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Exact expressions for the partition function, spin pair correlation function, and susceptibility of the one-
dimensional isotropic classical Heisenberg model are obtained in zero external field with cyclic boundary
conditions. It is shown that the methods used to derive these results enable the partition functions and
susceptibilities of finite clusters of interacting classical spins to be evaluated in terms of the 3un-j symbols
of Wigner. Exact results in one dimension are also obtained for the partition function and susceptibility of
a “planar” classical Heisenberg model. In this model the spin vectors interact via a Heisenberg coupling
but each spin vector is restricted to lie in a plane.

The anisotropic classical Heisenberg model described by the Hamiltonian

N
=— z 2 (f .-;"s,-“s;"+] .'jVS."’Sj”-i-] .'j’s."s,") —mH Z 8%,

G i=1
where 5%, s;¥, and s;* are components of the unit vector s;, is also considered. A perturbation series for the
zero-field free energy of the anisotropic model in one dimension with nearest-neighbor interactions
Jii*=Ji#=J and Jy*=+J is developed in powers of y—1 using the isotropic model as the unperturbed
system. Detailed calculations are performed to third order in y—1. It is found that the perturbation series
for the energy per spin breaks down as T — 0. A high-temperature series expansion for the anisotropic model,
which s valid for a generalinteraction potential and lattice, is derived by generalizing the methods developed
by Horwitz and Callen for the Ising model. This series is rearranged to give a simplified diagram expansion.
Finally, a practical technique for calculating the high-temperature series expansions of the zero-field free
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energy and susceptibility of the isotropic classical Heisenberg model is presented.

1. INTRODUCTION

HEN the magnitude of the spin in the Heisenberg

model is allowed to become infinite a classical

model of interacting spins is obtained. The Hamiltonian
of this model can be written in the form

N
= Z 2]¢,~S¢~S,-~mH-Z S;,

(O} i=1

1.1)

where s; and s; are unit vectors, 7 is the magnetic mo-
ment per spin and the first summation is taken over all
pairs of spins in the lattice. The partition function of
the Heisenberg model

Zn="Trace exp(—p3C) (1.2)

becomes in the classical limit an integral

Zy= /
U}

where dQ; is the element of solid angle in the direction
S;.

An advantage of the classical Heisenberg model is
that its thermodynamic properties can be evaluated
exactly in one dimension. Fisher! has obtained exact
results for the partition function and susceptibility in
zero field of an open chain of (V4-1) classical spins with
nearest-neighbor interactions. In Sec. 2 of this paper it
is shown by solving an integral equation that exact
expressions for the zero-field properties can also be

oo [ TL@0y/am) exp(—0), (1.3

N =1
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derived for a ring of N classical spins with nearest-
neighbor interactions. Both results agree in the thermo-
dynamic limit V — 0, as would be expected intuitively.

For two- and three-dimensional lattices approximate
methods must be used. The method of extrapolating
high-temperature series expansions has provided the
most reliable estimates for the critical behavior (7> T,)
of the Heisenberg model.? Recently the high-tempera-
ture series for the zero-field free energy and suscepti-
bility of the spin-} Heisenberg model have been ex-
tended by several authors®* using a technique first
proposed by Domb.5 In this method the free energy of
the infinite lattice is expressed as a sum of partition
functions of finite clusters of spins.

The author and Bowers® have shown that a con-
siderable graphological simplification occurs when the
cluster series is applied to the classical Heisenberg
model. In particular it has been demonstrated that only
star graphs contribute to the zero-field free energy
cluster series and that only star graphs and reducible
graphs which can be made into star graphs by the addi-
tion of one edge contribute to the zero-field suscepti-
bility series. In Secs. 3 and 4 a technique is presented
for evaluating the partition functions of star graphs in
terms of the 3n-j symbols of group theory, while in
Sec. 5 a similar procedure for evaluating the suscepti-
bilities of finite clusters is discussed. These new results,

2 C. Domb and M. F. Sykes, Phys. Rev. 128, 168 (1962).

zcbsl))omb and D. W. Wood, Proc. Phys. Soc. (London) 86,
1 (1965).

4G. A. Baker, H. E. Gilbert, J. Eve, and G. S. Rushbrooke,
Phys. Letters 20, 146 (1966).

5C. Domb, Advan. Phys. 9, 330 (1960).

6 G. S. Joyce and R. G. Bowers, Proc. Phys. Soc. (London) 88,
1053 (1966).
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when combined with the simplifications discussed in
Ref. 6, provide a powerful method of deriving the
high-temperature series expansions for the classical
Heisenberg model.

Stanley and Kaplan? have derived a new high-
temperature series for the spin correlation function

(s;-s;)="Traces;s; exp(—p3c)/ Trace exp(—p3) (1.4)

of the Heisenberg model by direct expansion of the
exponentials in Eq. (1.4). The terms in the series are
given a diagrammatic representation similar to that
used by Rushbrooke and Wood,? and it is shown that
for the classical Heisenberg model the number of con-
tributing diagrams is reduced by roughly an order of
magnitude. The specific heat and susceptibility series
can be obtained directly from the correlation function.
This provides an alternative procedure, to the cluster
series method discussed above, for calculating the
series expansions for the Heisenberg model. The con-
nection between the diagrammatic simplifications of
Stanley and Kaplan and those given in Ref. 6 is
established by expanding the finite cluster functions
as high-temperature series.

Brown and Luttinger® have applied the Bethe-Peierls-
Weiss approximation to the classical Heisenberg
model. It is interesting to note (although it was not
pointed out by these authors) that their results in
zero field become exact, in the limit N — o, for a one-
dimensional lattice and a Bethe lattice. This is im-
mediately seen by applying the star cluster series for
the zero-field free energy to these lattices.

Although the classical spin model has unrealistic
properties at low temperatures (such as a nonzero
specific heat) it does provide an interesting model for
studying critical behavior. In some respects the classical
Heisenberg model is similar to the spin-} Ising model.
For example, both models have star graph expansions
for the zero-field free energy and inverse susceptibility.!0

2. THE ONE-DIMENSIONAL SOLUTION

The partition function of a one-dimensional assembly
of N systems with a continuous range of energy levels

is given by
Zn=MY"4NPH -, (2.1)

where A\i, Ay, -+ are the eigenvalues of the integral

equation!!
f exp[ —BU (é1,62) Walb)dEz=Au(§1) . (2.2)

( 7 H) E. Stanley and T. A. Kaplan, Phys. Rev. Letters 16, 981

1966).

8 G. S. Rushbrooke and P. J. Wood, Proc. Phys. Soc. (London)
A68, 1161 (1955).

¢ 9SI§) A. Brown and J. M. Luttinger, Phys. Rev. 100, 685
1955).

10 For a proof of the star cluster expansions for the spin-}
Ising model see, C. Domb and B. J. Hiley, Proc. Roy. Soc.
(London) A268, 506 (1962).

