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Atomic Bethe-Goldstone Equations. II. The Ne Atom
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The nonrelativistic electronic energy of Ne('S) is computed by the variational solution of generalized
Bethe-Goldstone (BG) equations. The sum of all two-particle net energy increments (pair correlation ener-
gies) is —0.3822 atomic units (a.u.), or 97.3% of the empirical correlation energy. The three- and four-
particle net energy terms expected to be most important are computed and found to be smaller than 0.001
a.u. The computed pair correlation energies are analyzed in terms of symmetries induced in the BG equa-
tions, and are found to be represented well within the accuracy of the present calculations by the somewhat
smaller number of parameters needed to characterize the L and S eigenstates of all possible eight-particle
subsystems of the ten-electron Hartree-Pock reference state.

I. INTRODUCTION

'HIS paper reports the results of a calculation of
the nonrelativistic electronic correlation energy of

the neon atom in its 'S ground state. The method used,
variational solution of Bethe-Goldstone (BG) equations,
has been applied previously to calculations of the corre-
lation energy' of Be and of the energy and hyperfine
structure constant of l.i('S) and N('S).' '

The method of superposition of configurations was
used by Bernal and Boys4 and by Donath' to compute,
respectively, —0.1514 and —0.2008 atomic units (a.u.)
t 2Ry(Ne) j for the correlation energy of Ne(is). These
results are to be compared with Clementi's empirical
value of the Ne correlation energy, —0.393 a.u. ' Both of
these calculations attempted to solve the Schrodinger
equation directly as a 10-particle problem.

In the present work, a similar variational method
(superposition of configurations) is applied in turn to a
sequence of mph-order BG equations. This terminology
describes the time-independent Schrodinger equation
for e particles embedded in the Fermi sea of N —n
particles, the remainder of an X-particle system. The
Fermi sea is taken to be that described by the X
occupied orbitals of the ground-state Hartree-Fock
(HF) wave function. This definition of higher-order
BG equations makes it possible to compute the net
increments of energy (or of any physical quantity ex-
pressed as an expectation value) in successively higher
orders, terminating the calculations when the net in-
crements are found to be negligible. The net increments
themselves become well-defined quantities that can be
computed by a variety of methods, making it possible

to reach a definitive answer to questions regarding their
importance in any particular context.
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The second-order BG equations, based on the work
of Brueckner, ' have been thoroughly discussed in the
context of nuclear theory. The "exact pair" equations
of Sinanoglu, ' essentially the same as the second-order
BG equations, " have been used recently for atomic-
wave-function calculations. Despite some slight dif-
ferences in the formalism, the 2s'pair correlation energy
computed by McKoy and Sinanoglu" for Ne should be
identified with the second-order net correlation energy
increment e(2sP, 2sn) computed here. In the present
work, all independent second-order terms are computed,
as well as some of the higher-order terms expected to be
most important.

II. OUTLINE OF COMPUTATIO5'AL METHOD

A preliminary matrix HF calculation" is carried out.
This determines an orthonormal set of orbital functions,
each expressed as the product of a radial function and a
spherical harmonic and spin eigenfunction. The radial
factors are linear combinations of a set of basis functions
of the form „, ( „) (&)

multiplied by a normalizing factor. The HF calculation
divides the orthonormal set of orbitals into two sets:
X orbitals ttb; occupied in a single determinant 'S wave

C,=dety, (l) . y. (sit), (2)

and the remaining orbitals P„unoccupied in the refer-
ence state Co. Members of the orthonormal set of Slater
determinants constructed by replacing occupied orbitals
ijk of Co by unoccupied orbitals abc ~ ~ will be de-
noted by C;;&...'~'". For a given set of basis orbitals,
a BG equation of order e is solved approximately by
minimizing the energy mean value of a trial function

4';;s...=Co++,C,'c + +Q,sc'; c;;"+ (3)
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where the only occupied orbital indices ijk ~ ~ that
occur as subscripts are those in a speci6ed set of e
mdices.

The net increment of energy, or of any other physical
expectation value, is obtained by subtracting from the
computed gross increment,

the sum of all net increments of lower order with indices
in the set ijk . This deinition implies that the sum of
all net increments up to order E is the exact expectation
value, to the accuracy allowed by an initial choice of
basis orbitals.

After considerable exploration of other possibilities,
it was found that a relatively simple choice of basis
orbital parameters gives results for pair correlation
energies apparently accurate to 0.001 a.u. , the criterion
used in this work. The "double-zeta" basis set used
by Clementi" for approximate HF calculations is aug-
mented by two series of orbitals with angular quantum
number / up to 3 and e up to 5. Each series has a single
exponent, f'x ——21.63 for E-shell excitations and fr,
=4.214 for L-shell excitations. These exponents were
determined by a series of preliminary calculations.

