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mine the precise properties of the polarization in the
neighborhood of the boundary plane. Consistent with
the approximations made in this paper we neglect the
eQect of the semiconducting properties on the behavior
of the polarization and assume that the polarization
follows closely the deformation of the lattice as de-
termined crystallographically.

A sigi6cant advantage in being able to produce large
single domain ferroelectric crystals, as well as sharp
paraelectric-ferroelectric phase boundaries, is that one
can readily study transport, optical, dielectric, and
elastic properties both above and below the Curie point
in unpoled crystals. We show, for example, in Figs. 3
and 4, the resistance anisotropy and infrared dichroism
measured as a function of temperature on two high-
quality KTN crystals. Above the Curie point where
the crystals are cubic both properties are isotropic. The
resistivity data of Fig. 3 obtained using a four-terminal
method show that the resistance increases parallel to
the polarization or c axis and decreases slightly in the
perpendicular direction. The activation energy above
T„E,=120 mV, corresponds to donors situated ap-

proximately 0.24 eV below the conduction band edge.
The optical data of Fig. 4 were obtained at a wave-
length of 1.985 p corresponding to the peak in the near
infrared donor photo-ionization absorption. These data
show a discontinuous 6rst-order change in the absorp-
tion coefficient at the Curie point. In the ferroelectric
phase the absorption is greater for light polarized per-
pendicular to the crystal c axis (EJ c). Results of a
complete study of transport and optical properties of
KTN in the vicinity of the Curie point will be reported
in the near future.
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We review the estimates for the critical indices of the Ising model below Tg and conclude (for 3 di-
mensions): o, '=0.066 0.04 ",P =0.312 O. o06 '",y'=1.310 0.0~

~ for the specific heat, magnetization, and
magnetic susceptibility, respectively. For 2 dimensions, we estimate p =1.75 O. po~' . In order to explain
previous estimates of n'= 0, we point out that a low power can, in practice, look deceptively like a logarithm.
Finally, we discuss the behavior of the specific heat at constant magnetization.

1. INTRODUCTION AND SUMMARY
' 'N recent years, various workers have estimated from
~ - power-series expansions the various critical indices
for the two- and three-dimensional Ising model. In
1963 it was speculated' that a certain relation must hold
between three of the critical indices below the critical
point. Later that year, this conjectured equality was
proved as a rigorous inequality. ' Unfortunately, the best
available estimates at that time failed, by 6~%, to

* Part of this work performed under the auspices of the U. S.
Atomic Energy Commission.

' J.%.Essam and M. E. Fisher, J. Chem. Phys. 38, 802 (1963),' G. S. Rushbrooke, J. Chem. Phys. 39, 842 (1963).

satisfy this relation for the three-dimensional Ising
model, although they satisfied it for the two-dimen-
sional model. It is the purpose of this paper to critically
re-examine the various estimates, to attempt to
establish realistic error bounds on them, and to reconcile
them with all available information.

We conclude from our study that C~/C~ is probably
continuous at T, for the three-dimensional Ising model
and that it is continuous for the two-dimensional model.
As a consequence

2&a'+2P+y'&2+ a,

where e O.i for three dimensions and 0.01 for two
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y'/P =4.2+0.1.
As a third relation (for three-dimensional
we use estimates of P and conclude

P—0 312 +0.002

(1.2)

lattices),

(1.3)

Combining these results, we obtain the estimates

dimensions. The indices e', P, and y' refer to the specific
heat, magnetization, and magnetic susceptibility,
respectively. We also consider the ratio y'/P for three-
dimensional lattices and conclude = 1—T(BM/BT) yP/(Cia) .

CII
(2 5)

Since C~ and CB are principle specl6c heats, ' their ratio
is non-negative; furthermore, since the second term on
the right-hand side of (2.5) is positive, CiLr/Cli is less
than or equal to unity. It is suflicient for equality (2.1)
to hold that

ferromagnetic Ising model. To this end, we rearrange
equation (2.3) as

y = & 3j.0—0.05+o'O4

'=0 066

(1.4) lim C~/CIi(1.
T + Td

(2.6)

for the critical indices. In addition we demonstrate how,
to the extent for which convergence had been obtained
(namely, to more than 90% of T,), a divergence rate of
~~, say, very closely approximates a logarithm. Thus
we reconcile (1.4) with previous estimates that ct'=0,
which corresponds to a logarithmic divergence.

