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A form of Kick's theorem is derived which is applicable to spin operators of arbitrary magnitude in a
manner analogous to the decomposition of fermion and boson operator products. Use of the theorem to-
gether with Kubo's cumulant rearrangement of perturbation theory leads to a compact prescription for the
calculation of the ground-state energy of spin systems. This method is parallel to Goldstone's linked-cluster
expansion for fermions, but the expansion for spins, as well as for bosons, contains cumulant correction terms.
The Green functions are shown to be expanded similarly in terms of cumulants. The method is illustrated by
the calculation of the antiferromagnetic ground state, and circumvents the involved development in the
previous work of Davis and Boon. It is found that our procedure gives better convergence than Davis's
expansion and that Boon's 6nal formulas as well as his numerical results contain some errors.

1. DtTRODUCTION
' 'N the application of many-body perturbation theories
~ - to spin systems we encounter a number of de.cultics
because spins are neither fermions nor bosons. In the
treatment of spin waves, for example, we observe that
the spin. deviations behave like bosons, but only up to a
6nite number 2j of them can be attached to a given
atom at the same time. This statistical hindrance
introduces Dyson's kinematical interaction between the
spins. ' Since the commutators of spin operators are
still spin operators and not c numbers, the usual Kick
reduction IQethod'' for boson and fermion operator
products cannot be applied to the product of spin
operators and the direct use of the latter in perturbation
calculations becomes dificult. Furthermore, the spin
Hamiltonian describes the exchange interaction, which
is inherently a two-body correlation and there is no
natural division into a one-particle Hamiltonian plus
interaction part.

In many cases' spin operators are transformed to
boson operators and Kick's theorem for bosons is
applied in the calculation. However, a one-particle
Hamiltonian has to be introduced, often arti6cially, as
the unperturbed Hamiltonian, and the resulting approx-
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imations may lead to unphysical states which violate
the kinematical interaction of spins.

Using the Schwinger representation' of spin operators
by coupled bosons, Davis' was able to adapt Kick's
theorem for bosons to develop a linked-cluster expansion
for the ground state of a spin system. In this method,
the coupling of operators for the boson pair e and I
belonging to each spin operator automatically includes
the kinematical interaction. The unperturbed Hamil-
tonian consists of the energy of formation of isolated
spin deviations from the reference spin coldiguration
and. is the part of the pair interaction which is linear in
the spin deviations.

Very recently Kang and Callen~ have applied Davis's
formulation and obtained a Kick theorem applicable
to spin systems. Here, the contractions are among the
e factors and the CGect of the coupled I factors is
included by adding a special class of "locked diagrams, "

Giovannini8 and Doniache have generalized Kick's
thcoI'cIQ by us1ng the coIQIQutat1on rclatlons of sp1n
operators directly. Since the contractions in their
procedures are still spin operators, it is necessary to
consider multiple contractions. This complicates the
decomposition of a time-ordered product into all
possible combinations of contractions.

In this papcI' a foI'Dl of Kick s thcorcIQ 1s glvcn fol
spin operators which retains much of the familiar form
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for fermions and bosons and which can be applied in an
analogous manner since the contractions are now quasi-
c numbers. The theorem is more complicated than the
original form mainly because the part

Q J88Sy,*Sg,'
h, lt:

of the exchange interaction is included in the un-

perturbed Hamiltonian IIO. It is no longer necessary to
introduce a one-particle Hamiltonian, and the con-
vergence of the perturbation expansion of the energy is
improved.

The Wick decomposition leads to a compact pre-
scription for the perturbation calculation of the ground
state when it is applied in connection with the cumulant
expansion rearrangement of perturbation theory given

by Kubo. "The method is parallel to Goldstone's linked
cluster expansion for fermions, "but the expansion for
spins, as well as for bosons, will contain cumulant

correction terms because the clusters involved are not
completely independent of each other. The spin Green's
functions may be expanded similarly in terms of cumu-
lants. The technique corresponds to the introduction
of linked diagrams including "locks" in the method of
Wang and Callen.

The prescription is illustrated by a calculation of the
antiferromagnetic ground state which has been con-
sidered previously by Davis and Boon."The use of
Kubo's formulation circumvents the involved develop-
ments in these two works and clari6es the fact that
their apparently different cluster expansions generate
cumulants in the course of the developments. Numerical
comparisons are also made.

2. KUBO'S THEOREM ON GENERALIZED
GUM ULANTS

The cumulants (Xl"' X~""),„1for E random
variables X1, , XN are delned by the relation

where

oo oo /' 8P P "v) f N Pp"v

(e pp p,X;)= p p I Q I(X "' ' 'Xiv"")=exp E'
I II (X"

j=l v, =0 v8p=0 E P'=1 !P] n"'~ Ep-1 p;!
(2.1)

t'1' ' '&N

is the summations over vl, ~, vip, but excludes pl ——vs —— = pl8 =0, and the bracket (Xl ' X8l"lp) represents
the expectation value of the random variables X1, , XN. The explicit form of the erst few cumulants is

(X1)cumu1= (X1)v

(X1X2)o I (X1X2) (X1)(X2)
(X1X2X8)cumul= (X1X2X8) (X1)(X2X8) (X2)(X1X8) (X8)(X1X2)+2(X1)(X2)(X8)v (2 2)

while the general formula for calculating cumulants in terms of averages (Xl"' Xsp"lp) has been obtained by
Meeron. " In particular, if each argument X; occurs at most once, then

(X1' ' 'Xu)cumul= 2
l =1 all possible

/ partitions

Equation (2.1) may be written as

(2 3)

N N

(exp+ p;X;)= exp(exp(P p,X,)—1),„„l, (2 4)

under the interpretation that the exponential function in ( ~ )cumul is to be expanded in powers of X's and the
cumulant average is to be taken for each product thus obtained. If we replace the set of variables p;X; in (2.4)
by the set of X(t;) 6t s and take the limit that max. 8t; ~ 0, the summation in (2.4) will be converted into an
integration such that

(exp X0)Ct)=exp(exp X(cd' 1)—
a a cumul ~

(2.5)
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More generally,

exp P X, (h)dh = exp exp P X;(h)dh —1
j=l Q cumul

= exp dh,P" P (X,„(h.)" X;,(h,)),„„, . (2.6)

Kubo has generalized the above forma)ism pointing out that similar relations hoM even if the variables X; are
operators rather than c numbers. If the averaging process is disregarded and (X;) is simply X; by itself, algebraic
relations like (2.1) and (2.2) hold only in a trivial sense as pure operator relations because all cumulants except
those of the 6rst order vanish identically. In the case of a many-particle system, the variables usually pertain to
particles or excitations. If they are connected through interactions or through correlations existing in the state
of interest, a nonzero cumulant corresponding to them will appear and the cumulant relations (2.1) to (2.6)
become nontrivial.

In the present work we use the perturbation expansion of the time-development operator and the average, which
will be denoted by the symbol Av{. }instead of ( ), involves reduction of the operators when they act on the
unperturbed state. If only a part of the product is reduced to c numbers, the Av{ }will still be a q number. If
a product cannot be reduced, no higher order cumulants are formed by it.

