order
terms in p(kk’). The existence of the term X, however,
is important, since it influences the range of possible
values of u and » (see below). Note that the term with
coefficient e in p(k,k’) does not contribute at all to
pw, and that the terms with coefficients a¢ and b4 only
affect the value of L and hence of \, u, ».

(b) The parameters \, g, and » in (3.9) cannot vary
arbitrarily but are restricted by the condition that the
transition probability (3.4) must be non-negative. A
complete discussion of these restrictions is difficult,
although various necessary conditions are easily ob-
tained; for example, u cannot lie in the interval (—15,
—5/7). A number of conditions of this type are derived
in Appendix D. In our calculations however, we have
also admitted values of A\, u, » which do not satisfy
these conditions, in the belief that the model studied
may have a semiempirical validity wider than its
literal interpretation would allow.

(c) A simple explicit result is obtained in the special
case when u=0, so that P, is constant, and the anisot-
ropy in p, is due entirely to the odd term Y (ka’.’
+kake’®) in p(kk’). In this case, (C12), (C13), and
(C14) reduce to

Il=%, .[2=%, 13=(1/35)(6—654+SS42), (42)
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T(S4)
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Fic. 1. Relative longitudinal magnetoresistance anisotropy.
Solid curves A=p»=0, broken curves explained in text. [A and »
are defined by Egs. (3.4) and (3.10), and measure, respectively,
the strengths of the second-order term and the odd fourth-order
term in p(kk’).]

and with these values, (3.9) and (4.1) give

3—(6/5)v— (v3/175)(3— 554)2—\
(9= (6/5)v—(v2/175)( ) w3)
3—(6/5)r— (16v2/1575)—\

Thus f(ss) varies parabolically with s, with a maxi-
mum at s4=0.6, and a minimum (in the range $<s5:<1)
at s4=1. The total variation is

_ (&2/175)
33— (6/5)v—(16s3/1575) =\

(4.4)

and we see that, while the term X does not itself produce
any anisotropy of pe, it may, by diminishing the de-
nominator of (4.4), greatly enhance the value of ¢. The
relative anisotropy is, for all » and A, the unique
parabola
r(s9)=(9/4)(1—54) (5s4a—1); 4.5)
this is the curve labelled =0 in Fig. 1.
We have also evaluated p, for the case of constant
Py, and a scattering probability given by the odd.
sixth-order terms Y kq%.’%, and 3 (ka%ka +keko'®). In
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Fi6. 2. Longitudinal magnetoresistance anisotropy withA=»=0.

these cases p, depends on both ss; and sg where
se=2_h45. The presence of such terms in p(kk’) could
be investigated by employing different orientations of
H which correspond to the same value of s4, but dif-
ferent values of s¢. Numerical estimates of these effects,
however, indicate that the anisotropy of p, in fact
differs only slightly from that given by the parabolic
law (4.3), so that it is unlikely that these effects could
be observed in practice, and we shall not present the
results in detail.

(d) For nonzero values of u, the integrals Iy, I,
and I3 have been evaluated numerically as functions
of s4 for a number of values of p in the permissible
ranges u<—15 and wu>—5/7. Consider first the
special case when y=A=0, which corresponds to the
existence of a k-dependent relaxation time (see Sec. 5
below). In this case (3.9) and (4.1) give

I(u,3)
flon= Ii(u,se)

(4.6)

This function is shown in Fig. 2 for several values of
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u. The curve for u=—15 shows a total variation of
about 9%,. As u decreases through — o (equivalent to
4+ o) towards zero the curves flatten out, and when
=0 there is no anisotropy; they then start to broaden
again and for u= —5/7 reach a total variation of about
6%. All show a maximum very close to ss=0.6. If
the relative anisotropy 7(ss) is plotted as in Fig. 1,
there is a more uniform behavior as u varies, the curves
becoming steadily less peaked as p passes over its
allowed range of values.

(e) Figure 3 shows a number of anisotropy curves
for the same values of u as in Fig. 2, but now allowing
A and » to be nonzero. There are several points to be
remarked.