In Sec. 6 we use the results of our study of C~/Cir to
deduce the behavior of the speci6c heat at constant
magnetization.

2. THE RUSHBROOKE-ESSAM-FISHER
RELATION

Essam and Fisher' conjectured the following relation
between the critical indices:

If this limit is unity, then the inequality may hold.
It need not, however, because the rate of approach may
be, for example, logarithmic, so that

lim (T T,) ln—L1—C~/Cirg= 0.
T~Tc

When T)T„M=O and it follows from (2.5) that
Cis/CIi—=1. The problem, then, is to decide whether
Cis/Cii is continuous at T,. We find that, in fact, the
most difficult situation for interpretation, i.e., Cir/Cii
apparently very close to unity, holds.

In order to investigate CiLi/Clr we used the series
data of Sykes, Essam, and Gaunt' to compute the power
series expansions of

n'+2P+y'= 2, (21) C~/Cii ——(2/q) u «' '+
where q is the coordination number and

(2.8)

d lnCII
ir'= — lim (T T.)—

T ~Tc dg

d ln3I
P= lim (T T.)—

Tc
(2.2)

d lnX
lim (T T,)—

dT

8 See, for example, P. S. Epstein. , Textbook of Thermodyrigmks
(J.Wiley R Sons, Inc. , New York, 1937), Kq. (20.2$).

In (2.2), C is the specific heat, M is the magnetization,
I ls thc magnetic susccptlblllty H ls thc magnetic 6eld
T is the temperature, and T, is the critical temperature.

Rushbrooke~ showed that the thermodynamic
relation'

Cir C~- T(BM/BT)'—s (BH/—8M) r (2.3)

rigorously implies that

n'+2P+y'& 2.

In this section we investigate whether equality
(2.1) or inequality (2.4) hoM for the nearest-neighbor,

e=exp( —4J/kT) .

For the simple quadratic (sq), triangular (t), diamond
(d), simple cubic (sc), body-centered cubic (bcc), and
face-centered cubic (fcc) lattices, we obtain series
through m" for e= 7, 10, 10, I6, 24, and 27, respectively.
Since the honeycomb lattice (h) has an odd coordina-
tion number, the expansion variable s=N'" is used in
(2.8) for this lattice, and the series is obtained through
ordcl 8

We now compute the LX,Ã$ and LE,X—1j Pade
approximants' to these series and form a table of values
for each approximant. As can be seen from (2.8),
C~/C~ is initially zero and starts off quite small. In a
favorable case, we obtain convergence up to an argu-
ment of around 96% of I,. At this value of the argu-
ment, Cir/Cir is apparently less than —,

' for all lattices
and appreciably less for some. Nevertheless, it is
changing su%.ciently rapidly in this region to prevent

4 M. F. Sykes, J. W. Essam, and D. S. Gaunt, J. Math. Phys.
6, 283 (1965);and (unpublished}.

SSee G. A. II'aker, Jr., in Adwnces Az Theoreticu/ 5'hysics,
edited by K. A. Brueckner (Academic Press Inc., New York,
1965),Vol. 1, p. 1, for a review article on the Pade approximant
method.
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Fxo. 1. C~jC~
below T, for the fcc
lattice, based on the
t t3, t4'3 Pads ap-
proximant. The hori-
zontal scale is x of
Eq. {2.9) where we
have assumed I,
=0.66470. The large
tic mark shows the
approximate limit of
Convergence.

0.75

one from drawing a Grm conclusion about the limit
(2.6) by ordinary glaplllcRI extlapolatloII Rlolle.