It is also necessary to introduce the time-ordered exponential function. Corresponding to (2.6), the following
relation applies:

Av exp' P X, (h)dh =expAv expr g X, (h)dh 1—
= exp

=I mt
dh, dhgQ ~ Q Av{TX;„(h„) X;,(h,)}„„,, (2.7)

where T is Dyson's time-ordering operator. In a
cumulant such as

},„„q=Av{ }—Av{ }Av{ }, (2.8)

each factor Av{ ~ ~ ~ }on the right 1s obtained by reduc-
tion of the operator product acting directly on the
unperturbed state, as in the previous paragraph. If the
correction factor still contains operators, they should
be ordered the same as in the original product, whenever
necessary.

Furthermore, Kubo has proven that the following
theorem on cumulants is still valid for operators:

Theorees. ' A cumulant

Av{TX;„(h„) X;,(hg)},„
is zero if the elements X;„(h„), , X;,(hq) are divided

Ay, Ip p

into two or more groups which are independent of each
other in calculating the average Av{ ~

Use of (2.7) and the above theorem yield the cumu-
lant generalization of the linked cluster expansion.

ilh(B/Bh)f (h) =AHr (h)P (h), (3.2)

where the perturbation Hr(h) in the interaction repre-
sentation is to be slowly switched on between t= —~
and )=0, and hence,

3. CUMULANT EXPANSION METHOD

Let us divide the Hamiltonian of an S-body system
into the unperturbed Hamiltonian Bo and the per-
turbation XHr with the coupling constant X(=1) such
that

H=Ho+XHr

The dynamical properties of the system are then
described by the equation of motion for the state vector

H,.(h) =H, (h) exp(ah), (3.3)

pkp

FIG. 1. An example of nonvanishing cumulants
for bosons and fermions.

Hr(h) =exp(iHoh/ht) Hr exp( —iHoh/hh). (3.4)

The equation of motion (3.2) can be integrated into the
form



by llslllg tile transformation U(g(/p —+& ):
5 s8

U. (~, — )=1+2 ( )-'I —.

kih

X d~ 2'LH..(~-)" H.-(~)j

=exp' —
l

Hl~(t')dt'
~&i

We take f ( ~—)=—la) to be an eigenstate of HD.

The ground-state energy of the Hamiltonian is'4

8
E=E,+hmiV X—Dn(ol U. (0, — ) lO)jl. I, (3.T)

where E, is the energy of the ground state l0) of Ho.
Since the use of the expression (3.|'I) for p (0, —ao) ln
(2.7) leads to

(OlAv{U (0, —~)}l0)=exp(OlAv expr-
ik

Hl (t')dh' —1
cumul

X
=exp(0 l expr

ik
H,.(~')di' —1l 0).„„„ (3.8)

the energy E is given in terms of cumulants

8
E=E0+lim ihnX —(Ol expr

BA, ik
HI. (~')Z~' —1l 0),„„„1

8
=Eo+lim IIInp X—(II!) 'l — dh~ ~ .

=I a), I ih
Chl{0l TLHI. (t ) Hl (tl)]l0),„„, (3.9)

Here matrix elements like (a'lAv{ },„~„lie}of a cumulant are denoted simply as (0'l lu}.„~„Isince it will
not be necessary to indicate the intermediate process Av{ }explicitly. The expression (3.9) together with Qubo's
theorem on cumulants proves the cumulant expansion.

After an integration over the time variables tj, ~ ~, t, the above expression becomes

00

hE=E—Eo——lim (Ol Q HI
ED+I',An(II, 1) H0- —Eo+ihn Ho—

00

nM Eo Ho— (3.10)

where the Ineaning of (Ol'''IO) I in (3.10) is
different from the definition introduced in (3.8). This
will be discussed in Sec. 6.

It is of interest to relate the expressions (3.9) and
(3.10) to the linked cluster expansions developed for
interacting fermion and boson systems. In both, use of
%i''s theorem decomposes operator products into
diagrams with contractions A~(4)A~+(/I) represented

by particle lines. Two subdiagrams are independent
under the averaging process described earlier if they
contain no particle lines with a common y. If a diagram

FIG. 2. The exchange diagram vrhich is generated
from the diagram in Fig. 1.

"M. Gell-Mann and I".Low, Phys. Rev. 84, 350 (1951).

of order 5 and one of order 5' each has a line y, there
corrcspoDds to them a Donzcro cumulant of order
5+5', shown schematically in Fig. 1, where f(n, )
comes from operations like

A +A +ll }=L1+(n+1)j112(iae )112ln+2) (311)

wltll + slglls fol' bosons RIld slglls fol' fermlons~ Rnd

e~ denotes the occupation number of the state y.
For fermions, f(n, )—=0 and the nonvanishing con-

tribution to the cumulant appears from the second
term, the negative of the product of diagranls 5 and g'.
The value is equal to the value of the exchange diagram
which would be calculated by setting y=y' in the
crossed lines of the diagram shown in Fig. 2, although,
of course, the true value of the diagram with y=y' is
zero because of the Pauli principle. Thus the total value
of the cumulant expansion is the same as if the cumulant
col rcctloDs such as thc second tcrIQ in Fig. j. are
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neglected and y lines are summed over without restric-
tion. This is the linked cluster expansion by Goldstone.

For bosons and spins, this sort of cancellation does
not occur and the simple linked cluster expansion
becomes invalid. However, the expressions (3.9) and
(3.10) in the cumulant expansion are still valid. In Sec.
6, we shall show explicitly the correction to the linked
cluster expansion in the case of spins.

We note that in (3.9) the terms in which the correc-
tion is needed contain more than one line for the same
one-particle state (or spin site in the case of spins)
which overlap in time. These terms cannot be evaluated
by independent time integrations of the end points of
the lines, which leads to complications in the evaluation
of (3.10).

4. WICK'S THEOREM FOR SPIN ANGULAR
MOMENTUM OPERATORS

For fermions and bosons, use of Wick's theorem
simpli6es and systematizes the calculation of the energy
matrices involved in (3.9) and (3.10), and it is desirable
to generalize this mathematical technique so that it can
be applied to a system of spins. This will clarify the
relation between the linked cluster expansion and the
cumulant expansion.

Let Sa denote the spin angular momentum operator
of atom h and let the Hamiltonian of the spin system be
assumed to have the form

Instead,

Sa+(/)=(expL&i()ta&AJaa+2P JaaSa*)t])Sa+, (4.7)

Faa""(4—tr) =—Faa= expLeeX2ib Jaa(4 —4)$,
and

Ga" (ts—tr) =—Ga=uX2ASa*

(4.9a)

XexpLNi(Xa —Nh Jaa+2 P JaaSa') (ts—4)j. (4.9b)

because of the pair interaction term

Q JaaSa'Sa'
h, k

involved in Hs."If Jaa —=0 for all h's and k's, the Sa+(t)
will have the usual form and the calculation of energy
matrices will be simplified. "

The preliminaries to the discussion of Wick's theorem
are presented in the form of two lemmas and the
defInitions of the normal product and contractions.

