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Ultrasonic Attenuation in the Heisenberg Paramagnet*
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Two models which describe the interaction between the spin system and the lattice are presented for
examining the propagation of sound waves in ferromagnetic insulators. In particular, expressions for the
ultrasonic attenuation coeAicient at high temperatures and near the Curie point are obtained in terms of
time-dependent correlation functions. The attenuation coe%cient is found to be proportional to the square
of the phonon frequency and to increase rapidly in the vicinity of the Curie point.

attenuation is proportional to &v'/(T T,) for te—mpera-
tures near the critical point T, and for a spin-phonon
interaction which is linear in the phonon-field operator.
The quantity ~ is the angular frequency of the sound
wave; that is to say, cv=c~ q~, where c is the speed of
sound, q is the phonon wave vector (qd((1), and d is
the distance between lattice sites. Papoular considers,
for the ferromagnetic case, an interaction Hamiltonian
which is quadratic in both the spin and the phonon
variables. ' He examines only the equal time correla-
tions, expresses the four spin correlations as a product
of equal time pair correlations, and computes the con-
tribution due to the quasielastic scattering of phonons
by the spin system to the ultrasonic attenuation. ' His
results predict that the ultrasonic attenuation is pro-
portional to ~'/(T —T,)'~' for a spin-phonon interaction
which is quadratic in the phonon-field operators. The
few experimental measurements' ' are not sufficient to
resolve the above theoretical discrepancies. An analysis
of the data of Neighbours et a/. ' reveals that the ultra-
sonic attenuation in the antiferromagnet MnF~ is ap-
proximately proportional to co near the transition point.
However, even in the paramagnetic state the antiferro-
magnet difters substantially from the ferromagnet near
the transition point and consequently their results give
us little additional understanding of the ferromagnetic
problem. The preliminary experiments of Luthi' on the
ferromagnetic metal Gd show that the ultrasonic at-
tenuation is proportional to co' near the transition point.
This result is encouraging even though care must be
exercised in applying such results to ferromagnetic
insulators.

Searing in mind that a better theory for the Heisen-
berg spin system will hopefully be developed, we shall
formulate the problem in terms of the exact four-spin
correlation functions. We shall assume that the spin-
phonon interaction is sufficiently weak and thereby
shall perform the calculation by computing the "polari-

I. INTRODUCTION

E shall study in this paper the ultrasonic attenua-
tion of sound waves propagating in a Heisenberg

paramagnet for temperatures near and above the transi-
tion point (a ferromagnetic insulator in the paramag-
netic state). The thermal fluctuations of the spins be-
come large near the transition point (critical fluctua-
tions)' and may produce an appreciable scattering of
the phonons whenever a significant coupling between
the spins and the phonons exists. The ultrasonic at-
tenuation due to the spin-phonon interaction is a
mechanism with which we may probe systems exhibiting
second-order phase transitions. We shall show that the
part of the four-spin correlation function which gives
the large distance behavior of the system contains a
description of the ultrasonic attenuation in magnetic
systems. However, this part of the four-spin correlation
function is the most difficult part to compute because
it refers to a situation in which the behavior of the sys-
tem is dominated by many collisions. In the language
of perturbation theory, the theory of ultrasonic attenua-
tion in the Heisenberg paramagnet requires extensive
resummation of diagrams or equivalently integral
equations.

Other authors have examined the ultrasonic attenua-
tion near the magnetic critical point. ' ' Their theories
differ most profoundly in the treatment of the four-spin
correlations. Tani and Mori' eliminate the time integral
of this correlation function with the aid of the continued
fraction representation. 4 They then consider only the
temperature dependence of those correlations which are
diagonal in the phonon wave vector and use the high-
temperature values of the nondiagonal correlations for
all temperatures. They conclude that the ultrasonic
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zation operator" for the phonon propagator to lowest
order in the spin-phonon interactioi1. ~

We shall employ two simple models to characterize
the interactions between the spin system and the lattice.
One model describes the volume magnetostriction which
obtains from an expansion of the exchange integral in
powers of the ionic displacements, and the other model
describes the magnetostriction associated with a single
ion.

As other authors have done, we shall introduce an
approximation for the four-spin correlation function.
We shall factorize the four-spin correlation function
into terms containing products of time-dependent and
of time-independent pair correlation functions. Refer-
ence 8 contains a discussion of the spin-diffusion co-
eKcient based upon the same approximation for the
four-spin correlation function. We 6nd that those terms
which contain products of time-independent (equal
time) pair correlations do not contribute to the acoustic
attenuation or to the spin diffusion. Because the di6er-
ences among the various theoretical calculations of
these quantities arise mostly from the approximate
solution of the spin problem, we include in Appendix B
a discussion of the physics contained in the factorization
procedure. We shall conclude that the ultrasonic at-
tenuation in the ferromagnetic insulator in the para-
magnetic state is proportional to aPJ (X,D), where Ii is
a function of the static susceptibility X(8) and the spin
diffusion coefficient D(J3). The parameter P is the
inverse temperature measured in energy units, i.e.,
P= (1/kT), where k is Boltzmann's constant.

Until a more rigorous treatment of the three-dimen-
sional Heisenberg model is developed for temperatures
near the transition point, the present calculations must
be considered preliminary and the present results must
be viewed with caution for those regions where the
approximations are questionable.