A likely explanation for this behavior is suggested in
two dimensions by the Onsager' solution for the speciGc
heat at constant magnetic Geld. According to his
result, the speciGc heat diverges logarithmically at T,.
Consequently, we expect, by (2.5), that the limit will

be approached like 1/Lln(1 —I/I, )j. In order to
straighten out this behavior, we introduce a new
variable

ln(1 —I/I, )/ln (0.5)

1+in(1—I/N. )/ln(0. 5)
(2.9)

6 L. Onsager, Phys. Rev. 65, 117 (1944}.

to use as an abscissa. This change will make such trends
appear linear. If we then. plot CII/CII versus x on
semilog paper to accommodate the large cha, nge in mag-
nitude, we get very nearly straight lines aimed (with
varying degrees of accuracy) at the point (1,1) for
all lattices (and not just the two-dimensional ones),
except the diamond lattice for which a lower va, lue of
about 0.3 to 0.4 is extrapolated. However, primarily
because of a shorter series, convergence was obtained
only to about 75'Pq of e„and so this result should be less
reliable than those for the other lattices. See Fig. 1 for
an illustrative case.

If the inequality held instead of the equality, say,

~'+20+7'= 2+ ~, (2.10)

then a variable based on (1/e)L(1 —I/N. ) '—1j instead
of —ln(1 —I/I, ) would be appropriate. The use of this
kind of extrapolative procedure tends to lower the
predicted value of CII/CII at N=N. and since e)0
requires that CII/CII=1.0 at N=u, ' the possibilities
are quite limited. We conclude that e)0.1 seems in-

consistent with all the three-dimensional lattices and
&=0.0 seems to be best in accord with the results for
them all. For the two-dimensional lattices, a somewhat
weaker bound on e is obtained but the same general
picture seems consistent with the available information.

Although the sequence of approximants has not
converged very well, we mention that, in accord-
ance with the above results, Pads analysis of
d ln(1 Cm/Crt)/dN lndIcates 6&0.3 III two dlmenslons,
and &&0.09 in three dimensions. For two dimensions,
a consequence of C~/CII approaching unity like
1/Pln(1 —I/I, )j together with the exact results on the
specific heat" and on the magnetization' is that

xo(T)= (Xm'/kT)C-(1 —T/T, ) &', (T~—T,), (2.11)

(wh«e 7 =1 75-0.00~'"), in accord with the previous
results of Essam and Fisher. ' The upper error estimate
in (2.11) is theirs and enables us to deduce a&0.01, and
the lower one follows from (2.4) and the exact results' '
II'=0, p=Ia. Provided that the approach to the limit
is logarithmic, there can be no ln(1 —T/T, ) factors
multiplying or dividing the right-hand side of (2.11).
This has been confirmed by using the Pade-approxi-
mant method5 to analyze the series for

x(u—./I) ln(1 —u/I, ) and —x/(I, /N) ln(1 —II/I, ) .
Estimates for the critical amplitude C are given by
Eq. (18) of Ref. 1.

For three dimensions we obtain the relation between
the critical indices,

2 &n'+2/+ y'& 2.1. (2.12)

We note in passing that the mean-Geld approxima-
tion satisfies' equality (2.1) with n'=0, P= ~, y'= 1, for
C~=—0 here, as can easily been seen from the structure
of 'tile ellelgy (8~ M ).Tile three-dlmenslonai spllel'Ical
model, '9 on the other hand, is pathological in this
respect, since for small H and Tg T„

x~H "'(1 T/T, ) ~I'—
and is thus inGnite for all T&T, when B tends
to zero. This result is easily obtained following the
standard procedure of the theory of the spherical
model. ' 9 In the limit of long-range exponential inter-
actions' the mean-Geld results are recovered even though
the above form for X is valid at any Gnite range. Such
behavior arises because of the nonuniform convergence
to the limit.

3. THE BOMB-HUNTER RATIO

In a recent study, Bomb and Hunter" have specu-
lated that the ratio of critical indices y'/P is exactly

7 For a summary of the exact results, see C. Bomb, Advan.
Phys. 9, Nos. 34 and 35 (1960).

8 T. H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952).
9 G. A. Baker, Jr., Phys. Rev. 126, 2071 (1962).
'0C. Bomb and D. L. Hunter, Proc. Phys. Soc. (London)