Specific basis sets used for the results reported here
will be denoted by symbols such as E-8632 or L-6421..
Here E-8632 denotes a basis set with double-zeta ex-
ponents 8.9141, 12.3545 for 1s; 2.1839, 3.4921 for 2s;
2.0514, 4.6748 for 2p; and augmented. by exponent 21.63
for 2s, 3s, 4s, Ss; 2p, 3p, 4p, Sp; 3d, 4d, 5d; 4f, Sf.
EL-8642 denotes the double-zeta set augmented by
exponents 21.63 for 2s, 3s; 4.214 for 3s, 4s; 21.63 for 2p,
3p; 4.214 for 3p, 4p; 4.214 and 21.63 for 3d, 4d; 4.214
and 21.63 for 4f The basis .set L-6421 is double-zeta
plus exponent 4.214 for 3s, 4s; 3p, 4p; 3d, 4d; 4f.

III. SECOND-ORDER BETHE-GOLDSTONE
EQUATIONS

The first-order net energy increments are negligible,
because of the use of a preliminary matrix HF calcu-
lation. The second-order net increments, or pair corre-
lation energies, are listed in Table I. The 1s' term was
computed with basis set E-8642, described in Sec. II.
The E,L terms were computed with basis set EL-8642,
and the L,L terms with L-6421.

The only comparable result published previously is the
2s' pair correlation energy computed by McKoy and
Sinanoglu" to be —0.272 eV or —0.0100 a.u. , using a
variational trial function that included relative co-
ordinates. The present result for e(2sP, 2sn) is —0.0108
a.u. The very substantial reduction of this quantity
from its value in Be, —0.0454 a.u. ,

' can be attributed to
the fact that the nearly degenerate 2p orbitals that
interact strongly with 2s' in Be are no longer available
as unoccupied orbitals in Ne."'

"E.Clementi, J. Chem. Phys. 40, 1944 (1964)."R.K. Nesbet, J. Chem. Phys. 40, 3619 (1964).

TABLE I. Pair correlation energies e;; in Ne( S}.Units are Har-
tree atomic units, a.u. (Ne}, such that the electron reduced mass in
Ne is unity. To convert to cm ', multiply by 0.2194686)&10'.

~ ~

$)j
isp, isa

isp, 2sp
isp)2$cg
isp)2ppp
isp)2ppa

Weight e;;

—0.039932

—0.000469—0.002099—0.001481—0.001834

X, L subtotal —0.025026

2sp, 2$0;
2sp, 2p Ip
2sp)2ppp
2sP)2P Ia
2sp)2pp~
2p Ip, 2ppp
2p Ip, 2p1p
2p Ip, 2p Io.'

2P IP)2Pp(x
2p Ip)2p]cx
2ppp, 2ppce

L, L subtotal

—0.010834—0.003294—0.003302—0.010283—0.010317—0.010906—0.010927—0.016498—0.013732—0.022837—0.025813

—0.317269

g e;;, all pairs —0.382227

The calculations by Donath' included only configu-
rations representing L-shell excitations. His computed
correlation energy, —0.2008 a.u. , can be compared with
the total L-shell correlation energy given in Table I,—0.3173 a,u. This improvement is due to the very
substantial increase in the number of excited con6gu-
rations included in the present work.

The net energy increments e;; listed in Table I are all
computed independently. The programs used take ac-
count only of quantum numbers MI„M&, and parity,
and the only obvious symmetry in the general BG
equation is separate sign reversal of all quantum
numbers m& or m, . The symmetry leads to the weights
indicated in Table I for individual net energy incre-
ments. The near identity of some of these numbers arises
from the underlying spherical symmetry of the Hamil-
tonian. Since the reference state Slater determinant C'0

is pure '5, if the X—e particle Fermi sea is an eigenstate
of L' and S', with quantum numbers L and 5, the corre-
sponding BG equation leads to an e-particle wave
function with the same quantum numbers. This is a
consequence of the fact that if two subsystems couple
to an invariant state, they must have the same quantum
numbers. For example, in the present calculations, the
variational function %'(1sP,1') is a pure 'S state to the
full accuracy of the matrix diagonalization program,
because the X nparticle —Fermi sea, 2s'2p' in this
case, is a 'S closed shell con6guration.