II. FORMULATION

A. Hamiltonians

The total Hamiltonian,

+=+syin++phonon++int ++int

contains the physical description of the ferromagnetic
insulator. For the spin part of the crystal, we shall
adopt the Heisenberg model of magnetism which at-
tributes a localized spin to each site of the crystal
lattice,

Z„;,= ——', P J(n—n')S(n, t) S(a', i,').
a, a'

~ E. Pytte, Ann. Phys. (N. Y.) 32, 377 (1965).In this paper the
"polarization operator" is computed rigorously in the low-
temperature region where the Holstein-Primakoff approximation
is valid. For all other temperature regions, the spin system is
treated in the random-phase approximation.

H. S.Bennett and P. C. Martin, Phys. Rev. 138, A608 (1965).

The spin operator in the Heisenberg representation for
the localized spin at site e and at time t is represented
by S(e,t). The exchange interaction J(n n—') describes
the interaction between the spin at site u and the spin
at site a'. We shall use the convention that J(0)=0 so
that we may extend the double summation over all
lattice sites, including the term e=e'. We shall treat
in this paper only the ferromagnetic case for which
J(e—e')) 0.

The spin operators obey the equal-time commutation
relations

and
[S,(e,t),S„(n',t)7= ib, S,(n, t), etc.,

[S.(n, t),S,(e',t)7=0, etc.,

The momentum E,(e,f) =MBU, (e,t)/83 is conjugate to
the ionic displacement U;(e, t), and M is the mass of
the ion. We obtain the tensor C;; from the potential
energy of the ions V, namely,

Cg(e, n') = V
BU;(a, t) 8UJ(a', 3) iv& o

where i and j refer to the Cartesian vector components;
i, j=x, y, or s. The dynamical variables for the phonon
Hamiltonian satisfy the commutation relations,

PU, (n, t),P;(n', t)7= i', ,,5....
We express the interaction between the spin and the

phonons as the sum of two terms,

+int +int ++int

The first term II; &~ describes the volume magneto-
striction, while the second term H;„&8 describes the
magnetostriction associated with a single ion. We as-
sume that the electrons are tightly bound to their ion
cores and move rigidly with the ions as the ions oscillate
about their equilibrium positions 0,. Thus, the exchange
integral depends upon the instantaneous positions of
the ions. We also assume that the ionic displacements
are small compared to the lattice spacing. We then ob-
tain the volume magnetostriction Hamiltonian by ex-
panding the exchange integral about the equilibrium
sites n in powers of the displacements U, (n, i!),

B; iv ——,
' p {U;(e,i!)—U, (n', t)}——(v.);J(e—u')

n, a'

X S(n, i,') .S(a', i'). (10)

and satisfy the subsidiary condition,

S(u, i',) S(a,t) =S(S+1),
where 5 is the spin quantum number.

For the phonon part of the crystal, we shall use the
harmonic approximation to treat the ionic interaction,

P'(u, t)
H,h... =Q +-', P U, (e, t)C„(n,a')U;(n', t). (6)

a 2~ a a'
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We consider the gradient of the exchange integral,
which determines the strength of the interaction, as an
experimental parameter and accordingly introduce the
coupling function

For a lattice with cubic symmetry, the single ion
magnetostriction Hamiltonian assumes the form

H;„,e= Gii P{e„(n,t)[S,'(n, t) —-', (S„'(n,t)+S,'(n, t))]

+ e„„(n,t)[$„'(e,t) —-', (S,'(, t)+S,'(,t))]
+e„(e,t)[$,'(e, t) ——,'(S,'(n, t)+S„'(n,t))]} (12)

+G44+{e i(e t)[$,(n, t)$,(n, t)+Sy(n, t)$.(e,t)]

+e„,(e, t)[$„(e,t)S, (n, t)+S,(n, t)S„(e,t)]

+e,.(n, t)[S.(e,t)S,(n, t)+S,(n, t)S,(e,t)]}.
We may express the strain components e;, (n, t) in terms
of the Fourier transform of the phonon displacement
operator U, (q, t),

Because the operators U; and I', commute with all the
spin operators S;, we take the trace over the direct
product space of the in'.nite dimensional space associ-
ated with the lattice operators U; and I", and the finite
dimensional space associated with the spins S; at each
site.

We shall discuss the acoustic properties of the system
in terms of the time-ordered lattice displacement corre-
lation function (phonon Green's function),

(18)

where ( )+ denotes the Wick time-ordering operation.
When we restrict all times to the interval 0&t& —ihp,
the correlation function (18) satisfies the time boundary
condition,

D~i(e, t; n', t') =D,)(n, t+ihp; n', t').

The time periodic condition (19) and the invari-
ance of the equilibrium system under translation
through a lattice vector and under time translation
allow us to express functions in terms of Fourier series
representations:

U, (q, t) =P e-'~'U, (n, t) ~ (13) D;, (e, t; n', t')

namely,
z

e,, (e, t) = P'{q-;U, (q, t)+q;U, (q, t)}e*& . (14)
2

The prime indicates that we sum over only those wave
vectors q which lie in the erst Brillouin zone. The
quantities G» and G44 are temperature-independent
coupling constants. We may also write Eq. (12) in a
more compact way,

H; =i g P' G;,q, U(q, t)F,,[$( tn)]e' 'i(15).
a q

The form (15) is also valid for more general crystal
structures. We obtain G;; and P„by comparing Eq.
(15) with Eqs. (12) and (14). A special case arises for
the single-ion magnetostriction when S=-,' and we shall
restrict our present calculation of this term to the cases
for which S)-,'.

