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High-Temperature Susceptibility of Heisenberg Ferrimagnets
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This paper presents the results of the derivation of exact power-series expansions of the high-temperature
susceptibility of Heisenberg ferrimagnets having a general two-sublattice structure with arbitrary values
of the spins on the two sublattices. The calculations employ the extension of the general diagrammatic
techniques developed by Rushbrooke and Wood. The calculations have been carried to terms including the
6fth power of the intersublattice exchange divided by the temperature. The radii of convergence of a large
number of examples of the series have been estimated.

~ XACT power-series expansions of the high-tem-
~ perature susceptibility and heat capacity of mag-

netic systems with Heisenberg exchange interactions
have received the attention of numerous investigators. '
In the case of nearest-neighbor ferromagnets and anti-
ferromagnets having general structure and arbitrary
values of the spin the most extensive calculations of the
series expansions have been provided by Rushbrooke,
Wood, and Morgan. ' 4 These results have been further
generalized by Wojtowicz and Joseph' ' to include the
contributions from second-neighbor interactions and
from first-neighbor biquadratic interactions. Additional
extensions of this work to include higher-order terms
and more distant neighbor interactions (for spin —,'only)
have been given by Domb, Wood, and Dalton. ' '0

Higher-order coefficients for the general ferromagnet
with erst- and second-neighbor exchange have recently
been provided by Pirnie and Wood. "The power series
for the susceptibility of Heisenberg systems with non-
equivalent lattice sites (we shall call such systems
ferrimagnets independent of whether the dominant inter-
actions are ferromagnetic or antiferromagnetic) have
not been as widely studied, however. Preliminary reports
on the susceptibility of certain garnet and spinel
structures have been given by the present author. ""
Results pertaining to general structures have not yet
appeared.

In this article we persent the results of the derivation
of power-series expansions of the high-temperature
susceptibility of Heisenberg ferrimagnets having a
general two-sublattice structure with arbitrary values
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of the spins on the two non-equivalent sublattices. The
theory presented here includes only inter-sublattice
exchange interactions; the additional contributions
which arise from intra-sublattice interactions are given
elsewhere. "The calculations employ the extension of
the general diagrammatic techniques developed by
Rushbrooke and Wood'; the modifications required to
account for the presence of nonequivalent lattice sites
are described. The computations have been carried to
terms including the 6fth pow'er of the exchange divided

by the temperature. The radii of convergence of a large
number of examples of the series have been estimated.

The physical system of interest is one formula weight
of ferrimagnet, A B~C,Oq, containing Ea A sites with
atoms of spin Sg, Eb 8 sites with atoms of spin Sg,
and Nc C sites with non-magnetic atoms. (N is
Avagadro's number; A and 8 sites are dered so that
b&~a; c is very often zero; 0& represents the anions. )
Each 8 site has s nearest-neighbor A sites with which
it interacts, while each A site interacts with rs nearest-
neighbor B sites (r=bia~&1). Interactions among the
A sites and among the 8 sites are not considered here. "
The spin Hamiltonian of this system in the presence of
an external magnetic field H, has the form

K= 2JP gIJH, Q, — —
P=+,,S; S;, Q=z,S;.+P,S...

where J is the strength of the 2 8(inter-sublatt-ice)
exchange interaction, where P is the sum of Heisenberg
exchange operators for all A-8 pairs, and where gpB,Q—
is the Zeeman energy operator for the entire system.
The index i is summed over A sites, while j is summed
over J3 sites. The operators P and Q commute.

The Hamiltonian shown in Eq. (1) is formally iden-
tical (but different in detailed structure) to that con-
sidered by Rushbrooke and Wood' in their derivation of
the susceptibility series for ferromagnets with all sites
equivalent. The formal statistical mechaoics of the
present problem is therefore the same as that of the
ferromagnetic problem and need not be reproduced
here. The essential result is that the zero-field suscep-

'4 P. J.Wojtowicz, in Proceedings of the International Conference
on Magnetism, Eottingham, l964, (Institute of Physics and the
Physical Society, London, 1965), p. 11.
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tibility can be formally expanded in a power series in
the variable J/kT:

2 rzAB ~
405 (A+r8)

~v Al z At z
AB AB AB A 8

X= (Cm/T) f1+ Q A„(J/kT)"),
n=l

(2)
rz
r z' 40

40

where T is the temperature, k is Boltzmann's constant,
and C~ is the molar Curie constant equal to (aA+bB) X
Xg'p'/3k, where A = S~(S~+1)and B=Ss (Ss+1).The
coefficients in the series are given by
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Fzo. i. Tabular representation of the coeKcient A4.

where (P"Q') stands for the normalized trace of the
direct-product matrix representation of the operator
P"Q', and where I'~(P"Q') means "that part of (P"Q')
which is proportional to 1P'. The 6rst term in Eq. (2)
is Curie s law for noninteracting spins, while succeeding
terms represent increasing orders of the statistical
mechanical perturbation of the exchange on the free-ion
paramagnetism.