11 See Ref. 5, p. 164.
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In this equation U(£y,£2) is the energy of interaction
between nearest-neighbor pairs of systems and y,(£)
is an eigenfunction corresponding to the eigenvalue \,.
(The variables #; and £ may correspond to a set of
variables depending on the detailed form of the inter-
action studied.) For the classical spin assembly in zero
field

U(§1,82)=—2J5;"8s, 2.3)

where s; and s; are unit vectors. We find by expressing
s1Sz in terms of polar coordinates that the integral
equation becomes

27 b3
/ / K (0o, Bupe) ¥ (Ba2) (% )
0 (]
= >‘ﬂ¢”(01:¢1) )

K (81¢1,02¢2) =exp(K cos®), (2.5)
050 = cosb; cosfz+sind; sinfs cos(pa—¢1), (2.6)

24
where @4

and K=2J8. We see that the kernel (2.5) is real and
symmetric and is therefore of the Hilbert-Schmidt
type. In this case it can be shown that Eq. (2.4) pos-
sesses a complete set of mutually orthogonal eigen-
functions and that all the eigenvalues are real.

The correct set of eigenfunctions are the spherical
harmonics (4r)"/2¥1,,(6,¢), which can be expressed in
terms of associated Legendre functions as follows:

QIH-1)(—m) 1qu2
Ym p)=(— — m
m(0#)=(=1) [ an(i+m)! ] Pi{cost)
. Xexp(ime), (2.7)
with
YVim(8,9)=(=1)"Vin*(0,¢). (2.8)

To verify this statement we evaluate the left-hand side
of Eq. (2.4) using the expansion

exp(K cos@)= (r/2K)!/? go (24 1)I 14(K)
XPi(cos®), (2.9)

(where Ip;3(x) are modified Bessel functions of the
first kind) and the addition theorem for spherical
harmonics

Py(cos®)=4r(214+1)1
1
X 2 l Vin*(62,02) Vim(01,¢1) . (2.10)

The integrations over (6:,4s) can now be easily per-
formed using the standard result

2r pm
/ f Ylm*(0,¢)yl'm'(0,¢)dﬂ= 511137,",,/ . (2.11)
0 0

It is found that (47)2¥,,(0,¢) is an eigenfunction of
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Eq. (2.4) with a corresponding eigenvalue
M) = (x/2K)*Iy4(K).
Substituting Eq. (2.12) in Eq. (2.1) we have

(2.12)

Zy(K)=(x/2K)¥ li::0 QHDIYE),  (2.13)

where the factor (2/41) is due to the degeneracy of the
eigenvalues. The eigenvalues are conveniently generated

by

M(K)=K¥d/KdK)'(sinhK)/K . (2.14)
Thus
M(K)=(sinhK)/K , (2.15)
M(K) =N(K)u(K), (2.16)
and
A(K)=N(K)[1—-3K"u(K)], 2.17)

where #(K) is the Langevin function cothK—1/K.

In the thermodynamic limit N —c only the largest
eigenvalue (/=0) contributes to Eq. (2.13) and the
partition function becomes

Zn(K)~[(sinhK)/K ¥,

which is the result obtained by Fisher! for an open
chain of N1 spins. As would be expected the particular
choice of boundary conditions becomes unimportant in
the limit N —oo.

The above method can be used to solve another
closely related continuum spin model. In this model
the spin vectors interact via a Heisenberg coupling but
each spin vector lies on the surface of a cone §=a. The
integral equation for the model is

(2.18)

27
exp(K cos?) / exp[ K sin%a cos(pa—o1) ]
0

Xa(@2) (d2/2m) =Nupu(¢pr) , (2.19)
which has eigenfunctions
Yau(p)=exp(xing) #=0,1,2,---, (2.20)
and corresponding eigenvalues
MK o) =exp(K cos’@)],(K sin’x). (2.21)

These results may be verified using the expansion
exp[K sin%a cos(pe—¢1)]= 2., I.(K sin’)

Xexp(ings) exp(—ingy). (2.22)
In the limit N— the partition function reduces to
Zn(K,a)~exp(NK cos?a)l V(K sin’e). (2.23)

When a=31r a “planar” classical Heisenberg model

JOYCE 155

is obtained. The specific heat in this case is
I(K) I*K)

lim (Cy/Nk)=K?| 1— K-'——
i 14(K)

] . (2.24)

Using the asymptotic series for the Bessel functions we
find that the behavior at low temperatures is

}gr}o (Cx/Nk)~3+(1/4K)+O0(K-2). (2.25)
It is interesting to compare this result with that ob-
tained for the “unrestricted” classical Heisenberg
model by Fisher.!

For studying the effects of anisotropy, in the classical
approximation, we can define a Hamiltonian,

H=— Z 2(]'”S«;ISJ'”"{—J”Sinj”"l-]’Sijz)
(i)

N
—mH 3 si#, (2.26)
=1

where the first summation is taken over all nearest-
neighbor pairs in the lattice, s;%=sinf; cos¢;, s#=sinf;
Xsing;, and s;*= cosf;. The case J*=Jv=0 corresponds
to the infinite spin Ising model and J*=Jv=J*=J cor-
responds to the usual isotropic Heisenberg model. (The
case J*=Jv=J and J*=0should not be confused with
the “planar” Heisenberg model discussed above.) The
anisotropic model can be solved exactly in one dimen-
sion,’? when J*=Jv=—J and J*=+J, using the ex-
pansion (2.9). The eigenfunctions are (4r)V/2¥,,(6,¢)
with eigenvalues

Nim(K) = (—1)m(x/2K) 2L (K). (2.27)

The partition function of a finite ring of spins differs
from the isotropic result (2.13), but in the limit N — o
both models give the same partition function (2.18).
Exact results have not been obtained for the general
anisotropic Hamiltonian (2.26). We therefore discuss
in Sec. 6 a perturbation expansion in powers of (y—1),
for the case J°=Jv=] and J¢=+vJ, where y=~1.

Although exact results have not been derived when
H3>0, expressions will be obtained in Sec. 5 for the
zero-field susceptibility of a finite ring of spins. We now
show that the techniques developed above can be
used to calculate the partition functions of finite
clusters of spins.

3. PARTITION FUNCTIONS OF FINITE
CLUSTERS

A finite cluster of V interacting classical spins s;- - - sy
can be simply represented in terms of a graph. A spin
s; is represented in the graph by a labeled vertex 7,
while an interaction —Js;-s; between two spins s;
and s; is represented by an edge joining the vertices 4

12T am gratefulto R. G. Bowers for pointing out this result.
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5 1

F1c. 1. A graph with a degree 2
2 vertex.

4 3

and j. A cluster is said to be connected (or linked) if
the corresponding graph is connected. The same
applies for a separated cluster. When the graph of a
connected cluster has an articulation point the cluster
is called a reducible cluster. If the graph of a connected
cluster has %o articulation points then the cluster is
said to be a star cluster.