We obtain the equations of motion for any of the
operators U;, I';, and S;, which are all in the Heisenberg
representation,

iit(()A/()t) =[A,H], (16)

by using the commutation relations for the respective
operators. The operator A is any member of the set
{A}=U;, F,, and S,.

B. Correlation Functions

When the system is in thermodynamic equilibrium,
we may compute the thermal expectation value of an
operator X by using the canonical ensemble,

82

Dg(e, t; e', t'—)———Q C,),(e,n")Di„(e",t; n', t')

1 Z=—lI "t) 8(t—t')+—P Q (n —e")
3f M~"

X((S(n,t).S(n",t)U, (n', t'))+).

(21)

We show in Appendix A that the last term of Eq. (21)
becomes, in lowest-order perturbation theory,

;C—C P Cy —C2

dt((S(e, t) S(e",t)S(ni, t) S(n2, t))+)

P' P e(e (~—~')—(~.(i—v)D . .(q. ~ ) (20)s (—ihp) ~

where q is the wave vector, E is the total number of
sites in the lattice, ~,=i(m.u/AP), and ) includes zero
and all positive and negative even integers.

We assume that either the volume or the single-ion
magnetostrictive interaction dominates for a given solid
and we neglect any cross terms between these two types
of spin-phonon interactions. We consider erst the vol-
ume magnetostrictive interaction (10). The commuta-
tion relation (8) and the operator equation of motion
(16) lead to an equation of motion for the phonon
function,

(X)=Tr(e—~~X)/Tr(e ~~) (17) X[Di,(ei, t; n', t') Dg„(e2, t; e', t')]—, (22)
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where we now evaluate the thermal expectation values
in the absence of the spin-phonon interaction. In addi-
tion, the phonon function contains a trace over only the
states associated with H~h, „, and the spin function
contains a trace over only the states associated with
+spin

The Fourier space transform of the equation of mo-
tion for the phonon function theo becomes to the lowest
order in the coupling Q, (e—n'),

1
D'—(i—q t—t') ——C'4(q)Dk (q t—t')= —S*ib(t t')

BP M 3f

dtP4 (q t—t)D4 (q, t t'), —(23)

where the kernel in Eq. (23) is

(u(X, q) =40(X,q)+Re —i Im
240(X,q)

e;I';,e,

240(X,q)

Thus, the phonons interacting with the spin-system
experience a frequency shift,

functions of complex s except on the real axis. ' When we
approach the real axis from above, we may define the
real and the imaginary parts of I';; by the relation"

lim P,, (q;(u+ie) =Re{P i.(q,id)}

i Im{—P;i(q,~)}. (28)

The singularities of D;,(q; s) contain a description
of the dominant excitation modes in the system. In
particular, the poles of Eq. (27) occur to lowest order
in the spin-phonon coupling at the points,

aiog„q) =Re
4:;(X,q)P;, Lq; co(X,q)]e;(X,q)

2&0(X,q)
(30)

)( (S
—iq ~ a S

—iq a ) (~iq ~ ai Siq a4)

X((S(,t) S( ', t)S(,t) S(,t)) ). (24)

The corresponding kernel for the single-ion magneto-
strictive interaction (12) has the form

and a damping

~'(l, q)P* Lq; ~(l,q) 3'(~,q)
I'(X,q) = Im . (31)

2co P,q)

By convention, the acoustic attenuation coefficient has
the form

P (q, t—t)= . q&q„G,iG;—~—g e ' ' nP, q) = {I(~,q)/c(~) }, (32)

where c(X) is the speed of sound for a polarization of
X((P;4(S(4r, t))F,„(S(nr,t)))~). (25) the type X.

In both cases the kernels ("polarization operators")
depend on four-spin correlation functions.

Solving the secular equation which results when
P,, =O in Eq. (23) gives us the force constants C,, (q)
in terms of the eigenfrequencies iq(X, q) and the polariza-
tion vectors e, (X,q),

1—C,,(q) =P ~&(X,q)e, (X,q)e, (X,q). (2&)

Inserting Eq. (26) into Eq. (23) we express the Fourier
series coefficient D,,(q; &a„), which appears in Eq. (20),
in terms of the eigenfrequencies, the polarization vec-
tors, and the Fourier series coefljcients P;,(q; ~„) of
either kernel (24) or kernel (25);

D'~(q, ~.)

C. Approximate Spin-Correlation Functions

The kernel P;;(q, t—t) depends upon the four-spin
correlation function,

f4(n, n', er, n2, t- t)
= ((S,(n, t)S, (n', t)Si, (e&, t)Si(44&, t))+) (33).

We note that e= e' and e~= e2 for the single-ion mag-
netostriction and that i=j and k=l for the volume
magnetostrictive interaction. Because we know the
exact solution to the three-dimensional Heisenberg
Hamiltonian for only zero and infinite temperatures,
we must resort to approximation procedures for finite
temperatures. " Following the procedure presented in
Sec. III of Ref. 8, we approximate the spin function
(33) by the sum of all possible factorizations in terms
of lower-order correlation functions. Since we restrict

e;(x,q)e;(x, q) 9 L. Kadanoff and P. C. Martin, Ann. Phys. {N.V.) 24, 419
M ~ 40„—id (X,q) —ei, (X,q) i, i(q; co„)ei(lI,,q)M —

GO
— I GO

{1963).
'0 We have the relation

We obtain in this way a relation between the Fourier
series coefBcient of the phonon function D;; and the
kernel I',; on the set of points co„. In addition, the func-
tion P,,(q; s) and the function D,, (q; s) are analytic