In the more general case, the E—rs particle Fermi sea
will be a composite of states with several different values
of (L,S). Because of the 'S coupling of the complete
wave function, the e-particle BG equation will be a
composite of these same (L,S) values. For example, since
the coniguration. 1s' 2s' 2P4 has three substates, sP, 'D,
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TABLE II. Parametrization of 2p2 pair correlation energies e;;.
The values of e('P), e('D), and e('S) are listed in Table III.

2p Ip,2pop

2p Ip)2plp
2p Ip)2p Icx

2p Ip, 2po~

2p Ip,2pln

2pop) 2pon

Coefficient of
e('Z) e(&D) e(&S) e;;, a.u. (Ne)

—0.010913
—0.010913
—0.016498
—0.013706
—0.022898
—0.025691

TABLE III. Pair correlation parameters for Ne('S),
in Hartree atomic units, a.u. (Ne).

Pair

is'('S)
is2s('S)
is2s('S)
is2p('P)
is2p('P)
2s'('s)

Value

—0.039932
—0.000469
—0.003729
—0.001481
—0.002187
—0.010834

Pair

2s2p(3P)
2s2p('p)
2p2(3P)
2p2(ID)
2pp(lg)

Value

—0.003297
—0.017292
—0.010913
—0.016498
—0.044076

and 'S, only three independent energy parameters
should be needed to describe the six 2p' pair correlation
energies listed in Table I. The weights with which these
occur in any PP state are well known, from analysis of
the equivalent configurations p' or p', and lead to the
coeScients listed in Table II. The parametrized values
of e;;, in the last column of Table II, agree with the
directly computed values shown in Table I to well within
the expected accuracy of the present calculations.

The full list of parameters needed to determine all
of the pair correlation energies e;; in Ne is given in
Table III. Except for the 2p' parameters, only the
1s2p and 2s2p parameters are not uniquely determined
by the data in Table I.In these cases, a weighted average
of the computed energies was used to determine the
parameters. Because of the close agreement between
computed values of e(2sP, 2p ~P) and e(2sP, 2ppP), which
should both be equal and have the value —0.003297
a.u. , and of e(2sP, 2p ~n) and e(2sP, 2ppa.),both of which
should equal —0.010295 a.u. , when expressed in terms
of the PI' and 'I' 2s2P parameters, separate computation
of e(1sp, 2p p) and e(1sp, 2p ~n) was not carried out.
It was considered justified to set these quantities equal
to e(1sp, 2ppp) and e(1sp, 2ppn), respectively, as indicated
in Table I.

IV. THIRD- AND FOURTH-ORDER EQUATIONS

In calculations' on Be it was found that the sum of all
third-order net correlation energy increments e;;I, was
somewhat less than 0.001 a.u. Because of the number
of these terms for Ne, it was not feasible to compute all
of them. Since these terms represent interference be-
tween the various second-order BG equations, it was
anticipated that an especially large effect might arise
from the mixing of excitations of orbitals 2sp, 2ppp, and
2pgx. The pair term involving the last two of these is
the largest one computed for L-shell orbitals. With the
basis set L-64 (s and p orbitals only), the net energy
increment e(2sp, 2ppp, 2ppa) was computed to be 0.000261
a.u. If this is the largest such term, it appears to be
justified to omit the third-order terms in work of the
present accuracy.

As a further check of this conclusion, the fourth-
order energy increment e(2sp, 2sn, 2ppp, 2ppn) was com-
puted w'ith the same basis set, but with the additional
constraint of omitting the highest energy s and p orbital
from the unoccupied HF set. The computed value is
0.000455 a.u. Since the sign is positive, the magnitude
of this quantity could be reduced by an improved
calculation.

V. DISCUSSION

The sum of all 45 two-particle net energy increments,
given in Table I, is —0.382227 a.u. This is 97.3%%u~ of the
empirical correlation energy, —0.393 a.u. , estimated by
Clementi. ' Since the whole sequence of successive ioni-
zation potentials is not known experimentally, this
6gure is based on extrapolations of relativistic and non-
relativistic ionization potentials by Scherr et al."The
computed HF energy is then subtracted from the ex-
trapolated total nonrelativistic energy. It is interesting
to note that the difference between the present com-
puted correlation energy and Clementi's estimate is
of the same order of magnitude as the Lamb shift
(radiative) correction, estimated to be 0.0086 a.u."
However, the present calculations are not quite accurate
enough to give any information about the radiative
correction, since each of the 45 pair correlation terms
could have a residual error up to 0.001 a.u. The sum of
three-particle terms is also indicated to be of this order
of magnitude.
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