The partition function of a finite cluster of classical
spins (in zero magnetic field) is

ZN=/ H (dQs:/47) 11 exp(Ki; cos®yj) , (3 1)
o Q, =1 (¢)

where cos®;;=s;-s;, and the first product is taken over
all edges in the graph. For a separated cluster Eq. (3.1)
immediately separates into a product of the partition
functions of all the connected components. In the case
of a reducible cluster Eq. (3.1) becomes a product of the
partition functions of all the star clusters obtained by
“cutting” the graph at all its articulation points. We
see, therefore, that the only partition functions which
have to be evaluated are those of star clusters.

The evaluation of Eq. (3.1) for star clusters is carried
out by expanding the exponential factors in terms of the
eigenfunctions and eigenvalues of the integral equation
(2.4) using Egs. (2.9) and (2.10). This yields

> I My(Ks)

{li}=0 (i)

(mu=+lz_1
[f
[‘m,,=~—-l”) o =1
H Ylu’mz: (01}¢2>Ylumw(0h¢]) ’ (3 2)

(%)

Z(G)=(dm) o

where {I;;} and {m,} denote sets of “dummy”’ summa-
tion variables corresponding to the set of edges in the
graph G, and C(G) is the cyclomatic number of the
graph G.

If the graph G has one or more vertices of degree two
a considerable simplification of Eq. (3.2) occurs. We
take as an example the graph shown in Fig. 1. The
contribution to Eq. (3.2) from the edges leaving vertex
2is
Mo (K12)N153(K 23) Y 119m10 % (01,01) ¥ 113m15(02,2)

X leamzs*(027¢2) lesmzs(03:¢3) .

We find, on integrating over dQ. and summing over /o3

(3.3)
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and s, that Eq. (3.3) becomes
)‘112(K12))‘112(K23) lezmm* (01:¢ 1) Ylle12(03’¢3) .

Thus a vertex of degree two can be eliminated by
simply modifying the product of eigenvalues. In general,
if the partition function of a graph G is known, then
all the partition functions of graphs komeomorphic with
G can be easily written down.

We can now give a general set of rules for calculating
Z N(G):

(2) Suppress all vertices of degree two in G and
label the edges of the resulting graph G’ with K,
Ks,---. (This. labelling procedure is arbitrary.) An
example is given in Fig. 2.

(b) Calculate Zy/(G") by applying Eq. (3.2) to the
graph G'. After changing the notation, so that the sets
of summation variables {/;} and {m;} are replaced
by the sets {/;} and {m}, and rearranging the product
of eigenfunctions we find

Zy(G)=(mec@1 3 3 TI Mu(Ka)

(Ui} {ma} 3

(3.4)

x ( I Ykm,(o,qb)}dsz]. (3.5)

ol

(i e (st
The labeled edges incident at a given vertex in G’ form
a vertex set {K;}, and the parameter § at vertex v
takes the values of all the subscripts ¢ of the elements
K; in this set {K},. The correct complex conjugates
can be assigned to the eigenfunctions in Eq. (3.5) by
making one of every pair of spherical harmonics with
the same subscripts a complex conjugate function.
[Since all homeomorphic graphs have the same cyclo-
matic number, C(G")=C(G).] For the example shown
in Fig. 2 Eq. (3.5) becomes

Z(G)=4r 3 X ME)M(Ko)A,(Ks)

l1lolg mimams

X/ Yh my (0,¢) lemz (07¢) Ylsma (0’¢)d9
Q

% f Y im* 08 Y 13ms* 0,0) Viyms*(0,0)d02.  (3.6)
Q

(c) Zn(G) is finally obtained by replacing each
A\,(K ;) in Eq. (3.5) by a suitable product I (¢ A;(K pq),
where K ,q are the labels of edges in G which are incident
at degree two vertices. For the example given above

Ay (K1) = My(K )My (K )\, (K54)
My(K'2) = Nip(K14)
AMa(K3) = Mig(K 15)M15(K 54) .

3.7

The above rules enable formal expressions for any
star cluster partition function to be written ‘down in
terms of integrals of products of spherical harmonics.
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3 4
5 — K Fic. 2. An illustration 0
! of the suppression of
2 I

degree 2 vertices.

Fi1c. 3. The basic @ graph.

4. APPLICATION OF THE 3n-j SYMBOLS

The integral over three spherical harmonics, which is expressible in terms of the 3x-j symbols of Wigner,
is well known?'3:

(Zl1+1)(212+1)(213+1):|1/2(l1 ls l3)(l1 la I3

2r pw
~/0 /; yhml(0>¢) Yl2m2(0’¢) Y13m3(0,¢) Sin0d0d¢=[ 47" O 0 0

) . (40)

mi ma Mg

Little work appears to have been done on integrals over four or more spherical harmonics. Suppose we have an
integral over IV spherical harmonics, then the formula

(211+1)(le+1)(21+ D2l a1 i Iy 1
Ve 68 Y 1 (08) =5 [ ] ( )Yzm*(0,¢)< ) 4.2)
im 47 mir mg m 0 0 O

may be applied to any pair of spherical harmonics in the integrand, and the original integral becomes a sum of
integrals over (V—1) spherical harmonics. Repeated application of Eq. (4.2) yields a sum of products of 3-5 sym-
bols. In the case of four spherical harmonics we find that

27 [
/ / T (58 14 (08) 1408 14 (038) S0 ()1 X L2t D)t D)2+ )22 D) 2 1)
0 0 "

Wb INfls b IN/W L INfls UL l
o B )
0 0 0/\NO O O/\m1 mys m/\ms ms —m
When the integrals in Eq. (3.5) have been evaluated, using the above results, it is usually possible to sum over
all the summation variables {,} using the sum rules, contraction formulas and orthogonality relations of the
3n-j symbols. Some examples are now given.

The expression (3.6), for the partition function of the graph G’ shown in Fig. 2, may be reduced, using Eq.
(4.1) and (2.8), to

Z(G)= T fIx,,.(K.-)(ZZ,-+1)(f; (l: 13)2 m%m (—1)"'“""2+"“*(f:z1 ok )( " h b ) (4.4)

l1lalg i=1 0 me ms/ \—my —me —ms

From the symmetry properties and orthogonality properties of the 3-5 symbol we find

3 U la I\?
2©)= T @@, 1) - («5)
lilals i=1 0 0 O
Partition functions of graphs homeomorphic with G’ can be immediately written down from Eq. (4.5).
As a second example we consider the basic ‘suppressed’ a graph!® shown in Fig. 3. The application of Egs. (3.5)
and (4.1) to this graph gives

Z( Z ﬁ)\ (K)(Zl +1)(l1 I ls)(h ls ls)(h I ls)(h s la)
‘a)—u...mal" RO 0 0 0/\o 0 0/\o 0 0/\0 0 0O

h b s h s ls\flu le ls L s I3 \ 6
X 3 II (—1)m. (4.6)
mieemg\TR1 M2 M3/ \—m1 —mMms Me/ \M4 —Me —Me/ \—Mms M5 —Mg/i=1
13 See A. R. Edmonds, Angular Momentum in Quantum M echanics (Princeton University Press, Princeton, New Jersey, 1957), p. 63.
14 An excellent summary of the main results is given in M. Rotenberg, B. Rivins, N. Metropolis, and J. K. Wooten, The
3-7 and 6-j Symbols (M.LT. Press, Cambridge, Massachusetts, 1959).