1 =1lim . =P—wimb{co),
g~p+ 67+16 M

where P here represents the principal value.
M. Wortis, Phys. Rev. 138, A1126 {1965);G. S. Rushbrooke

and D. S. Wood, Proc. Phys. Soc. {London) 68A, 1161 (1955).
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the present calculations to the paramagnetic region in
the absence of any external magnetic field, the quantity
(S;(e,t)) is equal to zero and we therefore approximate
the four-spin correlation function as a sum of products
of all possible pair correlations:

Then, as usual, using the fact that

(39)

((S,(e,t)S,(a', t)S&(ei, i)Si (nm, t))i)
=(S,(,~)S,( ',~))(S,( „i)S,( „i))
+((S,(e,t)S&(ni, t) )+)((S,(e', t)Si (a2, t))+)

+((S,(,t)S (,i))„)((S,( ', t)S (,t)) ). (34)

When we substitute (34) into the expressions (24) and
(25) for the kernel P;;, that portion of the sum contain-
ing all the equal-time correlations is zero and only
terms arising from the last two terms of factorization
(34) remain. Furthermore, the correlation function

((S,(n, f)S,(n', t'))+) for the no external-field paramag-
netic region is zero unlessi =j.We have for an isotropic
Heisenberg Hamiltonian,

((S,(n, t)S;(e',t'))+) =5;,,M2(e, t; n', t'), (35)

where, for example,

M2(n, t; n', t') = ((S,(n, t)S, (n', t'))+). (36)

In Appendix B, we show that the factorization (34)
is exact at t= t and PJ=0 and discuss the physics which
the factorization contains. The factorization is an ap-
proximation to the exact four-spin function for finite
temperatures and f&t and therefore is always subject
to criticism. However, we wish to emphasize that the
factorization maintains the correct symmetry prop-
erties of the kernel with respect to the frequency co and
the wave vector q. Hence, we shall be able to answer
rigorously the question as to whether the attenuation
coefficient is an even or an odd function of co and of q.

III. ATTENUATION COEFFICIENTS

Continuing our analysis, we substitute the factoriza-
tion (34) into the expression for the kernel P;;(q, t—i)
and compute the Fourier coefhcients P;;(q; &o,). By
introducing the effective coupling function yi (k,q), we
write the expressions for P„(q; co„) in the genera, l form

(—i)
e'(~, q)Pe(q; ~.)e~(lI, q) = 2' 2 v" (k, q)

ME( Np) ~—

where n(&o)=/exp(Pko) —1] ', we perform the sum-
mation over i' in Eq. (37):

e'(~, q)P' (q,~.)e (l,q)

2' 7"(k, q)
SIÃ ~

Applying the prescription (28) to Eq. (40) yields the
imaginary part of e, (X,q)P;;(q, ~+ie)e, (X,q):

1m{e;(X,q)P, ;(q,(a)e;(X,q) }
+"do)'

x"(k,co')x"(k—q, ca' —a))2' v~'(k, q)

Aflak

~

XLn(o)') —n(o)' —(o)]. (41)

Reference 8 contains an evaluation of the integral
appearing in Eq. (41) for the region phrs«1. The
present calculations also satisfy the condition P~&&1.
We restrict the calculations to the paramagnetic region
p&p, and consider the wave vector to approach zero.
The energy Puo of the phonon is Acq and the condition
P,keg«1 is valid for sufficiently small q. Because the
density of states factor of Eq. (41) has the limit

n(co') —n ((o'—ar) =—phd)(n ((v') ]'ee" '
(42)

x"(q,&o) =x(q,0)Dq'&o/L(a'+ (Dq')'], (43)

where D is the temperature-dependent diffusion co-
efficient and x(q,0) is the wave vector-dependent
susceptibility

for small enough co, the low-frequency behavior of the
spectral weight function contributes most significantly
to the frequency integral. Following Ref. 8, we use the
low frequency, small wave vector form of the spectral
weight function:

XM2(k; co„.)Mp(k —q; (o„.—co„), (37) x(q, O) =
+ d(o x"(q,a))

(44)

where M2(k;ra, ) is the Fourier series coefficient for the
spin pair-correlation function (36) and where the details
of the coupling function depend upon which of the two
spin phonon interactions we use.

It is convenient to express the coefficient M2(k; cu„)

in terms of its spectral weight function, '

We shall use the effective held Lrandom-phase approxi-
mation (RPA)] form for the q and. temperature de-
pendence of x(q,0),

x(q,0; RPA) =x(0,0)/L1+x(0,0)j(q)]. (45)

+"des' x"(k,co')

M2(k; a„)=2
2s (a)' —(u„)

(3g)
We write the interaction transform in the form

j(q) =I(0)—I(q), (46)
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where

I(q) =Z e".j(.),
and where X(0,0)—=X is the static susceptibility. At high
temperatures the expression (45) is exact. The spectral
weight function (43) contains the phenomenological
assumption that a di6'usion equation for the spin mag-
netization characterizes the long time, fO&r=(k/J),
large distance, r))d, behavior of the system.