The labor of calculating the coeScients, Eq. (3), is
greatly reduced by the use of a diagram technique
extensively developed by Rushbrooke and Wood. '
Because of the formal similarity of the Hamiltonians
in the ferromagnetic and ferrimagnetic problems the
mechanics of the diagram method of Rushbrooke and
Wood will be much the same here except for certain
small differences.

The classification, enumeration and evaluation of the
many different contributions contained in a given
(P"Q') are facilitated by the representation of these
contributions in terms of diagrams (localized graphs)
on the lattice. The pertinent diagrams consist of e lines
and two crosses. A line connecting nearest-neighboring
sites i and j represents the pair-exchange operator
S; S;, while a cross on site b represents the spin operator
S~,(A=i or j). Diagrams having isolated crosses,
double crosses or points connected by only a single line
are excluded since they all yield vanishing contributions. '

The use of the diagram method involves three
separate stages: (a) the 6nding and cataloging of all
the non-trivial diagrams or graphs constructed from
e lines and two crosses, (b) counting the number of
times that a diagram can occur on a lattice of 1V(a+b)
sites, and (c) evaluation of the traces of the products of
the spin operators which correspond to the diagrams.
All three stages of the computation are inQuenced by
the fact that the diagrams of the present problem
(unlike those of the ferromagnetic case) are character-
ized by having nonequivalent lattice sites connected by
the interaction lines. The points in the various diagrams
alternate A site, 8 site, A site, etc. This has the effect
in (a) of essentially doubling the number of diagrams to
be considered. For each diagram of a given topological
type with lines connecting the points in the order
A, 8, A, 8, A, ~ ~ ~ a similar figure with its points con-

nected in the order 8, A, 8, A, 8, . will most
probably also exist as an independent diagram requir-
ing separate treatments in (b) and (c). Some graphs
will, of course, have su6icient symmetry so that no new
diagrams are formed upon reversing the order of the
lattice points. The alternation of nonequivalent sites in
the diagrams does, on the other hand, serve to reduce the
total number of graphs somewhat by making it im-
possible to construct figures containing closed polygons
with an odd number of sides. Thus, in these calculations
diagrams containing triangles and pentagons do not
appear. Stages (b) and (c) proceed in the same manner
as in the ferromagnetic problem' except that the occur-
rence factors are now functions of two nearest-neighbor
numbers z and rz, while the traces become functions of
the two spin values S~ and S~.The number of nontrivial
diagrams which required evaluation in the calculation
of the erst through fifth coeS.cients were 1, 3, 7, j.2, and
67, respectively.

The results obtained for the first three coefhcients
are as follows:

Ag ——

3 (A+rB)

4rzAB
L(rs-1)B+(»-1)A——,'j,

9(A+rB)
(5)

4rzAB
l4»L5. («—.—1)+2j

135(A+ rB)

+12+2(9—15z)+B(9—15rs)) . (6)

The coeQicients A4 and A5 are more complex and are
presented in tabular form in Figs. 1 and 2, respectively.
The meaning of the tables is straightforward: The
numerical coefficients within the table are multiplied
by the spin variables above and by the lattice param-
eters on the left. The sum of all these is then multiplied
by the common factor preceding the dot. The quantity
q is defined such that ~Xbzq is the total number of dis-
tinct squares which can be constructed on the lattice
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rzAB ~
42525 (K+rP)

TABLE II. Numerical values of constants appearing in
Kq. (10) for several ferrimagnetic structures.

At) At f
A 8

IVI At

A 8
~V ArZ

A 8
A4 At

A 8 A 8 I

Structure
r z 2800

r z -5600

r zl -5600
r~z~ 2800

r z 6160

3200

-3200

3200

7280 7280 8?15

2100

Spinel
ad, ac Garnets
cd Garnet

0.06
0.01
0.18

0.22
0.30
0.18

4.45
2.08
2.88

0.599
0.537
0.572

z ~ 2800 3200 2100

r z -560 -3080 -3080 -5565

z -560 -3080 -3080 -5565 -3150

-3150

-4725

-4725

I -800 -40 -40 1272 1320 1320 2376 2376 1728

rzq -2800

zq -2800 -1400

-1400

q 3360 3080 3080 2940

Fro. 2. Tabular representation of the coefBcient Ag.

with nearest-neighbor A-8 bonds; the other quantities
have been de6ned above. The numerical values of the
lattice parameters for several structures are presented
in Table I.