Lemma 1:The spin operators Sa+(t) in the interaction
representation satisfy the following commutation
relation:

Sa"(4)Sa"(4) Faa"'S—a'(4)Sa"(&s) =ha, ah~, „Ga") (4.8)

where I and e each take on the values + and —for S+
and S, respectively, and

where

and

H= Ho+Hz,

Ho=2 &aSa*+Z JaaSa*Sa*,
A A, k

(4.1)

(4.2)

The quantization axis or direction of positive S' will
be chosen for each sublattice as the negative of the
magnetization direction of that sublattice in the ground
state ~0) of the Ising Hamiltonian Hs. Then

Hz= f(Sa+,Sa+, ,Sa,Sa, ). (4.3) Sa j0)=0, for all h, (4.10)

The constants ) ~ and JI,~ are the external Geld energy
of spin h and the exchange interaction between atoms
h and k, respectively. The unperturbed Hamiltonian Bo
involves only the s components S&' of spin operators
while, for the moment, the perturbation III is assumed
to be a function of Sy,+'s and Sy, 's, where

Sp,+=Sg, +AS@. (4.4)

(4.5a)

(4.5b)

(Sa+,Sa-g =MSa'4a,

)Sa*,Sa+g= &ASa+4a

We define the spin operators Sa+(t) in the interaction
representation by

Sa+(t) = exp(iHst/h)Sa+ exp( iHs~/h), (4—.6)

which cannot be reduced to the usual form

exp/const Xt]Sa+.

This restriction on Hz will be removed later and f could
become a function of S~"s.

The spin operators satisfy the following commutation
relations:

so that the state ~0) may be considered as a vacuum
state and SI, and S~+ are analogous to destruction and
creation operators, respectively.

A norma/ product of S+ operators will be one in which
all S operators are to the right of all S+ operators. In
the subsequent analysis it is useful to have a sfurldgrd
normal product, namely, one which is time ordered
within the S+ and S sets, respectively:

0"=S„+(t„) —S, +(t„,)S„-(t„) S (i ), (4.11)

~SEven if fermion or boson operators are used, this type of
expression will be obtained as long as the unperturbed Hamilton-
ian includes a pair interaction term like

Z &aa) Va& a+&a+&ad a

and the commutation relation will have a form similar to (4.8)
to {4.9) except that G does not have a factor involving operators
in front of

exp)As(&a+pa VaaAa+Aa)(ts 4)t&3.
'6 If only the part of (4.2) linear in the spin deviations is taken

as B0, the unperturbed Hamiltonian becomes the Bo~ introduced
by Davis. Then one-particle states are defined and Sa+(t) will have
the form expLconstXQSa+ so that F=1. However, the G still
involves operator SI,'. A disadvantage of using Bo~ as the un-
perturbed Hamiltonian is discussed in Sec. 7.
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where t„&~ ~ ~ ~ ~&t„+j and t„&~ ~ ~ ~ &~ti. If two times are
equal in a set, the order is immaterial since the phase
factor F» given by (4.9a) is unity. The phase factors
must be incorporated in the definition of the normal
product N =N{S;„S,„, S;,}of operators listed in a
given order, so that

(n)
N"=N{S;„S;„, S;,}=(g"F )X0", (4.12)

—=T(S2"(t2)$2r(tl) }—N{S2"(t2)S2'(tl) }
= $8(t2—4)—8(N)]82, 28n, „G2"(t2—4),

where 8(x) is the step function:

if x&0

(4.17)

normal products and is denoted by dots above the two
operators:

82"(t2)82'(t, )

N(s~l+(t +1)N"}=N"+'=—Sn+1+(tn+1)N",

N(s~l (t~l)N-"}=N"+'—
(4.13a)

where 0" is the standard normal product and a factor
F» comes from each pair exchange required to bring the
given order of the operators to the standard order 0".

If, for example, t +i is greater than the other times,

8(x) =
0, if @&0.

If, in particular, t2) t~,

S2 (t2)82+(4)=8»G2 (4—4),
and

the other contractions =0.

(4.18)

(4.19a)

(4.19b)

(n)

P~, ,+,(II~ P») s. +( .t)
XSr+1+(tr+l)Sa+1 (ta+1)sr (tr) ' ' ' Sl (4)

(n+1)
= ( II"P»)0"+'. (4.13b)

In (4.13b), the labeling 22, ~ ~, 1 refers to the order of
the operators in 0" and not to their original order

z y,
''' tying and

(n)
"J'aa

(n)
T.=T(S,„S,„, S,,—}=(g "r P»)q-, (4.14)

where
Q"—=S +(t )S 1+(t 1) Sl+(tl), (4.15)

under the condition that t ~& t ~~& ~ ~ ~
~& t~ and a factor

F» comes from each pair interchange required to bring
the original order i„,i„ i, ~,i~ to the time order. In
particular,

T{s,a(t2)s„r(t,)}
if t2&&tj.,

(4.16)
SI,"(4)S2"(4),

F»"'(t2—tl)S2'(tl)S2" (t2), if 4)4.

The co22tract2oN of two operators S (t 2)aan2d S2'(tl) is

defined as the difference between the time-ordered and

is the same as in (4.12).
The time-ordered product T" of S+ operators is

dehned as

The nonzero contractions are no longer c numbers but
functions of S~'. Since Sl,' does not change the spin
state in the basis we use, the contraction (4.17) can be
considered as a quasi c number whose value is a function
of its position in an operator product at the time when
the pair is contracted.

Lemma Z: Consider the standard normal product 0"
introduced in (4.11) and let t~l be later than ail the
other times. Then

Sn+1+(tn+1)0"= N(snpl+(tn+1)0 "}
n

+P N(8.+1+(t~l) 81+(tl) }, (4.20)
I=I

where the singly contracted normal product is defined
by

N(S+1+(t„+1) . Sl+(t,) . }
=Pa+1,n ' 'Fn+l, l+1Sn (tn) ' ' '

Xsl+1"(4+1)S~1+(tn+1)S1+(tl)~ ~ ~, (4.21)

and the order m, ~, /, , 1 is the standard order.
The lemma is proven as follows: If S~,+(t„+,) ls a

raising operator, the contractions on the right of (4.20)
vanish according to (4.19). Furthermore, the product
S~l+(t +1)0" is a normal product and the relation
(4.20) is trivially satisfied.

If S +1+(t~l) is a lowering operator, the normal
product N(S„+1—(t~l)0"} is written as (4.13b), where

(n)
QI" F») =1.

Shifting S„+1 (t„+1) to the left, we obtain

N(sn+1 (ta+1)0 }= (Fn+l, n' ' 'Pa+1, ry2sn (tn) ' ' 'Sr+2 (tr+2)Pa+1, r+lsr+1 (tel)Sn+1 (tn+1)

Sn+1 (tn+1)Sr+1 (tr+I)]sr (tr) ' ' 'Sl (tl)

+Papal, n' ' 'Pa+1, r+2Sn (tn) ' ' 'Sr+2 (tr+2) pa+1, r+2sr+2 (tr+2)sa+1 (tn+1)

Sn+1 (tn+1)Srp2+(tr+2)]sr+1+(tr+1) ' ' 'Sl (4)+ ' ' '

+PP p , sn2(nt )ns n(nt+n+11) —Sn+1 (tamil)sn+(tn)]Sn —1+(tn 1) Sr (tr) Sl (tl)-
+S„+1—(t~l)S„+(t„) S;(tr) "Sl-(4)}. (4.22)
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F„+I,ISI+(tI)S„~I-(t„~I)—S.~I-(t.+I)SI+(t))
8—.„(t.-„)8,+{t,) (4.23)

combinations of p pairs such that

2"(2p, a)—= Q C."(rl„/„j . ; rlI, /I)
all p pairs

S~I (t~I)8I—(tI) =0, (4.24) XC,"{rlI,/I) f"(rs~, /„;;eI,/I}

Eq. (4.20) ls pl'ovcll.