86, 1147 (1965).
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an even integer. This conjecture is apparently correct
for two dimensions {y'/P=14) and in the mean-field
approximation (y'/P=2); however, as we shall see,
it does not seem to be so for the three-dimensional Ising
model. That there is no apparent mathematical
necessity for y'/P to be an even integer can be seen by
considering the counter-example

lnZ= Im([(e/u, —1)P(N/u. —1)'+H']'i'+iH']""V"'}
+—,', H Iml(N/I, —1+iH) &"} (3.1)

where u= exp( —4J/kT) and Z is the partition function
per spin. This function has the critical data o,'=o.=-,'—„
f=—,'„y'=y=i —,'„and y'/P=4. 2. It also has the
properties X, CJr, Cxr, and M sgn(H) all &0 (near the
critical point). Further, for H small and T near T„
it is of the form

lnZ=Fe(T)+O'F2(T)+H'F4(T)+, (3.2)

where

F2„(T) A„(1—T/T, )~—i"—'&~, r=1, 2, , (3.3)

From the definitions (2.2), it follows that

M(B'H/BTBM)
i ~,r

(8H/BT) ~~
(3 9)

If H(T,M) is sufficiently well behaved, then the limit
as T —+ T, with II=0+ may be replaced by the limit
as M —+ 0+ with T=T,. LThe direction in the (T,M)
plane is the same for these two limits provided P&1j.
Kith this replacement for the first term, we may
evaluate it from (3.6). Thus (3.9) becomes

M(d'M/aTaH)
~
rr, r

lim (3.8)
& =o'(BM/BH)

i r (dM/t)T) i rr

By the laws of partial di6erentiation, we may rewrite
(3.8) as

-M (O'Hjt)M')
i r

hm
p r r;, rr=o + (BH/BM)ir

with 3 =3~~. An example with three terms instead of the
two of (3.1) can be constructed with the same critical
data, except y= i~. Thus the symmetry y'=y is not a
mathematical necessity either.

Nevertheless, y'/P is a useful quantity to estimate,
because this estimation may be done in two ways which
we believe are independent of each other. We may calcu-
late easily that if x~ (1 u/u, ) —~' and M-~ (1—I/N. ) s,
then

M(8'H/aMB T) i ~,r
d —1=y'/P+ lim

(BH/aT) j irM ~0, T=Tc

If we refer to Fig. 2, we see, as

aH (aM/aT) ~& P(1 T/T )s '/T--
BT ir (aM/aH) i r X

(H=0+, T~T;),

(3.10)

(3.11)

d in(&)
hm

d ln(M)

(e N.)d ln—(&)/dm= lim =-v'/P (3 4)
e (u—u, )d ln(M)/du

that (aH/aT)~~ is (a) positive on T=T„and (b)
tends to zero at the critical point if P+p') 1, by (3.11).
Hence as the term in the limit in (3.10) is the logarithmic

Tanxz I. The )N, N jand [N,N —1g Pade approxitnants to—Ed ln(x)3/Ld ln(M)3 evaluated at I,.

We conclude from these results that

y'/P= 4.2+0.1. (3 3)

The results on the diamond lattice are, we feel, not
sufFiciently converged to say more than that they are
not inconsistent with the above conclusion.

A second way to obtain information on the ratio
y'/P is to study the magnetization on the critical
isotherm. If we assume that

M ~ H"', (T= T.)
then it has been conjectured' " that

(3.6)

Now we may expand Ld inxf/jd lnM j as a power series
in I and then use the Pad&-approximant method' to
evaluate this ratio as I—+ I,, The results of this evalua-
tion are given in Table I.

$1,1]
L2,1$
t:2,2l
I 3,2j
933
E& 31

$5,4$
I:5,53
t6,5j
I 6,6$
$7,6]
D,vj
lÃ7j
$9,9$
D0 97
t 10,10$

5.16259
4.14936
3.91190
4.00761
4.02015

a

4.02906
4.11242

4.19171
4.30571

bcc

4.44318
4.15742
4.14211

4.20573
4.18321
4.19061
4.16062
4.13076

4.24760
4.06029
4.14829
4.36958
4.31533

4.25561

4.71534
4.45428
4.48292

v'=O(~-1).

"B.Widom, J. Chem. Phys. 41, 1.633 (1964).

(3.7) a Approximants rvith close-to-each-other poles and zeros near the origin.
These are omitted from the tabulation in accordance couth the criterion of
Sec. IIA of Ref. 5. The missing entries are not there for this same reason.

b Approximant does not exist. The low-order Pade approximants ~ere not
computed because of large gaps in the early part of the series.
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FIG. 2. Sketch of
the lines of constant
magnetic 6eld in the
M' versus T plane
near the critical
point. Dark line rep-
resents H =0+.

derivative of (BH/BT)
~
ir with respect to lnM at con-

stant T, it is necessarily positive. We remark we need
only assume (&1H/BT)

~
ir is ultimately of fixed sign for

this conclusion to hold.