16 The notation for labeling the basic topological types of graphs is that given in M. F. Sykes, J. W. Essam, B. R. Heap, and
B. J. Hiley, J. Math. Phys. 7, 1557 (1966).
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TasLE I. Zero-field partition functions of the graphs shown in Fig. 3.

Graph G ZG)
Lol b\ b 5\
v s e (g g 0) (6 o o)
AN ALY/ A AN AN
5 Z. T @A DME) S @+D(3 ¢ @ oo
4 Z H QL+ DMK Ll s (14 Is Is (lv ls b (h W h (lz Is Is (la ls b f‘ 52 53
"‘(00000 0 o/\o o o/\0o o o/|p » 2|
9 Lol L\/h ls L\[(l I l9) b o W\(fl s \(ls I Is
B P (21,~+1)>\,,.(K.~)(0 00 (0 0 0 ( ( 0 0 (0 00 (0 0 0

I s ls} {h I .
X{zz Iy LS\l .I-Ix( s

7 Lol 2l U l\*ls s I\
y IE,,.-I_II(ZliJrl)M.-(K")(o 0 (0 0 o) (0 0 o)'

5 Lol INYL L1 Is 1\*
0 ,1§z,331<2"+‘”"‘1"‘)‘?‘2’“’(0 0 0)( )( L

Using the symmetry properties of the 3-j symbol and the definition of the 6-j symbol it is found that

Zia)= Z H A (K ) (2Ui1) (— 1)batott (l1 I la)(ll Is ls)<l4 I le)(h Is la>‘l1 s lz} @7
= st . .
A = R 00 oo o oo o oo o olu i &

Similar methods have been used to calculate the partition functions of all topologically distinct types of graphs
with cyclomatic number C(G) < 4. (A total of 23 graph types are involved.) We list in Table I the partition func-
tions of the finite graphs shown in Fig. 4 as further examples.

The partition functions of finite star graphs for the “planar” classical Heisenberg model can be evaluated
using the rules (a), (b), and (c), except that (3.5) is now replaced by

ZN/(G') = i H Al‘(K,) (all vernces [/ { H exp(zl;q&)} ] (4.8)

(li)=—w 1

The definition of the product JT; and the assignment of the complex conjugates is the same as in (3.5). For ex-
ample the application of Eq. (4.8) to the graph G’, shown in Fig. 2, leads to

ZZ(GI) = Z_wuo )‘l1(K1>)\lz(K2))\ll+lz(K3) ) (4.9)

lilg
where
M(K)=I,(K). (4.10)

The techniques developed above can in principle be easily extended to deal with the case H>0, although the
calculations soon become complicated. To describe a cluster of spins in a field we must extend the definition of the
graph respresentation. A labeled vertex H is introduced and the interaction of a spin s; with the field is represented
by a dotted edge joining vertex j to vertex H. The partition function of a separated cluster in a field is still equal
to the product of the partition functions of the connected components, but for a connected reducible cluster in a
field this “product” property no longer holds.

To find the partition function of a cluster G in a field, we draw the dotted edge graph, label the dotted lines with
L=pmH and treat the whole graph as a zero field graph of interacting spins. This general result is seen by writing
the spin-field interaction as mHsy - s;, where 8y is a unit vector in the field direction. An example is given in Fig. 5.
After suppressing the degree two vertices in the dotted line graph of Fig. 5 we obtain a 4 graph. The partition func-
tion of a chain of 4 spins in a field can therefore be written down from Table I as

l1 lz lazls ll 1525
Z=n.§;zs )\h(L)Nz(L)Ma(L)M(L)M(Kl))\la(Ks))\za(Kz)(0 0 0) (0 0 O) g(ZlH-l). (4.11)
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An alternative direct method of evaluating partition functions in a field is to use the field direction as a polar

axis for the spherical polar coordinates of the spins. The application of the expansion

exp(L cosbi) =2 A(L)(2¢+1)"2(4m) 2V 10(0:,93) , (4.12)

enables the following general expression to be obtained for the partition function of any graph G in a field:

Zy(@)=(m)o @Y S ¥ TIN5 TT QaekD1hai(L)

(L} {mi} {27} =0 i=1

X (s t [ / { H Y 13ms(0,8)} Y 506, ¢)d9] (4.13)

The graph G is the “full” edge graph with NV-spin vertices. The notation in Eq. (4.13) is similar to that in Eq. (3.5)
except that each spin vertex v; is now associated with a new summation variable ¢;. As an example we apply Eq.
(4.13) to the triangular cluster shown in Fig. 6. It is found using Eq. (4.1) that

Z2@)=% ¥ II @er1)QgtrOnE; >qu<f:>(l‘

l1l2ls 910995 =1

X(=1) 3y(o

Iy

Q1>(l1 by qg)<lz I3 qg)
0 0/\0 0 0/\0 0 O

@ h ls)( b g3 l3)<l2 L
v —v/\—=y 0 v/\v —p

((‘;2) . (414)

The last summation is performed using the standard result!4:

@ h I3 la g5 I3\ /b
e VA G
v 0 v —v/\—v 0 »v/\»

We finally obtain

b 4

92)___(91 q2 Qa){% g3 Qz}(__l)lﬂ_m_h. 4.15)
0 0 0 0/l &L I

ZG)=% ¥ ﬁ(zzi+1>(Zqi+1>xz;(Ki>AQi(L)<—1>“+lz+ls(’1 b 41)(‘ h q2>
0

l1l2l3 ¢y92¢8 =1

which is the partition function of an « graph (4.7) with
various K;= L. This would be expected from the dis-
cussion above, since the dotted line graph for the
triangle is an & graph.

F16. 4. Some basic topological types of
graphs with C(G) <4.

00

X<l2 I3 93)(Q1 q2 %){41 qs 42}, (4.16)
0 0 0/\N0 O O/l L1 I

00 O

The Bethe-Peierls-Weiss approximation, when ap-
plied to the classical Heisenberg model, leads to in-
tegrals which can be evaluated using the methods dis-
cussed above. The approximation treats the interaction
of a central spin sy with its nearest-neighbor spins s;
(t=1--.9) exactly and represents the interaction of the
spins s; with the rest of the crystal by an internal field
H; (which is assumed parallel to the external field H).
The Hamiltonian (1.1) is replaced by the cluster
Hamiltonian

a q
JCo=—2J 3 so:si—mH so—mH;- 3 s;.

=1 =1

(4.17)

Following Brown and Luttinger® we can write the
cluster partition function as

Zoa= / (dQo/4m)[exp(L cosfo) 1D,  (4.18)
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F1G. 5. An example showing the graphical representation
of a finite cluster of spins in a field.

where

D=/ (dﬂ,/47r) exp(Kso- s;+ Ly COSGi) , (419)
Q

and L;=BmH;. The field direction has been taken as the
polar axis. The basic integral (4.19) is evaluated using
Egs. (2.9), (2.10), and (4.12) which gives

D=3 (241N (K)N(L1)Py(cosbo).  (4.20)
1

The application of the expansion (4.12) to the integrand
of (4.18) enables Z, to be evaluated. For the one-
dimensional lattice it is found that

Za= 3, (2h+1)(2+1) 20+ 1N, (L) (K)

lilals
I3\?
) . (4.21)
0

The internal field H, is determined by a self-consistent
procedure.?