Inserting the low-frequency spectral function (43)
into Kq. (41) produces the result

Im{e;P„q)Pg(q,co)e, (X,q)}

X'(o (Dp+Dr)[&o'+(Dp —Dg)'j
2'v"(k, q)

PAMX " (oF+DpP DP]'+4D—P(v'

The effective coupling coefficient for a longitudinal
phonon propagating along one of the crystal axes, e
=(q/g)=z, reduces in the small g limit to the
expression

y"(k&q) =6Q'd'q'cos'kid, (53)

where p, is the cosine of the angle between k and q= qa.
The effective coupling coeKcient for the single-ion
interaction assumes under the same conditions as Eq.
(53) the form

y&'(k, q) =3G„y. (54)

In order to evaluate the summation in expression
(48) we erst introduce a simpli6cation concerning the
lattice structure. We replace the discrete sunnnation
over the first Brillouin zone by an integral over the
Debye zone;

(55)
where Dp=D(k —q)' and D& ——Dk'. Because only small
wave vector acoustic phonons propagate easily in a
lattice, we shall evaluate the summation in the limit
of small q. Acoustic phonons typically have wave vectors

q 1.0 'qD, where q& is the Debye wave vector, qD=d '.
Before we may proceed further, we require the form

of the coupling y"(k,«) and the exchange transform
j(k). We limit the discussion to the case of a simple
cubic lattice having only nearest-neighbor exchange
interactions. Also, since we are investigating the low
frequency, small wave vector results of Eq. (48), we
need the above two functions only in the limit of small
wave vectors. The exchange transform for the above
case becomes

where p=cose and where qn
——(6m'/e)"' and e=d' for

a simple cubic lattice. Next we write that part of the
integrand of Eq. (48) between the curly brackets in
terms of functions which are even and odd in p, , i.e.,

{".}(~)=p[{"}(~)+{"}(—~)j
+-'[{ }(p)—{ .}(—p)] (56)

=F.6)+Fpb)
where F,(p) =F,(—p) and Fp(p) = —Fp( —p). Since the
coupling p}2 is an even function of p, , only the term
F,(p) contributes. The dominant contribution to the
integral of Eq. (48) comes from the region of small k
and thus for convenience in performing the angular
integration over p, we approximate the cos2kpd factor
of Eq. (53) by 1.The additional restraints that

j(k)=I(0)—I(k) =2J g(1—cosk;d) (49)

where i =x, y, and s, and where d is the lattice constant.
For small values of k we write (57)

(58)

2d2))q2d2

a)'»D'q'(50)j(k)=Jd'k'.

1 qD 2m' +1
&&[1+Xj(k)7 '[1+Xj(k—«)j ', (48)»m —p ( ~ ~ ) —& qpJq @ J ( ~ ~ ~ )

(2m') p p

Comparing Eq. (24) and Kq. (34) gives us the effective
coupling coefficient for the volume magnetostrictive
interaction,

7"(k,q) =—(l){(e'(~,«)[Q;(k)—Q'(k —«)3)

X([Q;(k)—Q;(k—«)je;(X,«))}~ (51)

Definition (11) yields Q;(n —n') = —Q;(n' —n) and the
Fourier transform Q;(k) becomes

Q(k)=pe'& Q(n)=2pQP jsink;d,

where Q is a parameter determining the strength of &e
interaction and y is a unit vector directed along one of
the Cartesian axes.

(1/xj)»qPd', (59)

allow us to perform more readily the integration over k.
The results are, when P approaches zero,

Im{e,P@e,}=—

and when p is near p„

yg(0, «)cod'qn(xj)'

4n'hPJ'DM
(60)

Im{e;Ppeg} =—y"p(0 q)&gp(g J)p/p

16xhPJ'D3f
(61)

Inserting Kq. (60) and Eq. (61) into Eq. (32) leads
to the respective expressions for the attenuation co-
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efficient: when P approaches zero,

7"(0,q)d'(g~d) (Xj)'
~(q) =

8z'AP J'DMc

and when p is near p„

y)P (0,41)d'(XJ) '"
o(q) =

32m.bPJ'D3lc

where for a simple cubic lattice qDd=3. 9, where

» (0,q) =6e'dV

for the volume magnetostrictive interaction and

vi'(0 q) =3G»V

(62)

(65)

for the point ion magnetostrictive interaction, and where
(o(q) =cg.

IV. RESULTS AND CONCLUSIONS

The results (62) and (63) tell us that the attenuation
coefficient is a function of the static susceptibility X(P)
and of the spin diffusion D(p) and that it is proportional
to an even power of the wave vector, namely
i= [~'(q)/c'3.

We now return to the restraints (57) to (59) and
demonstrate that experimental conditions satisfying
them exist. The ratio (q/gz) is typically about 10 ' and
this satisfies inequality (57). Because q& = (1/d)
= (10 '/cm) and c= (10' cm/sec) for many ferromag-
nets, we have q=(10'/cm) and co=cq=(10'/sec). The
diffusion coefficient attains a maximum value at P=O
and has the value for a simple cubic lattice, '

susceptibility predict that it will behave sufficiently
close to the critical point according to the form

X~=A[P/(P. —P)j, (7o)

where A varies slowly with p and is usually about 1.0
&A&0.01 and where 1&7&2. The Weiss molecular
field gives y=1; the RPA models give y=2; and the
Pade approximant method gives a value which is in-
distinguishable from y= (4/3). The experiments thus
far appear to agree most closely with the Pade-
approximant method because for most ferromagnets it
is found that 1.2&&& 1.6.The limit (69) readily satisfies
inequality (59) via inequality (68) at high tempera-
tures. However, Eq. (70) does not satisfy inequality
(59) for p sufficiently near p„' i.e.,

A X 10 '0& [(P./P) —1 (71)

But the latter does not concern us because from Ap-
pendix B we argue that the factorization (34) becomes
much less reliable whenever [(P,/P) —1]&10-'.Tem-
peratures as close to the transition point as [(P,/P) —1j
=10 readily meet inequality (68), and such tempera-
tures are outside the expected region of validity of our
theory. Finally the above values for the speed of sound
and the wave vector satisfy the condition following
Eq. (41), namely, P,kcq«1, provided T,))10-' 'K.