(i) Considerable enhancement in the total varia-
tion of the anisotropy is achieved for some values of
M\ and ». The greatest effect shown in Fig. 3 is for
p=—15, A=30, and »=—30, with a total variation of
about 65%,. However, Egs. (D17) and (D18) of Appen-
dix D show that, when u=—15, N\ and » must satisfy
the relation 3\+2y=0, so that the values A=30and
y=—230 are in fact not allowed on a rigorous interpre-
tation of the model.

(if) Curves having an inverted shape relative to those
in Fig. 2 are obtained for some values of X and »; for
example, u=100, A=0, y=—180, and p=—15, A=0,
»=—230 in Fig. 3. Again these values are inconsistent
with a positive p(kk’) and, while it is not certain
whether or not this effect can occur for admissible
values of the parameters, it will at best be considerably
less marked than for the values shown.

(iii) Two quite different sets of values of \, u, » may
produce anisotropy curves which lie close together over
a large part of the range of s4; for example, those for
p=10, A=12, y=—12, and p=1, A=06, v=—06 shown
in Fig. 3. The relative anisotropy curves for these
values, however, (the broken curves ¢ and ¢, respec-
tively, in Fig. 1) are quite distinct. This shows that
it is important to employ a suitable type of analysis of
experimental data.

(iv) Although the form of the anisotropy curves in
Fig. 3 seems to bear no simple relation to the values
of the parameters, the relative anisotropy curves obey
the rule that, for a given u, all curves with A\, »4=0 fall
below that with A=»=0 (and are, for admissible values
of X\ and », quite close to the latter). In view of the
regular variation with p when A=»=0, this shows that
one could use an experimental curve of relative anisot-

opy to set a lower bound on u.

5. THE RELAXATION-TIME APPROXIMATION

When the collision term in the Boltzmann equation
(2.1) reduces to the form g(k)/7(k), we say that a
relaxation time 7(k) exists. For spherical Fermi sur-
faces, it is well known!® that an isotropic relaxation

16 See Ref. 3, p. 268.
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time exists whenever p(k,k’) only depends on the
angle 0 between k and k’, and is given by

1 as’
—=/(1—cos€)p(k,k’)———; (5.1)
T '

in this case there is no magnetoresistance effect. More
generally, a k-dependent relaxation time exists whenever
p1(k,k’)=0 and is given by

1 asS’
— Pol)= / pollk)—; (5.2)
'

7(k)

an example of this is the case u#=0, y=A=0 studied in
Sec. 4, where (see Appendix C)

1/7=(drmkoL/52) {1+ u(k 1t xD} . (5.3)

If, following Ziman,® we assume that we can use a
relaxation time given by (5.1) for arbitrary p(kk’),
we obtain, on substituting (3.4) into (5.1), an expres-
sion for 7 of the same form as (5.3), but with L and u
replaced by L’ and p’, where

L'=LA—3\—%), w'=@—)/A—5\—3). (54)
With this assumption, therefore, the anisotropy of
Pw is obtained by putting A=»=0, and replacing u by p’
in Eq. (3.9), so that the results are given by the curves
of Figs. 1 and 2 if the parameters are reinterpreted
appropriately. For example, the sets of values y=—15,
A=0, y=—230, and p=0, A=6, y=—6 in Fig. 3 corre-
spond to u'=—35/7 and p'=10, respectively, but the
curves are quite different from those for p=—35/7 and
p=10 in Fig. 2. The curve p=—15, A=15, »=—15 in
Fig. 3, however, also corresponds to p'=10, and is
similar to the u=10 curve in Fig. 2, as is corroborated
by the relative anisotropy curve shown in Fig. 1—the
broken curve b. This set of values of A\, u, » comes
much closer to being realizable with p(k,k’)>0 than
the other two sets, though all three are not in fact
allowed, and it is likely that the relaxation-time approxi-
mation is in fact quite good for permissible values of
N\, u, v, though it differs from the exact theory in
giving no anisotropy whenever »=3p.