A
xxzz(Ll)mz(K)ma(L)<0

5. SUSCEPTIBILITY OF FINITE CLUSTERS

The most convenient method for calculating the
zero-field susceptibility

Xy(G)= lim RT'(3%/9H?) InZx(G) (5.1)

of a finite graph G is to use the fluctuation relation

BET/m2N)xx(G)=1+(2/N) ;_) {si's5), (5.2)
ij
where the spin correlation function (s;-s;) is defined by
C Sj)=ZN_1(G)/ o / 8i8; exp(—pe)
o QN
N
X II (@Q:/4x), (5.3)

i=1

and the summation in (5.2) is taken over all pairs of
vertices in the graph G. The results (si%s;")=%(s:"s;)

Fic. 6. A triangular cluster of spins.
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and {(s*)%?)=1% have been used in the derivation of

‘The spin correlation function, between two spins ¢
and 7 in a graph G, is readily determined by introducing
an interaction edge K;; between the vertices 4 and j.
If Zy(Gy;) is the partition function, in zero field, of the
resulting graph G;; then

(si'sj)= II{HIEO (8/0K ;) nZn(Gij) - (5.4)
When there is a direct interaction edge between the
vertices 7 and 4 in the graph G, the introduction of a
further edge K; is not necessary. The zero-field parti-
tion functions Zx(G;;) are calculated using the methods
of Secs. 3 and 4.

To find the correlation function between two spins ¢
and 7 on a ring of NV spins we require the partition func-

.

Fic. 7. The graph Gj;
whose partition function is N—M
required for the calcula- Egpges
tion of the correlation func-
tion (s;*s;) in a ring of N
spins.

M
EDGES

tion of the graph G;; shown in Fig. 7, which can be
written down from Eq. (4.5) as

Zn(Gi)= 2 (2h+1)(2+1)(2I+ 1N, (K)

lilals

, h L I\?
X)\zzN"M(K))\zs(Kij)( ) . (5.5
0 0 O

The application of Eq. (5.4) to Eq. (5.5) gives
(si*8;)=Zx"Y(G) l}_:, QL+1)lF 1N (KN, VM (K)
162

hola 1\?
X( ) . (5.6)
0 0 0
We substitute Eq. (5.6) in Eq. (5.2) and simplify the
resulting expression using the formula4

G (5 o0
=(+1)/(2+1)(21+3),
=0,

(5.7)

otherwise.

The final result, for the susceptibility of a ring of N
spins, is :

GBRT/m*N )Xy (G) = 1+[§'j QHINYE) T2 Y (+1)
=0 =0

M(E)N 21" (K) =M (KON (K)
l: ] (5.8)

A1 (K)—M(K)
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In the thermodynamic limit N —c we obtain

lim (kT/m*N)Xn(6G)=[1+u(K) J/[1~u(K)], (5.9)

which is the result derived by Fisher! for an open chain
of N41 spins.

For the “planar” classical Heisenberg model, with
the external field in the plane of thespins, it can be
shown that the zero-field susceptibility in one dimension
is given by

lim (2kT/m*N)Xy=[Lo(K)+11(K)]/
[Lo(K)—I(K)].

The ferromagnetic susceptibility diverges as 1/7 as
T — 0, whereas the susceptibility of the usual classical
spin model (5.9) diverges as 1/7. )

The correlation function between two spins in a
reducible graph can be evaluated in terms of star graph
correlation functions. Suppose we have a’ reducible
graph G made up of # star graphs G®..-G™ linked
together by articulation points then the correlation
function between two spins s; and s; in the same star
component G is independent of the other star graphs
and is given by

(si08)= lim (/0K ) InZ(Gi™).

(5.10)

(5.11)

This result is readily seen by applying (5.4) to the
graph Gi;.

If we have a reducible cluster G consisting of two
star graphs G1 and G linked by an articulation point
then it can be shown from (5.3), using the spin s, at
the articulation point as a polar axis, that the correla-
tion function between two spins s; and s; in the graphs
G1 and Gy, respectively, can be written as

(si*87)a=(8i*80)a,(8;* So)s- (5.12)
This result can be simply generalized to deal with cor-
relation functions in a reducible graph with more than
two star-graph components. We see therefore that a
knowledge of the star-graph correlation functions
enables the zero-field susceptibility of reducible and
star graphs to be calculated. These correlation func-
tions are calculated from the partition functions of
star graphs using Eq. (5.4). For example, to.ﬁnd. the
susceptibility of the general 6 graph (shown in Fig. 2
as the graph G’) we require three distinct types of cor-
relation functions,'® which can be calculated from the
zero-field partition functions of the three graphs shown
in Fig. 8. The graphs (a), (b), and (c.) are a, v, and &
graphs, respectively, and their partition functions can
be written down from Eq. (4.7) and Table I.

16a Note added in proof. Four distinct types of correlation func-
tion are in fact needed. The omitted correlation function can be
found from the partition function of a 8 graph. (The definition
of a 8 graph is given in Ref. 15.)
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Fic. 8. The graphs

J
J J (a), (b), and (c). are
those whose partition
functions are required
for the calculation of
@) (b (c)

correlation functions in
a @ graph.

6. PERTURBATION SERIES FOR THE ANI-
SOTROPIC MODEL IN ONE DIMENSION

In this Section we derive a perturbation series for
the zero-field free energy of the one-dimensional classical
Heisenberg model, with small anisotropy, using the
isotropic model as the unperturbed system. We con-
sider an open chain of N+1 spins and take N to be
large so that finite size effects can be ignored. The
Hamiltonian is written in the form

ge=50o+3¢;, (6.1)
where
N—1
Bo=— 3 2J8:8it1, (6.2)
=0
N-1
Hi=— 3 2J(y—1)s:s541, (6.3)
i=0
and (y—1) is small. The free energy is
—BFy1=—BFO—BF® (6.4)
where
—BF®=N In[(sinhK)/K], (6.5)
—BF M =In{exp(—p31) )0, (6.6)

and (4)o denotes the average

(A)o=/90 AN}E)(%)A eXP(—ﬁffCo)/

[no B /,,Nﬁo (%%) exp(—B%y). (6.7)

The method developed by Horwitz and Callen'® for
deriving the high-temperature series expansion of the
free energy of the Ising model can now be applied to
expand —BF® in powers of (y—1). It is found

N-1
—BF(1)= Z [H (Pi.i-l-l!)—l(Ka)m'Hl]M{pi,i“;,
{Pi.i+1} =0 .
(6.8)

where §=v—1. The summation in Eq. (6.8) is taken
over all sets of non-negative integers ps,i41 and My, ;)
is conveniently generated by

N-1

lim H (Di,i+1)”"‘+1

{ai, i1} >0 =0

My, )=

N-1

XIn(TT exp(as,ivsi%si117))e, (6.9)
=0

!¢ G. Horwitz and H. B. Callen, Phys. Rev. 124, 1757 (1961).
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where D; ip1=9/0a,:41. Each term in Eq. (6.8) cor-
responding to a particular set {p;.1} is given a
graphical representation by drawing p;:;1 edges be-
tween the nearest-neighbor pair (7, i4-1) for each integer
Pi,i—i—l in the set.