In order to determine the temperature dependence
of the attenuation coeKcient we require the tempera-
ture dependence of X(P) and D(P). Equations (69) and
(70) give us X(p). Dimensional arguments alone deter-
mine the form of D(P) at high temperatures, and the
different evaluations all have the form

D(Pg=0) =B(Jd2/P) [S(S+1)Ji' (72)

D(P=O) =[4.14X10 'BT,/(S(S+1))"']
cm'sec ' 'K ' (66)

where we have used P,7=[3/S(S+1)g, where 10' 'K
&T,&10' 'K for many ferromagnets, and where 8
depends upon the method" "used to compute D and has
the values 0.19&B&0.33.Thus, inequality (58) becomes D. (P P.)

(73)
D„i(P=0) S(S+1)(XJ)"4(67)

and
c'&)D'q'

where Bvaries as indicated in Eq. (66). In the neighbor-
hood of the Curie point, the nonlinear integral equation
method (el) and the sum-rule moment method (sm)
both predict that the diffusion coeKcient approaches
zero as p approaches p„ i.e.,

and the above estimates for c and D meet condition (67).
Finally, condition (59) requires that

xJ«10".

D..(P-P.)
D-(P=o) S(S+1)(XJ)

(74)

where 8„~=2.38 and 8, =1.15. It is interesting to
notice that if one uses the sum-rule moment form of the
diffusion coeKcient and assumes that the molecular-
Qeld theory gives the static susceptibility correctly,
then one obtains the expression for the spectral weight
X"(q,~) originally assumed by Van Hove. "

We conclude from these considerations that the ultra-
sonic attenuation coeKcient goes to zero linearly with

P in the high-temperature limit and that the coefficient
increases rapidly in the neighborhood of the Curie

'4 L. Van Hove, Phys. Rev. 95, 1374 (1954).

In the high-temperature limit the susceptibility goes to
zero linearly with p,

S(S+1)p
(69)

The limit (69) is exact. The susceptibility becomes in-
6nite at the critical point and most treatments of the

"P. G. de Gennes, J. Phys. Chem. Solids 4, 223 (1958).
3 H. Mori and K. Kawasaki, Progr. Theoret. Phys. (Kyoto)
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TABLE I. The small wave vector limit of the effective coupling
y),'(k, q) which results from Eq. (34). The direction of propagation
is q = q(sin8 cos q X+sin8 sin q y+cos@), the longitudinal mode
polarization vector is el.= q/q, and a transverse mode polarization
vector is ez = —sinqd+cosp j, where q, 0, and cp are the spherical
coordinates with one of the crystal axes as the s axis.

Interaction
and mode

zq. (10)
Longitudinal

zq. (1o)
Transverse
zq. (12)
Longitudinal

zq (12)
Transverse

lim y),'(k q)
k —+0
g —+0

6Q'd'q'

(-')Q'd'q' sin'0 sin'q cos'y(k —k )'

[3GiP {cos'8(cos'8—sin'8)
+sin40(cos4q —sin'p cos'p+sin4q ) )

+46«' sin'0 (cos'81sin'8 cos'y sin'q )$q'

[9Gi|s sin'8 sin'q cos'y
+G44'icos'8+sin'8(cos'p —sin s)'1/8'

'5 J. Kocinski, .J. Phys. Chem. Solids 25, 211 (1964). This work
derives an express'ion for D which is finite at P =la, . However, this
calculation uses the constant coupling approximation which ig-
nores the fact that the values of the molecular Geld diGer from
site to site. This neglect leads to serious error, particularly in the
neighborhood of the Curie point.

point according to the manner in which (XJ)& increases.
The exponent g depends upon the method which one
chooses to compute the diffusion coefficient and has the
bounds (-,') &q& (-',).

We call attention to the fact that treating the spin
system in the RPA leads to no attenuation of the
phonons in the neighborhood of the Curie point, ~ for
both p) p, and p&p, . We also want to emphasize that
all estimates of the'behavior of D near p, are as yet
bery unreliable. "

We may easily extend our present calculation to
include the attenuation of transverse modes and the
propagation of the sound in arbitrary directions relative
to the crystal axes. For the volume magnetostriction,
Eq. (10), the attenuation of a longitudinal mode is
independent of the direction. of propagation. The at-
tenuation of a transverse mode is zero for sound waves
propagating along the crystal axes. When the trans-
verse mode propagates off the crystal axes, the attenua-
tion depends upon the angles that the propagation vec-
tor and the polarization vector make with the crystal
axes. Equation (51) gives us these angular dependences.
In addition, the attenuation of an off-axis transverse
mode exhibits a different temperature dependence in
the neighborhood of the Curie point from that given by
Eq. (63).Equation (51) for a transverse mode (off-axis
propagation) gives a k dependence of the effective
coupling yz'(k, q) which is different from that obtained
for a longitudinal mode. When we perform the k inte-
gration, the singular factor (xJ)st' does not occur and
the increase in the attenuation now arises from the
(1/D) factor. The explicit temperature dependence of
the attenuation depends on the methods by which the
diffusion coeKcient D and the static susceptibility X

TABLE II. Temperature dependence of the attenuation pre-
dicted by Eq. (34). %he temperature factors are Pa=I (xJ)'/PDj,
F,=[(xJ)si'/PD j, and F,'=(1/PD) Th. e respective attenuation
coeKcients are directly proportional to these temperature factors.