6. CONCLUDING REMARKS

The discussion given here shows that, already, with
isotropic energy surfaces and minimum assumptions as
to the form of the scattering probability, the anisotropy
of the longitudinal magnetoresistance can show a con-
siderable variety of behavior. While measurements of
this effect by themselves cannot lead to a unique de-
termination of the individual coefficients in the expres-
sion for p(kk’), it should be possible, with adequate
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Fic. 3. Longitudinal magnetoresistance anisotropy with A, #0.

data, to place drastic limits on the possible forms of this
function. In a later paper we hope to study the extent
to which a fuller knowledge of the components of the
magnetoresistance tensor can lead to a more complete
determination of p(kk’).

To our knowledge there are, at present, no measure-
ments on single crystals of the alkali metals which
could be compared with the present theory. The
practical difficulties are to prepare sufficiently good
and pure specimens, and to obtain magnetic fields
large enough to ensure that saturation values of p
are measured. A theoretical difficulty in using the
present theory to analyze magnetoresistance data
comes from the magnetoresistive effects which arise
from nonsphericity of the Fermi surface, and which, if
appreciable, could largely mask the effects of interest
here. Nevertheless, it seems reasonable to conclude
that measurements of high-field magnetoresistance in
the alkalis could give some insight into the form of
the electron-scattering processes.
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APPENDIX A: PROOF THAT VARIOUS
MATRICES ARE NONSINGULAR

Consider the inequality

/ [ {(NM+Po) "+u(M'+Py)¢'}?

X (kk’)dS ol 0. (A1)
K )——2>0.

4 o W'

If ¢ does not vanish identically, this holds for all
real A and p, such that A24-u2#0, since p(kk’)>0,
and is nonzero over a finite part of the energy surface.
If ¢ is an odd function of k, (A1) is equivalent to

/ Po{(M+Po>-l¢}2§;+» [ [tar+roe

’

dasS dS
X(OU+PO k)= —=>0, (A2)
v 1Y

where —1<v=2u/(\2+p2)< 1. Now,
as
/ [o(M+Po)"'p—Pof (M +Po)"‘¢}2]‘h—
v

as
= f {M(M+Po)“1¢}(M+P0)_1¢h_

d as
VXH-— (PO 10}~

2 he

ds- —><[H{(M+Po) '9}?], (A3)

Zh'“’

since dS=vdS/v. For a closed surface, the right-hand
side of (A3) vanishes by Stokes’s theorem, and if the
energy surface intersects the Brillouin-zone boundary,
the right-hand side of (A3) again vanishes, since ¢ is
periodic in the reciprocal lattice. Thus (A2) can be
written

f ¢(M+Po)—lq£g+v f ] (r+re)

as ds
XA +PO)79 k) ———>0. (A4)
V 1Y
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Putting
N
¢=Z_:1 yigi()=(y|q), (A5)
(A4) gives
(9| 4+»ATBA|y)>0, (A6)

so long as the ¢/s are independent, where A7 is the
transposed matrix. Hence A-+vATBA is positive-
definite, and in particular 4 is positive-definite. Hence
AANT(AT4+vATBA)A" is also positive-definite, and
for y=—1 this is — A4 B, which is therefore nonsingular.
Similarly, putting ¢=x-v, »=0, it follows that § is
positive-definite, and so, therefore, is #=3§"1

In order to show I—AB+|W)-#-(S| B nonsingular,
it is convenient to separate from p,(k,k’) its dependence
on v, and to write, instead of (2.5),

P K)=v-@-v'+v- (8"
+(qo| )+ v'+<{g0| Bo| 90"},
where x-v+(y|go)=0 implies both x=0 and (y|=(0].

Then, putting ¢=(y|go)— (¥| So)-#7- v in (A4), we have,
instead of (A6),

(A7)

(| Do+vDoTBoDo| ¥)>0, (A8)

where D0=Ao—lW0>'7"<So‘, and Ao, IW0> and <Sol
are given by Egs. (2.11) and (2.17), with (go| in place
of (q| We conclude, as before, that Do+vDo"BoD,,
and in partlcular D,, are positive-definite, and so,
therefore, is I—DoBy. Now, if D=A— |W)-7-(S|, the
determinants of I— DBy and I— DB are equal; hence
I— DB is nonsingular.