It is usual when deriving perturbation expansions in
the theory of ferromagnetism to take a lattice of non-
interacting spins in a field as the unperturbed system.
In this case a considerable simplification occurs and
only linked graphs contribute to the free-energy ex-
pansion. The unperturbed system in our case consists
of interacting spins and separated or unlinked graphs
also contribute to Eq. (6.8).

It is convenient to group all graphs with the same
topology together. The different topological types of
graph with » edges are labeled (»,f) where i=1, 2, - -
We can write

N-1
II (i) '=Pnn,

=0

(6.10)

since this product is the same for all graphs in the set
(n,t). Using this graphical representation, Eq. (6.8)
becomes

‘ﬂF(l)"—' Z (K‘s)”P(nJ) Z Mlm,i+17: (6-11)

(n,t) { Pi,it+1)

where the second summation is taken over all sets of
integers {ps,i11} which give graphs in the set (n,7).

All linked graphs in the set (1,f) have the same graph
cumulant, which we denote by M (x,. But My, ;.. is
not the same for all unlinked graphs in the set (n,?).
We therefore label the graphs in the set (#,f) by G,
where g=1, 2, ---, and define the graph cumulant for
the graph Gt by M(G**). We can rewrite Eq. (6.11)
as
—BF®=2N 3. GK)"W 57" M (n,6yP (n,1)

(n,8)
linked

+ 2

(n,8)

unlinked

(OK)"P n,py 22 M(G,™Y), (6.12)

where W .1y is the number of ways in which the vertices
of a graph in the set (,f) can be labeled keeping the
connectivity of the graph unaltered. The contributing
sets of graphs for #<3 are shown in Fig. 9.

—e
1,1
>

0—-—0d.—-‘

F16. 9. The sets

of graphs #<3 which (2,) (2,2) (2,3)
contribute to the
perturbation series ® <o e—e—e—0
for the free energy (3,)) (3,2) (3,3)
of the one-dimen-
sional  anisotropic =~ «<>»d d e
classical Heisenberg (3,4) (3,5)
model. !

dye—d,

(3,6)
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The cumulant for the graph set (1,1), which can be

found from Eq. (6.9), is
M q,y=(s&si11%)0. (6.13)

This nearest-neighbor correlation function was evalu-
ated by Fisher! as #(K). Thus for large N

—BFy/N=In[(sinhK)/K]+36Ku(K)+0(6%). (6.14)
The second-order graph cumulants are
M 2,1={(s:)2(s:11*) Do— (s:°5117)0?,
M (2,9)=(s*(5441%) %S ix2%)o— (S %S4 1?)o{Sis1%5i42%0, (6.15)
M (2,3 = (8% i11%57Sj41")0— (%S i41)0(S /*S71%)0.
The higher-order correlation functions in (6.15) can
be evaluated using the methods discussed in Secs. 2
and 3. For example, to calculate the correlation function

required for M (s,1) we perform the integrations over all
spins j<4 and j>i+1, leaving

((52)%(si42%) o= Ag"Y(K) / / dQd Q1 (4m)~2
Qi J Qi

X c0s%0; 05?041 exp(K 080 i41). (6.16)

The polar axis for the spherical polar coordinates has
been taken in an arbitrary direction. After applying the
expansion (2.9) to Eq. (6.16) the integrations can be
readily performed. We find

M en=5(1—u+$u), 6.17)

where %,=M\,(K)/No(K). A similar procedure enables
the other cumulants in Eq. (6.15) to be evaluated as

M o= (4/45)u:?, (6.18)
M 3= (4/45)uus? (6.19)

where d=1, 2, - - - is the number of edges between the
two components of the unlinked graph (2,3). The sum-
mation over all unlinked graphs in the set (2,3) is

> M(Gq2'3)=(4N/45)u12§: wl.  (6.20)

The substitution of (6.18), (6.19) and (6.20) in (6.12)
leads to

—BFn/N=1n[(sinhK)/K ]+%58Ku;+(1/90) (8K)?
X (1—u2)~1(S—ma+ 301 — Aus?+ Surus) . (6.21)

We list below the graph cumulants for the third-order
graphs shown in Fig. 9:

Msny= (2/4725)(21u1+54u3+175u13——210u1u2) ,
M (3,2=(20/4725)(Tur+110y05— 14u,3)

M (3,3=(4/4725) (27u12u3-+28u,3— 35u:%us) ,
Msa=us"M 3.,

M s.5=u°M 3,3y,

M ,6=u22 M 3.5).

(6.22)
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We find on substituting (6.22) in Eq. (6.12) that the
third-order term in the perturbation series is

(1/14175) (Ka)"(l —%2)_2[441M1+ S4uz—12uym0— 329%,°
- 108’142143— 219%1%22+ 70%13M2+324M12%3
+54:M22M3+ 175%187422'— 210%17423] .

The perturbation series for the energy per spin
(En/N)=—2J(0/0K)(—BFn/N)  (6.24)

derived from Egs. (6.21) and (6.23) breaks down at low
temperatures indicating that Ex(K,5) cannot be ex-
panded as a Taylor series in § when T'=0. It is interest-
ing to compare these results with those obtained by
Katsura and Inawashiro” for the one-dimesnional
spin-} anisotropic Heisenberg model. A linked cluster
series in powers of v, where v is small, was developed
by these authors and detailed calculations were per-
formed up to third order in . The perturbation series
gave results for the ground-state energy of the system
which were in good agreement with known exact
results.

A partial check on the above results can be made by
deriving terms in the high-temperature series of the
anisotropic classical Heisenberg model.