We conclude that

when

P(1, p'+P) 1,

(3.12)

(3.13)

We note that (2.4) is an inequality for this example as
well. We also note that the inequality of Griffiths, "

(1+&)P)2—~', (3 15)

follows from (3.12) and (2.4).
That the (T,M) plane is a sensible one in which to

assume smooth behavior may be made plausible in the
following way. The partition function can be written as

Z= Q e e&e "~'p(F.,OR),
all states

(3.16)

where p gives the number of states as a function of
energy E and magnetization OR. The principal con-
tribution will come from a single point in E, OR space
above T, and below T, from two points because there
is symmetry between ~OR. At the critical point, the
maximum point bifurcates and, so to speak, turns a
corner. However, in order to turn this corner, the
maximum, as a function of OR at the critical point must
be quite Qat. Consequently, smooth behavior is much
more plausible in terms of OR than II where no such
argument is available. The singularities introduced in
the orthogonal T direction by using T instead of E
should not invalidate this assumption.

If, in addition, we assume with Griffiths" that

' R. B.Grifhths, Phys. Rev. Letters 14, 623 (1965).
R. B. GriKths, J. Chem. Phys. 43, 1958 (1965).

hold, as they do for the two- and three-dimensional
Ising models, and H(T, M) is suKciently well-behaved.
That (3.12) cannot in general be replaced by an equality
without further assumptions can be seen from the
example given by replacing in (3.1) the fractions
9/8, 31/52, and i56 by 52, 85, and 2i, respectively. The
critical data for that partition function are

a' =—,', P =—', , y' =27/40, &i =4. (3.14)

4. THE CRITICAL INDICES BELOW T,

In the previous sections, we have estimated two
relations between the critical indices n', p, and y'
for three-dimensional lattices. One further relation
will suffice to determine these indices. In two dimen-
sions, u' and p are known exactly'i to be

n'=0, P= s. (4.1)

The best additional result here is Essam and Fisher's
estimate' of y'= 1.75&0.01 for the triangular and simple
quadratic lattices. Relation (2.4) together with (4.1)
reduce this range to

y 75 +0.01 (4.2)

as we noted in (2.11). Although, the errors in the
direct estimates on the honeycomb lattice are much
larger, we may conclude (4.2) there also from the tri-
angular lattice results on the basis of the transforma-
tion theory of Fisher. "

To provide a third relation for three dimensions, we
have chosen to estimate P directly. We employ the
method of Pade approximants applied to (I—I,)
(d lnM/dl) and adopt the estimates of Baker" and
Kssam and Sykes'~ for I„

fcc 0.664658,
bcc 0.5326607,
sc 0.411940, (43)
d 0.2278.

'4 D. S. Gaunt, M. Z. Fisher, M. F. Sykes, and J. W. Essam,
Phys. Rev. Letters 13, 713 (1964)."M. E. Fisher, Phys. Rev. 113, 969 (1959)."G. A. Baker, Jr., Phys. Rev. 124' 768 (1961)."J.W. Essam and M. F. Sykes, Physica 29, 378 (1963).

(8&/BH)
~
r(0 near T„H=O+, then, as he showed, we

obtain
(3.17)

Combining (3.17) with (3.12) we have shown (3.7),
Widom's conjecture. We remark that our example with
critical data (3.14) does not satisfy (BX/BH)~&(~0
because the susceptibility has a ripple in it near T,.
Nevertheless, this additional assumption is not im-
plausible as Griffiths" has pointed out, although it is
not required thermodynamically.

Gaunt et al. '4 have analyzed 5 for various lattices
and found

&i=5.20&0.15, (three dimensions), (3.18)

6= 15.00&0.08, (two dimensions).

These results, together with (3.5), (2.11), and the
exact result P=si (two dimensions) show that for the
two- and three-dimensional Ising models, (3.7) is
apparently satished, in accord with the plausible
assumptions we have made. Alternatively, they provide
additional support for the estimate (three dimensions)
y'/p= 4.2.
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fcc bcc sc

Twsr. z II. Estimates of P. precludes both these alternatives from holding
simultaneously.