The numerical value of the contraction 8 +I+(t +I)
X81+{tI)involved, in {4.20) is determined by the state

~/ 1,—a)=S,—I+(t, I)" SI+(/I)~a), (4.25)

on which it operates to the right. Since IIo contains
SI,"s only, the state

~
a) as well as ~/

—1, a) will be an
eigenfunction of all the S~"s.Although we are interested
in the vacuum state ~0) introduced by (4.10), it is
useful to consider an arbitrary S' eigenfunction ~a&;
this permits us to arrange the Wick theorem in doser
correspondence with the operator form of the theorem
for fermions and. bosons with c number contractions.
The only nonvanishing contractions are of the type
(4.19a), and the numerical value in (4.20) is given by
the eigenvalue equation

8.~I-(t„+I)8I+(tg
~
l—1, a)

=5~1,I(G +I (t +I—tI))I I,.~/
—1, a), {4.26)

where the expectation value (G~+I (t„+I—tI))~ I,, is
readily calculated from (4.9b) and {4.25) by counting
the number of changes in S„+~' produced by the opera-
tors Sy+ ' ' ' S~

Lemma 2 is one step in the reduction of a time-
ordered product to normal form. It is useful to have a
more complete notation which incorporates the inter-
change factors P„+~, ~ .F„+j,~+3 which precede each
contraction in (4.20) and to keep track of the state
(4.25) to the right on which the contraction operates
since subsequent contractions will remove operators on
either sid.e of it. Let

C,"{m,/)—=F„,„ I ~ F,I+I(8 +(t )81+(t,)). .., (4.27)

where the nonzero contractions 8 (t )81+(tI), for
t„)tI, are to be evaluated from (4.26). Further, let
0"({rl~, ,nI)) be the standard normal product of
rl —p operators obtained from 0" by deleting the p
operators S„+, ~ ~, S„+.With this notation Lemma 2

becomes

Coro))ary:

S„„+(t„„)O-~a)=X{S.„+(t 1)O") ~a)

+P C .+1(v+1 l}0"+'({n+1,l) }~
a). (4.28)

l=c

This is the analog of the lemma (A4—16) or (A4-47) of
Ref. 3 leading to the usual Wick theorem.

For a time-ordered product Q"=S„+(t„) Sl+(t,),
let us de6ne P"(2p,a) as the sum over all possible

Xo"((n~,/~; . . ; riI/I) ), (4.29)

where t„,&t„, ,& )t„,. The factor C, {N~,/„~
NI/I) is a generalization of C "(rN, /) introduced in
(4.27) but does not contain phase factors associated
with any operators S „,+, S~, ,+, -, S~,+, Sg,+, which
are removed by previous contractions. The value of
the contraction (8„„+81,+)I„,, ~I. ..~~, involved in the
C," is to be evaluated by the state ~/„—1,((rII I,/I I',

rII ll}}a) which appears on the right of the opera-
tor SI,+ in 0"({rI~ I,/~I, ~,NI, /I}) ~a). The factor
f"{n„,/» ,'rII, /I) consists of phase factors FII, not
included in the C "'s. Hence the expression on the right
of (4.29) is obtained from the time-ordered product
Q"=S„+(t„) Sl+(tl) with the phase factor f"=1 as
follows: S'tartlllg fl'Gill tllc opclatol' SI+(tI) oil tile I'Igllt

of Q", we shift all lowering operators SI (tI) to the right
in time order and multiply f" by the phase factor FI,I,
associated with each interchange until the operator
product is brought into the standard normal order 0"
defined by (4.11). If there were no contractions, f"0"
would become equal to the normal product E{Q")
introduced in (4.12). If, in the course of the rearrange-
ment, an operator S„.+(t ) is to be contracted with an
opcl atolSI ~+ '{tp) wllclcte~)'t p, wc I'cplaec botll
operators by C.-(rI', /'~" ) after shifting the former.
We indicate this removal of a pair by indices in f"0",
that is, by f"( ~ ~;e', /', ~ ~ )0"{(;I',l'; ~ )). The
phase factors associated with bringing S„+(t„.) to the
immediate left of SI +(tI ) before forming the contrac-
tion are included in C "{e',/'~ ~ ~ }. In practice, a
normal product involving lowering operators will
vanish when it operates on a vacuum state and, conse-
quently, only those terms 0"((~ )) in which all spin-
lowering operators are contracted will contribute. The
corresponding factors f"( ~ ~ ) will then become unity
because all the phase factors Pq~ associated. with shif ting
S operators are included in C,"'s.

8'ick's

Theoretic:

A time-ordered product of e
operators can be decomposed into all possible combina-
tions of contractions multiplied by normal products as
follows:

e/2 or (I -1)/2
Q"

I a)—=S-'(t-)" SI'(/I)
I a) =

p=0

The theorem is proven by induction in exactly the
same way as the usual Vhck's theorem. It is obviously
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valid for n= 2 since (4.30) is written as

T(S,+(tp)S,+(4)}l a) = [E(Sp"(tp)Sg+(4))
+C,'(2,1)f'{2,1)0'({2,1)}]la), (431)

but this is just the definition of the contraction C, (2,1)
for the pair Sp+(tp) and S~+(t~) because f'{2,1)
=0'{f2,1})=1.

Let us assume that (4.30) is valid for n and let t„~~ be

later than all the other times. Then

2'(S-."(t.")e-) i )
n/2 or (n -1)/2

S~g+(t~g)P, „"
l
a). (4.32)

p=o

Use of the explicit expression (4.29) for P»" and the
corollary (4.28) in S„~&+(t„+&)P»"la) yields

S~~ (t-+~)Pp."la)= 2 C."(n„l.
l

";ni,li)" C."(n„l,)[X(S.+, (t„+,)f"fn„l„; ~ ~ ~ }0"f(n„,l„; ~ ~ ~ )} }
all p pairs

+ & C."+'(n+» 4+~lnp 4 )f"+'(n+1, i,+i, n„l„}0"+'((n+1,l~~, n, l„; })]la), (4 33)

where
1V(S.+~+(tz+i)f {n„l„; }0"{{n„,l, ; }}) =fz+&(n, l, )0.+&({n l (4.34)

and contractions appearing under the summation

lp+1

are with the newly added operator S„+&+(t„+&).Hence
(4.32) and (4.33) can be written in the form of (4.30),
where n is replaced by n+1. This proves the theorem.

It is evident that the method described in this section
can be extended easily to the case where the perturba-
tion Hq includes the s components SI,', since the opera-
tors S&' in the time-ordered product can be replaced by
expectation values. This replacement should take place
after a particular set of contractions and the corre-
sponding diagrams have been assigned, since then the
spin deviation of atom h at that time is known. After
this replacement the contractions may be carried out.