Interaction
and mode

zq. (1o)
Longitudinal
zq. (1o)
Transverse
zq. (12)
Longitudinal
Eq. (12)
Transverse

Temperature factor
P~0 P~P,

p0 pc

p, p t

p

pp p,
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APPENDIX A: PERTURBATION THEORY

We want to evaluate the spin-displacement correla-
tion function,

((U, (n', t') S(n, t) S(a",t))+), (A1)

are calculated, as we have indicated in Eqs. (70), (73),
and (74).

For the single-ion magnetostriction interaction (12),
which is the dominant interaction in most solids, both
the frequency and the temperature dependence of the
attenuation are independent of the relative direction of
the propagation vector and the polarization vector and
of the directions of these latter vectors relative to the
crystal axes. The effective coupling is, however, dif-
ferent for the different cases. For a transverse mode
propagating along a crystal axis, the effective coupling
3Gtts in Eq. (65) is replaced by G44'. For both longitudi-
nal and transverse modes propagating in an off-axis
direction, the eRective coupling becomes a linear com-
bination of Gii' and G44', for which the coefficients
depend on the angles which the propagation vector and
the polarization vector make with the crystal axes. We
obtain the explicit angle dependence in a straightforward
manner from Eq. (25). Tables I and II contain a sum-

mary of the contents of the above two paragraphs.
As a 6nal point, we mention that if we remove the

restriction that the volume magnetostriction be invari-
ant under rotations and consider a more general inter-
action term,

Z Li7*(,t)—~'( ',t)1Q' (, ')~ (,t)5' ( ',«), (75)
a a'

I

then we shall obtain the same frequency and tempera-
ture results because the Fourier coefficient I';, (q,+„)
will still have the form (37) and the k and q dependence
of the effective coupling y&P(k, q) will remain the same.
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to lowest order ip the spin-phonon interaction, H; f.. We Then using the finite temperature generalization of the
refer to Eq. (17) and consider the implicit numerator Wick's theorem'z to contract the phonon operators, we
of correlation (A1), obtain

E,=TrLe e (U, (n', t')S(n, t) S(n",t))~j. (A2) ((U, (n t)S(nt). S(n t)) ) i P g„(n, n,)
The operator equation,

U( —ihj') = Up( —iht') Uz( —i''), (A3)

—imp

di((S(n„i) S(n„i)S(n, t) S(n",t)))
' I "~ I I

relates the operator U( ih—P) =e ~~ to the correspond-
ing operator in the absence of the interaction Up( —iht')

The term (22' in the text then follows from Eq. jA9j.=e P~o, where

p, ( ihp) (—exp (=—~)") d)H, (t) . (A4)
0 -+

This relation is obtained by solving the equation of
motion for Up '(t) U(t) in the usual way" and then by
performing the analytic continuation to t= —i'. Here
Hz(t) is the interaction Hamiltonian in the interaction
representation,

Hz(t) = Uz(t)H; iUz '(t).

By expanding the operator Uz( —iht'),

(AS)

Ui(—ihP) =1—(i/h)

—iAp

diHi(i)+", (A6)

we shall be able to compute the quantity E; to lowest
order in the spin-phonon interaction. The expression
(A6) yields

X;=Tr e P~o 1—i A,

—imp

diH, (i)+ ~ ~

Z

&,=- 2 Q'(ni —np)T«' '
2 a1,~2

where we now take the trace over states which are
eigenfunctions of H0. Since H, h.„,„is invariant under a
uniform translation of the lattice, any term with an odd
number of displacement operators is zero. Thus, to the
lowest order in the interaction H;„t we find,

APPENDIX 8: FOUR-SPIN CORRELATIONS

Since we do not know the exact solution for finite tem-
peratures to the three-dimensional Heisenberg model,
we have introduced the factorization (34).

In this Appendix, we shall discuss the extent to which
this factorization is justified.

We may make three rigorous statements concerning
the factorization. First, the factorization is unique in
the sense that all other possible factorizations give no
contribution in the paramagnetic region to the expres-
sion for P;;(q, t—t), Eq. (24) and Eq. (25). Second, the
factorization yields an exact expression for P;;(q, t—t)
at PJ=O and at t=t. In the limit of r'J=O, the spin
state e, (n') at site n; becomes independent of the spin
staten; (n;.) at the site n;, n; An, ', and the trace over
all spin states reduces to the product of traces over all

spin states at each site,
N

lim Tryt- .]=/ Tr.,L ];
PJ~O

i.e., we have an E product spin space. We then ex-
plicitly evaluate" all traces appearing in the factoriza-
tion (34) and find that at PJ=O and t=t the left-hand
side equals the right-hand side. Third, the extension of
the factorization (34) to the ferromagnetic region leads
to an exact expression for P,, (q, t—t) at t'J=" and
for any t t. When P—J=", the spins at all sites are in
the ground state and the trace reduces to one diagonal
matrix element. We then use the time evolution of
operators in the Heisenberg representation

S,(n, t) = Lexp(i/b)H„;„(t —t')j
XS;(n,t')Lexp( —i/h)H, p;„(t—t') j (B2)

dt Ug, eg, t —Up eg, t S eg, t S e2, t
0

to prove the third statement for which the ground state
is an eigenfunction of H p,.„.