Satisfactory estimates of the amplitude 8 in
9 21
P3,3]
$4,3]
p4,4]
$5,4]
p,5]
$7,6j
D»l
P8,7]
P8]
f9,8j
P9,9]
[10,9]
t 10,10]
t 11,10j
L12,11]
$12,12$
D3,13]
$14,13]
$15,14]

—0.2979
—0.3046
—0.3069
—0.3066

—0.3078
—0.3081

—0.3077

—0.2997

—0.3010
—0.3051
—0.3069
—0.3101

—0.3389
—0.3133
—0.3156

—0.3132
—0.3124
—0.3133
—0.3133

—0.2907

—0.3012
—0.3032
—0.3032
—0.3109
—0.3066
—0.3091
—0.3132
—0.3118
—0.3100

—0.2942
—0.2982
—0.3061
—0.3135
—0.3094
—0.3104

/I/I/mX=B(1 T/T—,)o, (T~ T.-), (4.10)

have been given by Kssam and Fisher' for the fcc,
bcc, and sc lattices. We add the result for the diamond
lattice:

8= 1.661+0.001.

For the susceptibility

(4.11)

Em' (0.193&0.002)
Xo(T)=, (T~ T, ), (4—.12)

I T L1—T/T, jo~&~o'

and for the three-dimensional fcc, bcc, and sc lattices
summarize our best estimate near T=T,. For the
diamond (d) lattice, the constant is 0.191&0.003. The
amplitudes in (4.11) and (4.12) are determined as
described in Ref. 16.

This work parallels that of Essam and Fisher, ' except
that we have used longer series than they had available.
We have given in Table II the estimates for the critical
index P based on the indicated Padh approximants.
We conclude for all lattices that the estimates are con-
sistent with

0.307(P&0.314 or P=0 312—o.ooo+o'oo', (4.4)

which agrees with Essam and Fisher, but with some-
what smaller errors.

To summarize the results of Secs. 2 and 3 we have,
besides (4.4), the relations

y'/P =4.2&0.1,

2 &n'+2P+y' & 2.1.
These lead to the estimates

(45)

(46)

a Approximants with close-to-each-other poles and zeros near the origin'
These are omitted from the tabulation in accordance with the criterion
of Sec. IIA of Ref. 5.

5. THE SPECIFIC HEAT AT CONSTANT
MAGNETIC FIELD

In Sec. 4 we estimated that the critical index for the
divergence in the specific heat was about —,'6. Previously,
it had been shown" that there is considerable evidence
that the specific heat diverges very much like
ln(1 —T/T. ) up to 90—95% of T„depending upon the
the lattice. For example, in Fig. 3 we have plotted—(k T//)'CH/[4k''uo "(ln(1—u/u, ))u, /u] versus—In(1—u/u, ) for the fcc lattice. The 6nal curvature is
concave downward and hence although the curve is
slowly rising it shows no evidence of a singularity
sharper than logarithmic, or n'=0. Further evidence
for the diamond lattice has been given" "by comparing
its series (reduced to unit critical point) to that of the
simple quadratic lattice (similarly reduced) which has
a known logarithmic divergence. There too, no evidence
was found for a singularity sharper than logarithmic.

Indeed, when the ratios of corresponding coeScients
were computed, they were found to change monotoni-

(4 &)1 310 +0.04

o!i=0.066 FIG. 3. CII below T,
for the fcc lattice di-
vided by its leading
power series coefhcient
and divided by (a)—ln (1—u/u. )/(u/u, );
(b) i16(u/u, )/(u/u. );
(c) is(u/u. )/(u/u, );
(d) 24(N/e, )/(u/I, ).
The horizontal scale
is —ln (1—u/u. ).

(4.8)
0.9

(b)

(c)
0.6

(4.9) o.o

0.4
0is the set of rational indices which is most consistent

with available data Neverthele. ss, (4.7) and (4.8) do
not convincingly rule out either p'=p=1.25 or 0.'=0
as have been suggested, "o"although, of course, (2.4)

2
"In (I-u/u )c

"D. S. Gaunt and J. W. Essam, in Proceedings of the Inter-
national Conference on Magnetism, Sottingham, 1964 (Institute of
Physics and The Physical Society, London, 1965), p. 88.~ D. S. Gaunt, thesis, University of London (unpublished).