5. THE ANTIFERROMAGNETIC GROUND STATE

As an application of the cumulant expansion method
for spins developed here, we shall calculate the energy
of the antiferromagnetic ground state. We assume the
two-sublattice structure such that the nearest neighbors
of an atom on sublattice [A] are on sublattice [8]and
vice versa. Let SA, and S~, be spin operators of atoms
of types A and 8, respectively, and assume that the
values of spins

l S»l in [A] are all equal to t't jz and
that

l Ss, l
=hjs. The number of atoms on each sub-

lattice is E.
We assume the dynamical properties of the spin

system to be described by the anisotropic exchange
Hamiltonian:

H=2JQ [Sg '&'Ss *&'~

+ (1—v) (S~ *"Ssz*"+S~""Sizz")] (5 1)

where J)0 and (hk) runs over all pairs of nearest-
neighbor atoms. The Hamiltonian (5.1) is the Heisen-
berg model for y=0 and the Ising model for y= 1. In
(5.1), the components of S~„and Ss, are defined in a

common coordinate fixed in the lattice and denoted by
x(c) etc. However, it is convenient in our discussion to
rotate the coordinates j.80' around the x axis at every
atomic site in sublattice [8].This yields the following
transformation in the components of spin operators:

SA {)=S,A
' SA+(') =SA+, (5.2)

In this alternating coordinate system, '~ the Hamiltonian
is written as

H= —2J Q Sg„*Ss„*+(1—y)J
&aI&

X Q (Sgz Ssz +SQ„Ss,-). (5.3)
&aa&

I.et us divide the Hamiltonian into two parts Hp and
H~ as follows:

H=Hp+XHr,

Hp 2J Q S„zSs z

&aI&

(5.4a)

(5.4b)

Hr= (1—v)JE (S~.+Ssp++S~z Ssz ), (5.4c)
{aI&

where the unperturbed Hamiltonian Hp represents the
Ising interaction and the perturbation introduces spin
Qips. This form of the Hamiltonian is a simplification
of the one considered in Sec. 4 and will be obtained from
(4.2) and (4.3) by assuming that X&=0 and Jzp= J
when atom Ay, is a nearest neighbor of atom 81„but
JI,~= 0 otherwise.

The eigenfunctions of Hp are

"M. H. Boon (Ref. 12), and Y. L. %ang and H. B. Callen
(Ref. 7) have used the same coordinate system.
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6. THE CUMULANTS FOR THE GROUND-
STATE ENERGY

To demonstrate the procedure for calculating the
successive terms in the ground-state energy expansion
(3.9), we consider one of the 4th order terms which
results from inserting the Hamiltonian (5.4c),

(1—v)~ ' . 0

4 lim iiln P P P P
$/) a~ 4 3 2 1

dt4 dt3

X d82 dfl[exp42 (tl+ ~2+ 38+f4)]
X(OiSA4 (/4)SB4 (/4)SAa (4)SBa (/8)

XSA2 (~2)SB2+(4)SA1 (tl)SB1 (4) i 0)a~aaaaal ~

(6.1)

Each of the summations is over all pairs of neighboring
atoms A; and 8;. The factor 4 on the left results from
XB(X4)/BX in (3.9) and the upper limits of the time
integrations replace the denominator factor 4! in (3.9).
The other 4th-order terms have different numbers or
sequences of S+ and S pairs.

Application of Wick's theorem decomposes a time-
ordered product into the sum of all combinations of a
normal product multiplied by C8"{488,li )'s coming
from the contraction of a pair S„(t ), Sl+(tl). Such a

where Am» and hm» are the s-projection quantum
numbers of SA„and SB„,respectively, in the alternating
coordinate system. The ground state of Ho is

IO)=—l-jA, jA, -", jB,-jB, -" ), (55)

and is antiferromagnetic. Since

SA„ iO)=SB, i0)=0, for all h and k, (5.6)

the state i0) is the vacuum state considered in Sec. 4.
We note that the transformation of the coordinate

system introduced in (5.2) does not alter the form of the
commutation relations in (4.5) since a nonvanishing
contribution appears only when the two operators
belong to a single atom.

contraction vanishes unless the sites m and l are the
same and t &ti. The nonzero combinations can be
represented in a familiar way by diagrams. If time
increases to the left, S+ and S—will be denoted by right
(Q) and left (X) termini, respectively, of horizontal line
segments showing the propagation in time of a spin
deviation on an atom. Lines at diBerent levels will
represent diBerent atoms and, whenever possible,
neighboring atoms will be shown on neighboring lines.
A contraction will give a 6nite segment terminated at
each end while an S+(/) in the normal product will give
a segment open on the left (right) and terminated at f.
In the perturbation expansion each terminus is con-
nected with a like terminus on a neighboring atom to
form a spin-pair excitation or de-excitation, both of
which are represented as a zigzag vertical line. Each
diagram will be a set of one or more slbcllsters with
vertical and horizontal sides. A subcluster is a set of
termini which are connected by (de-) excitation lines or
contractions but disconnected from any other terminus
in the diagram. Here overlapping contractions are not
considered to be connected to each other.

If we restrict ourselves now to the vacuum-state
matrix elements in (3.9), only complete contractions
contribute and the diagrams consist of closed sub-
clusters only. Figures 3(a) and 3(b) show the nonzero
contribution from a time-ordered product in (6.1) for
which Al ——A2, Bl/B2. Figure 3(a) contains two sub-
clusters and Fig. 3(b) contains one. The respective
contractions are

/ ~ / /

E.=SA4 (t4)8B4 (t4)SAa (/8-)8B8 (18)SA8 (f2)
/

XSB,+(t2)SA,+(tl)SB,+(4), (6.2a)
and

/
~

/

K8 S„, (ta)8B, (——t4)SA—, (t8)8B—, (t8)SA,+(t2)
~ / .,/

X8B,+(t2)SA,+(tl)SB,+(4) . (6.2b)

The sequence of the contractions in the sense of (4.29)
is to be taken in the order of, ", ', and '. If Ai ——A2
and Bi——J32 there are two additional nonzero diagrams.

The numerical value of E, is the product of the four
Co' factors

CO {BaaB1) FBaAa FBaAa GBaBa faBasa

=2jAi82 exp[2i/4J(2ta —t2—tl)] exp[—(i/I'8)4B(18 11)]8BB, ,

CO {AaaAliBaaB1) FAaBa +GAaAa +8AaAa

= 2j Ah' exp[2i/4J(4 —4)] exp[—(i/5) 4A(4 —4)]&A Al,

(6.3a)

(6.3b)

CQ {B4aB2iA 8aA 1 a BaaB1) FB4A2 GB4Ba ~B4Ba

=2jBPi' exp[2i/4J(34 —t2)] exp[—(i//8)4B(~4 4)]5B4Ba, (6.3c)

CO {A4aA 2i B4aB2a A aaA 1 a BaaBl) GA4Aa ~A4A2

=2j Ah' exp[—(i/Ia) 4A (/4 —t2)]bA4A„ (6.3d)
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where
pA+ po

& eA, o 2sj o,AJh (6.4)

and s is the coordination number.
In each of the time intervals tpq, tpp, t4p of Fig. 3(a), the

phase term for a given contraction contains the energy
of forming that spin deviation in the presence of the
spin conhguration generated by the as yet uncontracted
S+ operators preceding that interval. A general rule is
that in the product of the Co"'s the energy for each time
interval will be the total spin-deviation energy, which
is given by

the value of (Hp —Ep) =p p 2q—h'J, (6.5)

where 2p is the number of spin deviations and q is the
number of interactions among the spin deviations which
exist during that time interval. Sy definition, one spin
deviation is created by S+. In Fig. 3(a) the two spin
deviations on A~ in the interval t32 each interact with
the deviations on B~ and J32, giving q=4.