(6.23)

7. DIAGRAM EXPANSIONS FOR CLASSICAL
ANISOTROPIC HEISENBERG MODEL

We derive in this section a high-temperature series
expansion for the free energy of the anisotropic Heisen-
berg model by generalizing the method used by Horwitz
and Callen!® for the Ising model. The Hamiltonian is
written as

50=3Co+3C1, (7.1)
where

N
3(!0= —mHZ S;‘z

=1

(7.2)

and
Jy=— 3 > 2T 58:855¢ .
(i) e

(7.3)

In the second summation of (7.3), € runs over the %, y
and z components of the spin vectors. (The following
derivation is not restricted to one-dimensional systems
or nearest-neighbor interactions.) The free energy can

be expressed in the form
—BFy=N In[(sinhL)/L]—BFx", (7.4)

where
—BFn™ In{exp(—B3C1))o, (7.5)

and (4) denotes the average given in (6.7). We now
introduce three parameters a;;¢, with e=%, y and gz,
for each pair of spins (i5) in the lattice and rewrite
(7.5) as

—BFyW= lim In{exp X 3 (2J:B+a:%)sisi%o-
{ aije} =0 (7)) e
(7.6)

17 S, Katsura and S. Inawashiro, J. Math. Phys. 5, 1091 (1964).

G. S. JOYCE

155

Using the operator expression

#(287 ij+ai;) = exp(287 ;Dij)d(eis) (71.7)
where D;;=9/da;;, we find
—BFy®= lim ]I [exp(28 X Dij*/:;¢)]
{aije} >0 e (25)
Xln{exp 3 3 aijtsisido.  (7.8)

(i7) e

The three exponentials in the product of Eq. (7.8) are
expanded as high-temperature series. The application
of the multinomial theorem to the resulting expressions
leads to

—BFy®W= lm > 3 ¥ J]IL(27yB)"i

{aiie) >0 {pi?) [ pifv) {pis?) i) e
X (pis) ILIT (Dsse)viie

@) e

XIn{ T IT exp(au;%s:;) Yo,

(i5)

(7.9)

where the summations are taken over all possible sets of
non-negative integers {p:;}, e=%, ¥, and z. Each term
in Eq. (7.9), corresponding to a particular choice of
the sets {pq¢}, is represented by a labeled graph by
drawing p;* lines labeled x between 7 and j for all
integers in {p;*} and repeating the procedure for the
sets {ps*} and {p.;*}. It can be shown that unlinked or
separated labeled graphs give zero contribution. (The
method of proof follows that given by Horwitz and
Callen®® for the Ising model.)

We classify all the labeled graphs with a total number
of # lines into sets of graphs (#,f) which have the same
topology. The parameter ¢ runs over all the different
topologically distinct sets of labeled graphs with #»
lines. (In this classification the labeling of the edges
must be taken into account.) For all graphs in the set
(n,f) we can define

Pmn= (I;I) I,I (P (7.10)
and
Man= lim JIII (D97t
{asje} >0 (i) e
XIn{ IT IT exp(aijssits;) o, (7.11)

(%) e

since these quantities are the same for all graphs in the
set (n,f). [The notation used in Egs. (7.10) and (7.11)
should not be confused with that used in Sec. 6.]

The summations in Eq. (7.9) are replaced by a sum-
mation over all possible sets of labeled graphs (u,f)
and it is found, using Eqgs. (7.10) and (7.11), that

—BFyW= 3 (28)"P (a,ts M (n,tsy W (n,5y!
(n,t)
X X ITIT (s9)Piie,

ik (i) e

(7.12)
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@,) (4,2) (4,3) (4,4) (4,5) (4,6)
X X Y Y z z X Y X Z Y Z
OO OO OO OO

X X Y v zz X Y X z Y 2
4,7) (4,8) (4,9) (4,10 (4,11) (4,12

F1c. 10. The sets of fourth-order graphs which contribute to
the high-temperature series expansion of the free energy of the
one-dimensional anisotropic classical Heisenberg model.

where W (5,1 is the number of ways in which the vertices
of a graph of the type (»,{) can be numbered 1, 2, - - -
keeping the connectivity of the indices unaltered. (In
the calculation of W, the labeling of the edges must
be taken into account.) The summation indices in the
second summation of Eq. (7.12) are restricted so that
each term in the summation corresponds only to graphs
in the set (n,1).

For nearest-neighbor interactions, with J;¢=J¢, we
can simplify the lattice summation in Eq. (7.12) by
following a procedure developed by Rushbrooke,®
which involves the concept of graphs of a given basic
type. Two graphs are said.to be of the same basic type
if they differ only in the labeling and multiplicities of
their edges. The basic type of graph corresponding to a
labeled graph of type (n,f) is obtained from the labeled
graph by replacing all the multiple edges by single edges
and ignoring the labeling of the edges. The basic
graphs, with a total of m edges, are classified into sets
of basic graphs (m,7), which have the same topology.

We define W, to be the vertex labeling factor for
the basic type of graph (m,7) corresponding to the graph
type (n,t), and N ¢, to be the number of independent
graphs of the type (m,) that can be made up of nearest-
neighbor edges in a given lattice. It can be shown!® from
the above definitions that

> I IT Uo7 =W on,oy N @,y IT (T,

ijkres (37) € €

(7.13)

where 7., 7, and #, are the total number of «, y, and 2
edges, respectively, in a labeled graph of type (u,t).
Thus Eq. (7.12) becomes

—BFxy V=3 (28)"I1 (J9™P tn,oM (n,1y

(n,t)

XW i,y W m,yN (myry . (7.14)

This expansion has been applied to the one-dimensional
system for the case J*=J¥=J and J?=+J. The basic
graphs for this system are just simple chains which have
N (m,n=N and W (,-y=2. The labeled sets of graphs for
n=4 which contribute to the zero-field free-energy
series in one dimension are shown in Fig. 10. The
graph cumulants M (., are calculated from Eq. (7.11)

18 G. S. Rushbrooke, J. Math. Phys. 5, 1106 (1964).
19 For details see Ref. 18.
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while P,y and Wn, are found by inspection. For
example, P,4=(212!)"! and Wu,gy=2. We given
below the final results for #<6:

—BFy/N=73 a:,K?", (7.15)
n=1
where
ax=(1/18)(2+~%),
as=(1/2700)(2— 242+ T7v%), (7.16)

ae=(1/2679075) (10775 — 6367*+ 1896y2—422).

If we substitute y=1+34 into (7.16), where & is con-
sidered small, we find

ax=[(1/6)+(1/9)5+(1/18)8%],
as=[(—1/180)— (1/135)5-+ (1/150)2
+(7/675)8%4- - -],
ae="[(1/2835)+(2/2835)3— (1/8505)5?
— (404/2679075)8%+ - - - ].

These results can be checked by expanding the perturba-
tion series (6.21) and (6.23) as a high-temperature series.
Agreement was found.

A cluster series for the anisotropic Heisenberg'model
similar to that developed by Domb® and Domb and
Wood? for the isotropic Heisenberg model is readily
obtained from Eq. (7.14) using a method given by
Rushbrooke.’® We perform a formal partial summation
over all sets of labeled graphs (»,f) which are of the
same basic type (m,7), and write Eq. (7.14) in the form

—BFy W= (Z) N n,ryb(mry (K=K, K%L), (7.18)

(7.17)

where K¢=23J¢ and
¢(m.‘r)(Kz,Ky)Kz)L)
= X II (K9)"P oM .o W a,ty™ W () -

(n,t) €

(7.19)

The summation in Eq. (7.19) is over all sets of graphs
(n,) which are of the same basic type (m,r). The
¢ m,~ functions are found in terms of partition func-
tions of finite clusters of spins by successively applying
(7.18) to finite graphs. For the spin-} isotropic Heisen-
berg model this method has provided a powerful method
for calculating high-temperature series expansions.®*
For the classical anisotropic model the cluster series
(7.19) is not very useful because of the difficulty of
evaluating finite cluster partition functions with
anisotropy present.