» Q, A, beaker, Jr., Phys. Rev. 129, 99 (1963).

which, together with (4.4), summarize the bounds ob- o.o

tained. on the values of the critical indices. It is our 07
present opinion that
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cally, so that the singularity in the simple quadratic
lattice seemed sharper than that in the diamond lattice,
if anything.

One must now inquire whether these results are
strong enough to eliminate a sharper singularity. To
this end we consider the functions

I„(x)=~L(1—x)-'~"—1j. (5.1)

It is easy to show that

lim I (x)= —In(1 —x), (5 2)

Referring again to Fig. 3, we have plotted various
curves using l„as a divisor instead of In. Curve (b),
for n=16, corresponds to our hypothesis of m'= —,'„
and is similar in every way to curve (a) which uses ln,
or 0.'= 0. Hence we conclude that n'= —,', is not excluded

by these results. As a matter of fact, curve (c) corre-
sponding to n'= 8 is practically level with only a slight
downward curvature near the right end. This result
suggests that 0.'= 8 is not inconsistent with the specific-
heat results, but represents an excellent fit to the data
for the fcc lattice. Values of 0,'&8 both slope and curve
downward, which result suggests that the assumed
singularity is sharper than the correct one. The same
analysis applied to the other lattices gives a best fit
with 0,' —,'~ for bcc lattice and 0&0.'&—,'~ for sc and d
lattices. Values of e' greater than these lead to both
slope and curvature downward.

We now consider the power of the method which com-
pares the series for the diamond lattice and the simple
quadratic lattice. We demonstrate in Table III that
interpretation of this procedure is dificult, for it would
seem to indicate that l&& diverges more slowly than the
specific heat for the simple quadratic lattice which has
n'=0. While these results are not as dramatic as the

ALE III. Comparison of the speci6c heat for the
simple quadratic lattice and l&&(x).

1
2
3

5
6
7
8

10

Coeff.
(sq)

0.77208
0.52987
0.37880
0.29116
0.23677
0.20009
0.17359
0.15345
0.13758
0.12473

CoeB.
Lle

1.0
0.53125
0.36523
0.27963
0.22720
0.19170
0.16603
0.14657
0.13130
0.11899

ratio
I&i/f2&

0.7721
0.9974
1.0371
1.0412
1.042i
1.0438
1.0456
1.0469
1.0478
1.0482

for x&1, as

(1+1/N) (1+1/m) (2+1/n)
l (x)=x+ x'+ x'+

2 2 3

—+ x+-', x'+-', x'+ . (5.3)

sq-versus-d comparison, they are similar enough to
cast doubt on the procedure.

We mention for the sake of completeness that
although they are both poorly converged, the Pade
approximants to Ld In(M)/@In(Crr)j and P(u —N, )d
In(C~)/dN7 indicate a large value of n'~ 02

We estimate the amplitude of (1—T/T, ) '~" by
considering the ratio C~/$~8(N/N. ), since we do not have
enough power series terms (or alternatively, we lack
convergence close enough to the critical point) to
clearly distinguish the nature of the singularity. This
lack prevents the use of the residue from a simple pole
in (Crr)" to determine this amplitude. We obtain

C~/Nk=A (1 T/T—,) —"" (T—~ T;), (5.4)
with

A g„=6.47~0.2,
Ab..—=7.36+0.2,
A „-=8.16&0.2,
A&-——9.44+0.2.

(5.5)

Eg ——1.83W0.05,
E„=1.80a0.04,
Eh= 1.86+0.04.

(6.2)

Hence by using the exact results for C& one derives

C~= —A- In]1—T//T, ( L1+a—/In[1 —T/T, (g,
(T~ T. ), (63)

where
A &

——0.4991, a&
——2.44&0.05,

A, q ——0.4945, a,q ——2.42&0.04,
Ag =0.4781, uh =2.50+0.04. (6.4)

That a—and E do not form monotonic sequences with
coordination number should not be taken seriously,
because the discrepancy is small compared to the errors
involved.