The prephase factor for a contraction with interval
t q is obtained from the prescription for (4.29) and is
equal to

2A'(jp, s—n), (6.6)

where e is the number of contractions for the same atom
which contain the entire interval t ~. For E, these
values are 2j&k', 2j&A', 2j&A', 2j&A', and for E& they
are 2jsh', 2(j~—1)h', 2joh', 2j~h', as can be seen from
inspection of Fig. 3(b). This rule as well as the rule in
the preceding paragraph for the phase is now i~de-
pendent of the order in which a set of contractions is
carried olt.

The cumulant contribution of Fig. 3(a) is propor-
tional to

X.—&01 F 10)&0 l
F 10), (6.7)

where I'~ is the time-ordered product for the A~8~ sub-
cluster alone and I'2 is for the A j82 subcluster alone, so
that

&0
~
F&!,0)=4j zj eh4 expL —(i/h) (p—2h'J) (tp —t&)],

(0
~

Fp~ 0)=4j &j &h' expI —(i/h) (p—2h'J) (t4—tp)].

(6.8a)

(6.8b)

The product in (6.7) is the cnmulant correction to E, in the sense of (2.3).
When the time integrations in (6.1) are done, each intermediate state gives the value of f(i/h)(Hp —Ep)] ',

and the 4x is canceled by the last time integral. Figure 3(a) contributes

—L(1—y)JA]' Q Q' L(p —2A'J) (2e—8A'J)(p —2h'J)]—'(4g„gohs)'
AI BI,ag

Ns(s 1)E(1 Y)Jh]'(4JAJBA )'(p 2A J) (2e 8A J) ' (6 9)

»»»»»»»»»»»

I(

»»~»» Q)

--«-- Al = Ap

ty ty

(a)

where P' means that B~ Bp is excluded ——in the
summation.

It is important to notice that, because of the re-
striction t4&t3&t2)t~ in the time integrations, the
cumulant correction no longer appears as a product as

it does in (6.7). The intermediate state energies are now
calculated by

the value of (Hp —Ep) =pe —2q'A'J, (6.10)

where q' is counted by regarding the subclusters I'~ and
P2 as spatially separated and hence divers from q in
(6.5). This is the consequence of the separate averaging
processes for F~ and Fp described in (6.7) to (6.8).
Because of (6.10), the cumulant correction to (6.9) is a
similar term with (2p—4A'J) ' replacing the last factor
on the right. This correction term is comparable with
the original.

Note that, since the intermediate states of Figs. 3(a)
and 3(b) are identical, their spin factors combine to
replace (2jzh)'(2 j&h)' in (6.9) by

(2j&h)'2!(2j&h) {(2j&—1)A), (6.11)

(

»»»»»'(

»»»»»»»»»»»l(

', (

»»»»»» 8~

»»»»»»
A~

»» AR
!I
o

g

in agreement with the result obtained by the usual
formulas for the matrix element of

So, So,+So, So,+(Sg, )'(Sg,+)' (6.12. )

t4

(b)

FIG. 3. Two diagrams belonging to a configuration
in the fourth-order terms.

A set of diagrams like Figs. 3(a) and 3(b) with the
same arrangement of S+ and S operators in space and
time will be represented by a single coePguration. The
diagrams of a con6guration will diGer only in the
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iI
m w m m ~X

FIG. 4. The second-order diagram.

c2= 4( (s—1)'—tt} (di —dp)+ 2tt(d2 dp+d2')

+2(z—1) (dp+d4 —2dp)+ (dp —2dp), (7.2b)

pp
——2s(j~+ js); (7.3)

combinations of overlapping contractions, but may have
different numbers of subclusters and therefore different
types of cumulant corrections.

The calculation of the eth order term E„in (3.10) for
the ground-state energy is summarized below. For the
form of Hr in (5.4c), only even e's contribute.

(1) Draw all interacting configurations consisting of
~e pair excitation and —', e pair de-excitation lines in a
definite time sequence 5„) & ti and with a horizontal
line indicating the existence of the spin deviations on
each site. Here two spin-deviation lines are considered
interacting if they coexist on neighboring sites. This
introduces the factor [(1—y)J]".

(2) The diagrams corresponding to a configuration
are obtained by drawing all possible contractions for the
given spin deviations. Overlapping spin deviations form
more than one set of contractions.

(3) For the numerical value of a diagram before
cumulant corrections: (a) Multiply by the inverse of
the value of Ep Hp given in (6.5) for each intermediate
state (b) M. ultiply by a factor 2t't'(j&, &

—e) given in
(6.6) for each contraction.

(4) For the cumulant correction for a diagram with
more than one subcluster first form all distinct parti-
tions of the diagram into subdiagrams composed of one
or more subclusters. The subdiagrams are treated as
spatially separated from one another. For each parti-
tion: (a) Multiply by the inverse of the value of Ep Hp-
given in (6.10) for each intermediate state. (b) Apply
3(b) to each subdiagram and multiply together. (c)
Multiply by the factor (—)' '(t—1)!coming from (2.3).
Sum over all partitions and add to (3).

(5) For each type of diagram, multiply the result of
(3) and (4) by Ns as well as by the number of times the
diagram appears in the crystal with a given A 181 pair.

and
di ——(4jg js) (pp —2)

—
'(pp —3)—',

d2 d2' (4j~ja) (pp —2)
—'(pp —4)

d, = 2(2j&—1) (2js) (pp —2) (&p 4)
d, =2(2jii —1)(2j&)(pp —2) '(pp —4)
dp ——2(2J&—1)2(2j& 1)(—pp —2) P(pp —4) i

dp
——(4jpjii) (pp —2) '.

(7.4)

Hp=Hpn 2J Q 8S~ ' pS~,'.—
(hk)

(7 5)

The quadratic terms in (7.5) gives the 2qh'J in (6.5)

TABLE I. Values of c1 and c2 as functions of the
lattice and the magnitude of the spin.

Lattice g Author' 2=2

The factor sEQ is the total number of closed chains
containing four distinct atoms A 1, 81, A2, and B2,
arranged such that each one is a nearest neighbor to two
others. This is different from the 0', used by Davis. The
terms di to d5 come from the corresponding diagrams in
Fig. 5 and the d6 is the cumulant correction term. In
Fig. 5, two horizontal lines linked by a dashed line
represent nearest-neighbor atoms in the lattice, while
the double-headed arrows mean that the diagrams
obtained by interchanging the times of the indicated
pairs should also be included.