APPENDIX B: ASYMPTOTIC FORM OF LONGI-
TUDINAL MAGNETORESISTANCE

Let 7" be any matrix of the form

7= ] (0 (+Pota) (B1)
= P 0, q o ’

where the integral is over a closed surface in k space.
For an element Ts of T" we have, using (3.2) and the
periodicity in ¢ of (M +Po) ¢,

— / ﬁa(k)—~ / qﬁ(da’)ex;){:c L g Po(¢")d¢”}d¢’

¢+2r 1 ¢’
7 e —_ P 1/ d¢/’}d¢’
1 N f¢ 45(8") xp{wc /¢ @)
-2 [ pa)— d : (B2)
W, h exp(2rPo/w;)—1
where . \
Po=— / Po(9)ds (B3)
2r Jo



155

denotes the average value of Py(k) around the orbit
considered. If Oa, Ob, and Ok are Cartesian axes with
Oh parallel to H, the component #; of k parallel to H
is constant for a particular orbit, and we have!”

dS /o= (m* /%) dlds, (B4)

where m* is the cyclotron mass. Hence, expanding
(B2) in powers of 1/w, and keeping only the leading
term, we obtain

gs dS 2m [ m*Pags
lim Tos= | poe —=— | —
H-o Po k2 Py

dkh’ (BS)

where the bars denote orbit averages as in (B3). Thus,
as H —w, T4 tends to a constant limit provided that
P and §g are both nonzero. However, if P, or ¢z
vanishes, T'os — 0 as H — 0, and, to obtain the leading
term in Top for large H, it is necessary to keep higher-
order terms in the expansion of (B2). In particular,
if a denotes any direction perpendicular to H, #,=0.
It is now easy to determine the asymptotic form of the
matrices #=§"1, S, W, and A defined by Egs. (2.14)
and (2.21), using the same arguments as in the theory
of Lifshitz, Azbel’, and Kaganov.'® It is found that,
referring to the coordinate system Oabk introduced
above, the limiting form of § is

s=|4/H* B/H C/H|
—B/H D/H* E/H|, (B6)
—C/H —E/H F J

where 4, B, C, D, E, and F are constants. Inverting
this, it follows that the components of 7 are all of
order 1 in H, except for the Hall components 74, and
7pa Which are of order H. Further, the components Sqs of
S are of order 1/H, except for a=%, when they are of
order 1; the components W,g of W are of order 1/H,
except for B=rh, when they are of order 1; and the
components of /i are all of order 1. The asymptotic form
of ¢ obtained from these results is the same as Eq.
(B6), which is the expression obtained when a time of
relaxation is assumed to exist; both are in agreement
with the general arguments of Lifshitz et al.'® The
quantity p. in Sec. 3 is the high-field limit of H-5- H/H?
=p, and, on writing down this component of (2.25)
and discarding all terms which are zero in the limit
H —x, Eq. (3.8) is obtained.

APPENDIX C: EVALUATION OF INTEGRALS FOR
A SPHERICAL FERMI SURFACE

If T'is given by (B1), and T, is defined as in (3.5), we
have from (B5), introducing spherical polar coordinates
ko, 0, and ¢ on the Fermi sphere with polar axis along H,

27rmko phqh
T,= / sinfdo ,
h? 0 P 0

17 See Ref. 3, p. 517.

(C1)
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where p;, and ¢ are the components of p and q parallel
to H.

The mean values required in the evaluatign of $e,
Swy Wa, and A, are 0= (fiko/m)in, 1, and Py, where
u is given by (3.7) and where, using (2.4) and (3.4)
and performing the elementary integrations over the
Fermi sphere,

Po=(dambko/#) L{1+p(k + x40}, (C2)
with
L=a¢+%as+%bs, and u=as/L. (c3)
If p is any vector with components p.la=zx, ¥, 2)
relative to the cubic axes, and if a, b, and h are ortho-
gonal unit vectors with h parallel to H, we have

Ph=P'h=Z Polla;

hence &, %3, and Py can immediately be obtained from
the formula

1 21
(Kan>av='2_‘ f (@a cosp sinf+-b, sing sinf-+ 4, cosf)dg
wJo

n/2 n!