In three dimensions, combining (5.4), (5.5), (4.10)-
(4.12) and Eq. (15) of Ref. 1, we can estimate, using
(2.5), that

»m (1—Cm/Ca) = 0.0018, fcc,
T +Tc

o.0038, bcc,
0.0075, sc,
0.020, (6.5)

6. THE SPECIFIC HEAT AT CONSTANT
MAGNETIZATION

We have already remarked that in the mean-field
approximation C~=—0. Thus, C~/C~=O if T(T, and
(since Crr =0 above T,) is indeterminate if T)T,.

For the two-dimensional Ising model, it follows from
(2.5) together with (2.11), Eq. (18) of Ref. 1, and the
exact results'~ on the specific heat and magnetization
that

Cjr/Crr=1+E/In(1 —T/T, ), (T—+ T, ), (6.1)
with
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at,+=0.6147,
a,~+=0.6194,
al,+=0.6375.

(6.8)
CIr~[ln(1 —u/u)](1 —u/u) '"' (y —~u ) (66)

These small deviations are quite consistent with the (The coeKcients A and a become n+ and a+, respec-
estimates of Sec. 2, where we found C~/CH 1 at tively. We note that n =n+ and a+ follows from the
T=T„with an error substantially larger than these exact results. 'r)
deviations. We conclude that Cu/CJr is probably unity
at T,. If this is the case we cannot reject the form

which behaves very similarly to l„(u/u, ) and would
yield C~/CH=1 at T=T,. (However, this is not the
only possibility. ) The approach of Cu/C& to the limit
would then be like 1/[ln(1 —u/u. )],which is consistent
with our analysis in Sec. 2, and in addition [comps, re
with (6.3) for two dimensions]

C~o: (1—T/Tg) 'I" ln(1 —T/T, )
X[1—a /ln(1 —T/T, )], (T ~ T. ). (6.7)—

For the two- and three-dimensional Ising models,
Cjr/CJr=1 for T)T,. Thus, we conclude in two di-
mensions that C~/Clr is continuous at T= T„and that
it is probably continuous in three dimensions. From the
exact two-dimensional results we know that the singu-

larity in C& is symmetrical about T., and as a result
(6.3) also represents the behavior of Cu. above T,.

We note that C~/C~ is 1—p', where p is the correla-
tion coefficient between energy Quctuations AE and
magnetization fluctuations 65K. Its continuity 6ts in
nicely with the arguments presented in Sec. 3, concern-
ing the nature of 1nZ near the critical point.
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APPENDIX

We tabulate in Table IV, for the convenience of the
reader, the series for C~/CH which we have derived
from previous results. 4

TABLE IU. C~/I C&N-', ~ 'g.

fcc
'I/I q= 12

0 0.166666667
1 0
2 0
3 0
4 2.
5 2 69AAAAA4

6 1.
7 2.
8 16.6666667
9 —42.

10 16.0601852
ii 76.
12 40.3333333
13 —436.222222
14 360.777778
15 858.943673

644 69AAAA

17 —3786.5
18 5790.
19 6273.35185
20 —14500.3533
21 —21781.7685
22 64228.1574

bcc
q=8

0.25
0
0—0.0625
0.5

12.—32.234375
61.25—42.—86.8789063

771.34375—2350.
4552.70410—3437.25—9527.0625

51984.5154—135930.646
232618.016—166941.161—449586.021

2273561.34—5950333.96

sc
q=6

0.333333333
0—O.iiiiiiiii
6.—15.2962963

38.—16.1234568—36.
320.781892—338.888888—106.174216

4721.25927—14401.0449
40321.2594—76477.6675

d
q=4

0.5—0.25
—0.375
17.4375—15.84375

147.234375
264.851563
119.277344

6603.91602
4215.37402

0.333333333
2.
5.55555556

12.
34.9259259
66 444A AAA

215.320988
397.481481

1390.27572

Sq
q=4

0.5
3.75

13.125
56.9375

258.78125
1205.98438
5731.82031

H'
q=3

0.66666667
0 44nnnnn4
'?.62962963
5.97530864

47.9094650—4.33470508
399.671696
298.018595

34'?1.83305
5381.19650

a s replaces m for the honeycomb lattice which starts with qs+. ~ .