The coeNcients c& and c2 as well as the energy E are
calculated using (7.1) to (7.4) for the lattices of interest
and with values of j&= j&=-,', 1, ~, 2, —', .The results are
compared with those obtained by Davis and Boon in
Tables I and II.

The difference between our values of c2 and those of
Davis can be explained as follows: The unperturbed
Hamiltonian used, by Davis is the "independent boson"
part in the Schwinger representation and is the part of
H p which is linear in the spin deviations, 5S&'= kj&

—S&',
so that

7. RESULTS AND DISCUSSION

A. The Ground-State Energy

By using the prescriptions (1) to (5) just described,
we have calculated the energy of the antiferromagnetic
ground state up to the fourth order in the perturbation
expansion. Configurations involved in this calculation
are shown in Figs. 4 and 5 but, for simplicity, the
different possible contractions are not shown. The
result is written as

Chain
Plane
sc
bcc

Chain

Plane

sc

0 Present work
Davis

2 Present work
Davis
Boon

4 Present work
Davis
Boon

0.1111
0.0526
0.0345
0.0256

—0.2500
—0.4590

C2

0.0426 0.0300 0.0229 0,0185
0.0292 0.0284 0.0226 0.0184

—0,0019 0.0126
—0.0098 0.0123

0.0988 0.0002

—0.0007 0.0055
—0.0015 0.0054

0,0344 0.0006

0 0099 0 0078 0 0065
0.0098 0.0078 0.0065

0.0045 0.0037 0,0031
0.0045 0.0037 0,0031

41

1.0000 0.3333 0.2000 0.1429
0.3333 0.1429 0,0909 0.0667
0.2000 0.0909 0.0588 0.0435
0.1429 0.0667 0.0435 0.0323

E=Ep+Ep+E4+ "=—(JsN&')(2j~js)
X@+el(1—7)'+cp(1 —7)'+ ], (7 1)

where

bcc 12 Present work
Davis
Boon

0.0049 0.0050
0.0047 0.0050
0.0088 0.0004

0.0037 0.0029 0.0024
0.0037 0.0029 0,0024

ci——2(pp —2)
—', (7.2a) a The three methods give exactly the same values for the trivial term cz.
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rapidly because of the quadratic terms included in Bo,
and this is seen especially for the linear chain in Table
II. The differences between our values and Soon's
values of cp seem to be due to errors in his formulas (74).Spin

wave'
Present

Lattice work . Davis' 3oon Marshall Oguchi

~ ~ ~ 1.631 1.692 1.726Chain' 1.750

Plane 1.331

1.736
{1.541)R

1.328
(1.324)8

1.200
(i.199)R

1.148
(1.148)R

B. The Long- and Short-Range Order

1.432 1.312 1.286 1.316

1.234 1.203 1.183 1.194

The long-range order is dehned by
1.199sc

1146 t=-'[(&j &) '(E ~ .')+(&j &) '(Z ~ .*)j1.148bcc

Tmz, E II. Ground-state energy of spins of magnitude one-half
coupled by the isotropic exchange interaction, y=0, in units of—Jsgh'/2.

Reference 6.
& Reference 12.

W. Marshall, Proc. Roy. Soc. (London) A232, 48 (1955).
d T. Oguchi, J. Phys. Chem. Solids 24, 1049 (1963).Also see J. C. Fisher,

ibid. 10, 44 (1959).
ps P. W. Anderson, Phys. Rev. 86, 694 (1952); R. Kubo, ibid. 87, 568

(1952).
f The exact value for the energy of the linear chain has been calculated

as 1.7726 by L. Hulthhn, Arkiv Mat. Astron. Fysik 26A, No. 1 (1938).
I The values obtained by keeping only c1 and cs but neglecting c3. Those

values should be compared directly with our results.

and (6.1O) and can be included to infinite order in his
perturbation expansion as Davis indicates. "For some
reason he did this only for the last time interval and
considered only the lower order terms in the other
intervals. Thus E4, E~, and the first terms in E6 and E7
in his equation (44) correspond to a part of our fourth-
order term E4 in (7.1), while the second terms in his Ep
and E7 belong to the sixth order term E6 in our notation.
Conversely, the terms in (44) of Davis can be generated
from the exact expressions (7.1) to (7.4) by retaining
one factor (ep —2) ' and expanding the remaining
products (ep—2) '(ep —3) ', (ep —2) '(ep —4) ' and
(ep —2) ' in powers of ep '. From Table I and also from
the values in parentheses in Table II, we see that the
Davis expansion does not converge well for the smaller
and j lattice dimension. The (1—y)P and higher terms
will have products of four factors (ep —r) ' or more
so that the expansions will be even worse. Our per-
turbation expansion is expected to converge more

=1—sLP'j~&) '(&»~ ')+ (&jn&) '(Z B~~s*)]

(7.6)

where ( ) denotes an average with respect to the
exact ground state. The value of

(2» .')
can be found by differentiating the energy expression
E=(H) with respect to eg/6, keeping j fixed, since
e~ ~ e~+n is equivalent to introducing an infinitesimal
external 6eld term

N

rsvp»'g '
h=i

in H. From (7.1) and (7.6), therefore,

ep Bci) f ep Bcs
I (I—v)'+

I

—— (1—v)4+ ".
2 Bep) 2 aeo

(7.7)

where the L
—(ep/2) (Bc,/Bep)] for i=1 and 2 are given

in Table III as functions of the lattice of interest and
the magnitude of the spin.

dl

--—
fI

I -- --X
p

I
1 ---- - --X-

dp

1 p

q ----X

42r

AI

Bl
X

4& and 4+

FIG. 5. All possible con6gurations
in the fourth-order terms.

"It is also possible to include the full interaction
—2JQ Sg„'Sg,*

(Ak)

in the unperturbed Hamiltonian using the Schwinger representa-
tion. See Ref. 15.

Lattice Authors

Chain
Plane
sc
bcc

Chain Present work
Davis

t0 8C1

2 8QQ

1.0000 0.2222
0.2222 0.0816
0.1200 0.0496
0.0816 0.0356

8Q 862
2 840

0.2500 0.1433
-1.1260 0.0873

j=2

0.1200 0.0816 0.0617
0.0496 0.0356 0.0277
0.0311 0.0227 0.0178
0.0227 0.0166 0.0131

0.0687 0.0458 0,0344
0.0623 0.0443 0.0340

Plane Present work
Davis

0.0356 0.0270 0.0181 0.0135 0.0108
0.0026 0.0259 0.0180 0.0135 0.0108

sc Present work
Davis

0.0080 0.0107 0.0079 0.0061 0.0050
0.0049 0.0103 0,0078 0.0061 0.0050

TmzE III. Values of (—(ep/2) (Bc;/Bep)] for i =1 and 2 as func-
tions of the lattice and the magnitude of the spin.