Considerable care was taken to ensure the reliability
of the computed coefficients. At several stages in the
calculations the results were checked against those of
Rushbrooke and Wood' by removing the restriction
that the spins and sublattices be nonequivalent. Upon
making the reductions, c=b= —'„r=1, S~=S~, the
present results go over into those of Ref. 2 exactly
(except for the lack of triangle and pentagon terms as
described above. )

The reciprocal susceptibility can also be expanded as
a power series:

where the coefficients may be computed from the
formula

80—1 o

Explicit formulas for the B„will not be given; they are
much more complex in form than the corresponding A .
When numerical values of the B„are desired, the most
efBcient procedure is to compute the values of the A„
first and then use Eq. (8) to obtain the 8 For the.
convenience of potential users simplified forms of the
coefIIicients have been computed for several common

TABLE I. Numerical values of the lattice parameters for
several structures of ferrimagnetic interest.

Structure Formula'

Spinel
ad Garnet
cd Garnet
ac Garnet

(A) [B&]04
(C4) [A 4] (B4)044

(A4) [C4](B4)O»
(B4}[A2] (Cs)044

1 2 2 6 12
2 3 1.5 4 2
3 3 1 6 4
2 3 1.5 4 2

( ) =tetrahedra1 site, f j=octhedral site, { I =dodecahedral site; C is
nonmagnetic.

structures. These formulas are presented in the
Appendix.

It is well known that the zero-Geld susceptibility of a
ferromagnet tends to in6nity as the Curie temperature
is approached from above. Utilizing this property,
Rushbrooke and Wood' illustrated the procedure by
which accurate Curie points may be obtained from
estimates of the radii of convergence of the appropriate
susceptibility series expansions. Such estimates of the
Curie points of the three cubic lattices (simple, body-
centered and face-centered) with various values of the
spin (S=-', to 3) were then found to 6t the following very
remarkable formula:

(kT,/J) =0.5'/9(z —1)LS(S+1)—0.12j. (9)

Following this example we have also investigated the
radii of convergence of the susceptibility series in the
case of the spinels and several garnets for 25 diferent
spin pairs (S~=-,' to s and Ss =

2 to —,'). Estimates of the
radii of convergence were obtained by plotting
(A„/A„~)'I' against 1/n and then extrapolating to
1/x=0. This particular sequence of terms was found
to behave quite regularly and the extrapolations were
very smooth, particularly for large spins. In a number of
cases additional information obtained from the extrapo-
lation of the sequence of A 'I" proved helpful. The
accuracy of individual radii of convergence is judged to
be about 2%. This body of numerical data was then
analyzed for its dependence on the spin values. The
following formula for the Curie temperature was found
to summarize these results to within about 2%.

where the numerical values of the factors n, P, and y
are given in Table II for the several structures ex-
amined. The values of n, P, and y listed for the spinel
lattice differ somewhat from those reported in Ref. 12
and represent Curie temperatures which are about
2—3% lower than those reported earlier. The current
values are to be considered the more reliable; not only
was greater care taken in making the extrapolations,
but the additional data from the A 'I" was utilized.

Pursuing the similarity to Eq (9) furth. er, the factor
c defined as r (s—1) '"(rs—1) 'I' was also computed for
the three structures, and the numerical values obtained
are displayed in Table II. We note that c is almost a
constant independent of structure, and further than it is
very close to the value of the corresponding constant
(0.579) in the Rushbrooke-Wood formula Eq. (9).



The dependence of the Curie temperature in non-
equivalent-sublattice structures on spin and nearest-
neighbor numbers is thus found to be essentiaOy
analogous to that of the less complex cubic lattices.
The appearance of the square roots, moreover, is not
unexpected in as much as the simple molecular Geld
approximation to the Curie point of a ferrimag-
netic structure is known to contain the factor
[rs'S~(Sg+1)S~(S~+1)g'12.

APPENDIX

The coeKcients for the spinel are

A g
——G,=16'/(5+2B),

Am= G,(SA+11B—1.5)/3,
A 3=G, (108828—812—171B+12)/45,
A 4= G, (10280A'B+23192AB'—8504AB—520A'

—2464B'+5102+ 1068B—45)/270,

A g =G, (76297602'B2—1258360A'B—271996058'
+563862A B+580202'+265920B'

—25974A —54324B+1728)/141 75.

The above forms for A4 and A5 correct certain small
errors which appeared in these quantities in Ref. 12.

The coefBcients for the cd garnet are

A g= G,g =8JB/(2+B),
A 2= G.g[5 (2+B)—1.5)/3,
A 3=G,g[128AB—8(2+8)+12j/145,

A4 G,&—[—4700(A'B+AB') —3840~B
—520(A'+B')+510(A+B)—45j/270,

A5 ——G,g[15044802'B'—552200(Z'B+ ZB')
+259992$B+58020(Z'+B')

—25974(2+B)+1728)/14175.

The coefBcients for the ac and ad garnets are

Ag=G =82B/(2+1.5B),
Am= G (32+SB—1.5)/3,
A 3=G,(28828—51A —81B+12)/45,
A 4= G.(1576A'B+2680AB' —2312AB—192A.'

—520B'+324A+ 510B—45)/270

A s——G, (506560A'B' —197160A'B—320360AB'

+1606622B+22320A.'+58020B'—165245
—25974B+1728)/14175.