A calculation of the speci6c heat gives us additional
insight about the physics which the 3=t factorization

XS(n t). S(n" t) U,.(n't') (Ag) describes. We express the specific heat at constant vol-

+- ume in terms of the four spin correlations and lower-

'6 S. Schweber, An Introdlction to ReluHvistic Quantum F'ield
Theory (Harper R Row Publishers Inc. , New York, 1961),Chap.
II.

' C. Hloch and C. de Dominicis, Nucl. Phys. 10, 509 (1959).' J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).
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order correlations;

4C„
P J(n—n')J(ni —n2)

a,a' ai, a2

C„27
(xJ)i/2

Ek& ~' 2x'
(B4)

If one believes that the exact specific heat has a, loga-
rithmic divergence and that the static susceptibility
diverges as (T T,) r where 2) y—)1, then the critical
fluctuations described by the insertion of form (43) into
the factorization (34) are too large because they lead to
a divergence which is more singular than a logarithmic
divergence.

Since we require a knowledge of Im(e;P;, e,) for small

wave vectors q and low frequencies co, we want
the behavior of the four-spin correlation function,
f4(n, e', ei,e2, t—t), for times ~t—t~&&r and for dis-

much greater than the lattice spacing d. In addition,
we may assert that the coupling Q;(e—e') is a short-
ranged function; i.e., Q, (e—n') is very small for

~
n —n'

~
)d. From this assertion we argue that those

terms of the kernel (24) for which n is near n' and for
which 0.~ is near n2 dominate. The latter is compatible
with the previous conditions. But thus far we have dis-
cussed only the t= t aspects of the factorization and we

may question whether the preceding discussion is
relevant to the attenuation coefficient; particularly
since only intuitive statements are available for the
3/t case at finite temperatures.

X{((S(e,t) S(e',t))(S(ni, t). S(e2,t)))
—(S(e,t) S(e',t))(S(ni, t) S(n„t))) . (B3)

In the PJ ~ 0 limit, we evaluate Eq. (B3) exactly and
then evaluate it with the four-spin correlations replaced
by the factorization (34). We find that the resulting
expressions for the specific heat (C„/SAP') are the same.

Previous work' shows that as we approach the transi-
tion region the correlations of greater number of spins
become successively more important. For example,
whenever the temperature fails to satisfy the condition

P(P,/P) —1]»0.01, then the correlations of three spins
become comparable in magnitude to the correlation of
two spins. VVe conclude from this that the factorization
(34) is much less reliable near the transition point. But
even though the factorization is suspect near the transi-
tion point, it is mathematically well defined for all
temperatures such that P(P, and provides us with an.

interpolation to the transition region. In particular,
using the factorization (34), the spectral weight func-
tion (43), and the RPA approximation for X(q,0), we
calculate the specific heat in the vicinity of the transi-
tion point for a simple cubic lattice. The result is that
the specific heat diverges as the square root of the static
susceptibility:

The factorization is a statement that a given function
of t and t behaves as the sum of a time-independent
function (t= t) and of products of two time-dependent
functions. The pair-correlation form (43) states that
for the paramagnetic region the self-diffusion of the
spins dominates over all other possible mechanisms at
large distances and long times (q —+0 and ~ —&0).
Hence, in effect, the factorization (34) and the form

(43) permit us to obtain information about that part
of the large-distance long-time behavior of the four-spin
correlations which arises from the large-distance long-
time behavior of the pair correlations, whenever the
system is sufficiently far from the transition region.

We may strengthen our intuitive discussion for t4t
by examining a simple solution to the diffusion equation
for the magnetization m(r, t),

am(r, t)/at =De'm(r, t),

with the 1=0 time boundary condition that

M if r=0

(BS)

namely,

ri4(r, 0)=
0 if r&0

4ri(r, t) =M(rr/Dt)4i' exp/ —(r'/4Dt) j (B6)

for t»r and r»d. From Eq. (B6) we obtain the hydro-
dynamic domain and the condition that

~
n4(r, t)/M ~

&&1,

whenever t is great enough for fixed r or whenever r
is great enough for fixed t. If we assume that the higher-
order correlations M4 and f4 exhibit diffusion properties
which are similar to those described by Eq. (B5), then
we may extend the suggestions of Eq. (86) to these
functions. That is to say, for high enough temperatures,
the spin at site e at time t is very weakly correlated
with the spin at site n at time t, whenever

~
t—t~&&r

= (ti/J) and the spin at site e at time t is very weakly
correlated with the spin at site ei at time t whenever

~
n —

ni ~&&ci, for fixed ) t—t
)

where ci is the correlation
length. A modified RPA method predicts' that when
t= t, the correlation length behaves as (1+XJ)'i'd.

Bearing in mind the additional intuitive statements
of the preceding paragraph, we re-examine the four-spin
function f4 and approximation (34) to it. We argue
that the hydrodynamic domain (q —+ 0 and co —+ 0) ob-
tains whenever all the unbarred variables are far from
the barred or numbered ones and that any approxima-
tion to f4 must maintain this feature. Observe that the
hydrodynamic domain of the last two terms of the
factorization (34) corresponds to the hydrodynamic
domain of the four spin function f4, but that the first
term fails to meet this criterion. However, because the
contributions due to the first term sum to zero in all
calculations of the specific heat (a t= t property) and of
the diffusion coefficient and the attenuation coefficient

(t4 t properties), the first term of the factorization leads

to no consequence for the above cases and we may
ignore its failure to describe the hydrodynamic domain.