0.0129 0.0088 0.0062 0.0047 0.0038
0.0120 0.0089 0.0062 0.0047 0.0038

bcc Present work
Davis

a The two methods give exactly the same values for the trivial term
f —(QQ/2) (BC'/8QQ) g.
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The short-range order de6ned by

g= (Xzjpj&A') '(p S~„'Ss„'&
(hk)

(7.8)

where

(i1is)

is written as

g = —1+cd(1—y)'+3cp(1 —y)'+ ~ ~ ~, (7.9)
includes all connected diagrams and the corresponding
terms are omitted in

where the c; are given by Table I.
The comments given in connection with Table II are

again applicable to the comparison of our exact values
and Davis's values of the I

—(pp/2) (Bcp/Bpp)] in Table
III. In particular, Davis's expansion seems to fail in the
case of a linear chain with spin —,. Without calculating
the 6th order terms in perturbation, however, it is not
possible to compare our values of ] and g with those of
Davis. We note only that, for p=0, the exact value of
the short-range order g given by Orbach" is —0.59,
while our result in the 4th order is —0.75 and Davis's
value is —1.37 or —0.39 in the 4th or 6th order,
respectively.

I

(i1) (is)

& E' Y~Yplo&=& & &olY~lo&&olYplo)
(i1) (is) (6) (is)

+ Q (ol Ye+pl 0),umur. &7.11)
(i1is)

We remove the restriction on the summation by adding
the omitted, terms and at the same time replacing
&ol Y,+, I0) by(ol Y,+, lo&,.„,= &ol Y]+pl o&—&ol Y, lo&

&&(ol Y, lo&, that is,

C. The Methods of Davis and Boon

The cluster expansions given by Davis and Boon are
both obtained by rearrangement of products in each
order of the perturbation expansion of U (0, —pp) Io)
in order to permit the independent summation over
factors. The rearranged theory can then be written in
an exponential form.

As an example, let us consider a product with two
subclusters Y~ and Y2 corresponding to the upper and
lower subclusters in Fig. 3(a). When A ~

=A p, the value
(0 Y~p I 0) is different from the value (0 I Yq I 0)
(0 Ypl0& of the two subclusters which are completely
separated. Therefore

2 2 Y~Yplo)=l Z E' &oI Y~lo&«IYplo)
(i1) (is) (i1) (is)

+ 2 (oI Y~+plo&jlo& (7 10)
(i1is)

Boon used spin operators directly, but applied time-
independent perturbation theory apparently to avoid
the explicit use of Wick's theorem for spin operators.
The time-independent formulation complicates the
discussion but, since his unperturbed Hamiltonian is
the same as ours, the results should agree with ours
except for mistakes, possibly, in his counting of
diagrams.

Davis handles the cumulant corrections by using
indicator 8 functions for the confluence of spin sites. In
his representation each spin line in Y~ and Y2 has the
value 2j&,&A. The product of the values of the spin lines
for A& and, Ap is therefore (2jzh)' when A&HAp, but
becomes 2jz(2jz—1)h', when Az ——Ap, which he writes

(2jzh)' 2j~h'Bz, z,.—Doing the same for 8& and Bp
gives

P P Y&Yplo)-+ + 2 {(2j&h) 2j&h8»»}{(2jsA) 2j&h8&s }lo&
(i1) (is) (i1) (is)

= P P (2j „h)'(2j ~h)'+ g {—(2j&h)'(2 j&h')b»»
(i1) (is) (i1is)

—(2j~h)'(2jsh')bs», +(2j~h')(2j&h')8~», 5»»}Io). (7.12)

Since the Qrst term on the right of (7.12) obviously
corresponds to

2 Z «IY~I0)«IYplo&,
(i1) (is)

and the second term to

2 &oIY1+2lo)cumulus
(ilis)

the above expression becomes equivalent to (7.11).
"R. Orbach, Phys. Rev. 112, 309 (1958).

Davis did not give a diagrammatic representation of
his procedure. This was supplied by Wang and Callen, ~

who draw each nonzero 8 function as a "lock" between
spin lines. Thus our cumulants are constructed directly
in terms of linked diagrams which consist of a single
subcluster or subclusters linked together by locks. The
indicator 5 functions also operate in a subcluster like
that in Fig. 3(b), not to give a cumulant but to correct
the value of the product of overlapping internal spin
lines.

There is a trivial difference between the value
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assigned by us to a set of contractions and that given
by Wang and Callen in their Eq. (25), even when we
use their unperturbed Hamiltonian (=Hon). For Fig.
3(a) with A&=A2 we have (2jk)' and for Fig. 3(b) we
have 2j(2j—2)h' while their values are (2j)(2j—1)h'
for each. For a given configuration the totals are the
same. The difference arises from the use of spin opera-
tors and boson operators, respectively.

In Schwinger's representation the indicator functions
can be considered as cumulants of the u-boson products
which appear because the ground state of these bosons
is occupied. "To delne the subclusters in this case, we
need the notion of a contraction of a u operator with the
ground state which is represented by a line connecting
those two. In addition there will be the ordinary
u contractions. Each line now is a subcluster by itself
whose value depends on other overlapping lines in a
manner similar to the method of Wang and Callen. It
can be shown that their locks are in fact cumulants in
this description. Here a diferent type of cumulants is
obtained because the averaging process taken in this
method is diferent from ours.

U=—U (~, —~). (7.16)

The form (7.15) can be generated by functional differ-

~ J. L. De Coen, F. Knglert, and R. Brout, Physica 30, 1293
(i9O~).

D. Spin Green's Function

The cumulant expansion is applicable to the calcu-
lation of spin Green's functions also. The ground-state
Green's function

GM(t —t')—= —i(T{SL (t)Sk+(t'))), (714)

where ( ~ ) denotes an average of the Heisenberg
operators with respect to the exact ground state, can be
written in the interaction picture as

(ol T{s;(t)s.+(t') U.) I o&
Ggy (t—t') = —ilim, (7.15)

(ol U-lo)

where

entiation with respect to auxiliary external 6eld. Let

&ru)= &—I+tt Z {fA(t)S++f *(t)S ), (7.17)

and let U ~ be the corresponding U operator. Then

T{Sg (t)SI,+(t') U ) = — U r . (7.18)
~f.*(t)W (t')

Using (7.18) and

(OlAv{U }lo)=exp(olU —1lo),„,~, (7.19)

in (7.15) gives

a2
G (t—t')=ilim (olUrlo), „„

at g*(t)at g(t')
(7.20)

The first derivative terms are omitted in (7.20) because
they vanish when f=0.

In the perturbation expansion, each f'1, (t)SI+ intro-
duces an external spin deviation terminus O with
coefficient tg(t) and each {1,*(t')S& gives an external
terminus X with coefficient t I,*(t'). The significance of
the term external is that the terminus is not part of an
excited pair with an exchange interaction. The differ-
entiation in (7.20) picks out those cumulants with a
single S+ terminus at k and a single S terminus at h,
so that

Gqq(t —t') = —zP (Ol Sg Sg+U&ri
l 0),„„i, (7.21)

r

where U(~& is a cumulant diagram having an incoming
k line and an outgoing h line. The SI,

- and SI,+ give the
termini. Note that those external lines have to be
attached to the same subcluster in order to have a
nonvanishing contraction.

If the unperturbed Hamiltonian Hon is used, (7.21)
agrees with the Green's function expansion (34) of
Wang and Callen in terms of connected diagrams con-
taining "locked" parts because of the equivalence
shown earlier of the cumulants and the set of linked
diagrams corresponding to a given configuration.