,EO (n—2r)1227(r1)2

Xha" 2 (1—he?)" cos® 20 sin29, (C4)
where [$7] denotes the integral part of 1%. We obtain
kp=cosf, (C5)

@r=7% cosf(1—s4)—cos®0(3—3sy), (Co6)

_ damky 3 9 15
Py= Ll:l-l-p.l—(1+s4)+c0520(————s4)
h2 8 4 4
21 35
— cos40(—— ——S4) } :| , (C1N
8 8
where
54=Z hat. (CS)
Hence, from (2.14), (2.21), (B6), and (C1),
e%y?
=y —l=
S™ ¥ 47T3LII(M’S4) ’ (Cg)
Somir = 1
w="—W = ) C10
A 4L 2 M 4) ) ( )

A= (1/L)I5(u,s4) , (C11)
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where vo=1#%ko/m, and

x%dx
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Ii= ,
/0 14p{d(14s9)+2%(9/4— (15/4)s4)— x%(21/8— (35/8)s4)}

2x2(1—sg)—a4(3—3s4)

]2=/ dx
o 14+u{3(1+s9)+2%9/4— (15/4)ss)—x*(21/8—(35/8)s54) }
3t (1—s59) B—35s50)+ 23—

(9/4)x2(1—s54)2—

3=/o 14p{3(14-50)+a%(9/4— (15/4)s:) — x%(21/8—(35/8)s4)} ’

These integrals can be evaluated explicitly in terms
of elementary functions, but for general values of u and
s4 the resulting expressions are cumbersome and in
practice it is simpler to evaluate the integrals by
direct numerical integration.

APPENDIX D: SOME RESTRICTIONS ON THE
COEFFICIENTS IN p(k,k’)

The transition probability (3.4) must be non-negative
for all values of the variables k, and k,'. Consider the
special cases

(Kz;"u;"Z) = (1,0,0,) ) ("x/;"y/:’fz/) == (1;0:0) )
(Kﬁv:KII)KZ) = (17070) ) (Kiv’;KII,)KZI) = (0)1)0) ’

11
(KZ’KH;KZ)=<\7'§”\/_ )

( ) (1 1
KazyKyyKz) = \/.2.:\[_ )

(D1)
(D2)

(ko' oy sk ) = :l:(vl_ \/_) (D3)

(ks Ky k2 ) = :1:(% —1? )
(D4)

(1 11 (s )= (1 11
(KZ’KII:KZ)* \/34\/3‘:\/3_) y Kz Ky ,Kz \/_\/__\/_)
(DS)

( ) (1 1 1) ( )= (1 1 1)

KayKysKz) =\ —y—y— Kz Ky K =+

! V333 ' V33 V3
(D6)

Substituting these values into (3.4), we obtain the

conditions

a0+ 2(14‘]‘ b4:i: (62+ 264) 2 0 N (D7)

(C12)
(C13)
$54)?
(C14)
a0+2a,30, (D8)
@+ ast+1b,1(cotca) >0, (D9)
aot+ast3bi—1ea 20, (D10)
ao+3a4t+3bst3eit5(300+2¢4) 20,  (D11)
aot+2as+3bi—%eit3(3ca+2c) 20, (D12)
or, with L=a¢+2as+30s,

L{+4(7/5)u+30=(+20)} 20, (D13)
L{1+(7/5)u—30} 30, (D14)
L{1+3u—v50£3(A+2)} 20, (D15)
L{1+3u+30—17} 20, (D16)
L{1+4(1/15)u+3r33N2)}) 20,  (D17)
L{1+4(1/15)p—7£5(3N+2)} 20,  (D18)

where ), », u are given by (3.10) and
o=by/L, t=ei/L. (D19)

Equation (D13) implies that
L(1+(7/5)u+30) 20,

and this, together with (D14), gives

LQA+(7/5)u) 20. (D20)

Also, if (D17) and (D18) are to be simultaneously
satisfied,
L(1+(1/15)u) 20. (D21)

It follows from (D20) and (D21) that u cannot lie in
the interval (—15, —5/7).