The diagram expansion (7.12) suffers from two dis-
advantages. The calculation of the graph cumulants
soon becomes very tedious and the restrictions on the
summation indices have to be carefully analyzed.
Horwitz and Callen' avoided these difficulties for the
Ising model by removing the restrictions on the lattice
sums and expressing the graph cumulants as sums of
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products of single-spin cumulants. A simpler diagram-
matic expansion results. This procedure can be gener-
alized to the anisotropic classical Heisenberg model. The
single-spin cumulants M (#.m,,n.) in this case are
defined by

In{exp(xs;®+ysi¥+25:) o

» xnzynyzn,
=24 M (n2ymy,m2)

nznynz Ny !n,, !ﬂz :

(7.20)

where the prime denotes the exclusion of the case
ny=ny=n,=0. It can be readily shown using the opera-
tor “trick” (7.7) that
lim
z — 0,0y —
az — L

Xln/& exp( Ze aaf)(%) . (1.21)

3

M(n:ﬂ}nl/’n=> =
a.

o 11 (8/0a)™

By direct differentiation ofgEq. (7.21) the single-spin
average ((s:%)"(s#)"2(s%)"s)o can be expressed as a sum
of products of single-spin cumulants. For example,

(Siz>0= M(IOO) ’
(s:2s:¥)o=M (110)+M (100)M (010) , (7.22)
(s ¥5:#Yo= M (111)+ M (001) M (110)-+ M (100)M (011)
4+ M(010)M (101)-M (100) 3 (010)M (001).

We see therefore that the graph cumulants, defined by
(7.11), are also expressible as sums of products of
single-spin cumulants. When all the graph cumulants at
a given order # have been expressed in terms of the
single-spin cumulants and the restrictions on the sum-
mations in (7.12) have been removed it is found that
the following rearranged diagram expansion results:

—BFyW=3 (28)"P .y M n,sW (n,y™"

(n,t)

X ¥ ITII (Fgrae, (7.23)
ke (i) e
where -
M(n,t)=H M(nzv,ny”,nzu) . (7.24)

At each vertex v of a graph in the set (#,f) we associate
a single-spin cumulant M (#,%n,%%."), where n,*, n,°,
and #.? are the number of edges labeled #, y, and 2,
respectively, which are incident at the vertex ». The
product in Eq. (7.24) is taken over all vertices of a
graph in the set (,f). The lattice summation in Eq.
(7.23) is, now wunrestricted with J;=0. Although a
proof of Eq. (7.23) can be given by generalizing the
arguments of Horwitz and Callen,¢ it is simpler and
more direct to follow the methods developed by
Englert?® and Stinchcombe et al.?' This alternative

20 F, Englert, Phys. Rev. 129, 567 (1963).
21 R, B. Stinchcombe, G. Horwitz, F. Englert and R. Brout,
Phys. Rev. 130, 155 (1963).
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approach has the advantage that expansions similar
to Eq. (7.23) can be established for the spin correla-
tion functions.

An example is given in Fig. 11 of the graphical repre-
sentation of a typical term in the linked graph expansion
(7.23). The single-spin cumulants are conveniently
found, in zero field or as a power series in the field,
by evaluating the integral in Eq. (7.21) as

/ (dQ/47) exp(X aes®)= (> a)'sinh(X a?). (7.25)

Using a standard result we can write

M (noymy,n.)= %)Hn IT (8/8aq)"
.
w 201B,(—1)mH
— (X a®)", (7.26)
n=1 n(2n)! e

where B, are the Bernoulli numbers. In zero field it is
seen that M (n,,m,4,m,)=0 if one or more of #. are odd.
Thus the linked graphs which contribute to the zero-
field free-energy series all have an ever number of z, v,
and z edges incident at each vertex. A similar result
holds for the original expansion (7.12). The contributing
graphs for H0 have an even number of x and y
edges incident at every vertex and an arbitrary number
of z edges.

The expansions (7.14) and (7.23) are at present being
used to investigate the effects of anisotropy on the
critical properties of the three-dimensional classical
model. Diagram expansions similar to those given above
can be derived for the “planar” anisotropic Heisenberg
model defined in Sec. 2.

It should be pointed out that the expansion (7.14)
is not very convenient for deriving series expansions for
the isotropic model. This case can be treated in terms
of unlabeled graphs by rewriting Eq. (7.6) in the form

-ﬂF(l)= lim ln(exp Z (ZJ;jB-I—ai,-)si-sj)g. (7.27)

{ @i} >0 (%)

Analogous expressions to (7.12) and (7.14) can then
be derived by repeating the arguments given above.

8. CONCLUDING REMARKS

It was stated in Sec. 1 that the cluster series method
of Domb and Wood,® when combined with the results
of Secs. 3 and 4, provides a powerful method of deriving
high-temperature series expansions for the isotropic
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classical Heisenberg model. We now discuss this ap-
plication in more detail. The cluster series, which may
be obtained from Eq. (7.18), is

anN=Nln[(smhL)/L]+ (Z) N(m,,)(ﬁ(m,-,)(K,L) . (8.1)

It has been shown that, in zero field, only star graphs
contribute to this cluster series.>® The ¢(m,r(K,0)
functions for these graphs are found in terms of parti-
tion functions of finite clusters by applying Eq. (8.1) to
finite star graphs. For example, the application of Eq.
(8.1) to a single edge gives ¢(\y(K,0)=In\o(K), and the
application to an z-sided polygon (%), yields

¢<n>,,=1n[1+$; Q2+ 1], 8.2)
=1

For an (7,s,t)s graph'® with 7, s, and  edges along the
three “bridges” (see graph G’ in Fig. 2) we find, using
Eq. (4.5), that

e

>0 @h+1)(20+1)(205+1)

lilals
ls la)z]
0 O

=D +8)p— D (s+)p— P (rt)p -

¢(r.c.t)0=ln[

h
X ullrulzaulat O

(8.3)

Similar expressions can be found for the ¢, functions
of graphs with higher cyclomatic number (such as o,
B, & graphs) by using the formulas given in Secs. 3
and 4.

A formal expression for the free energy which takes
into account all star graphs with cyclomatic number
C(G)<2 is obtained by substituting Egs. (8.2) and
(8.3) into Eq. (8.1). We find

anN=%Nq ln)\o(K)‘i‘ Zs N(n)p¢(n)p

0 0
Z 2 N(r.a.t)e¢(r.s,t)o+ )

=2 t=2
s<Y)

(8.4)

<
N

where ¢ is the coordination number of the lattice, and
the restrictions on the second summations ensure that
the (7,s,)s graphs are not “overcounted”.

The ¢m,n(K,0) functions, when expanded as high-
temperature series, have a leading term of O(K™**(m.n),
where Am,=>0, is called the entry parameter® for a
graph of the type (m,7). (A simple general rule has been
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given for finding the entry parameters of the star
graphs.)® Thus if the ¢(m,r)(K,0) functions, for all the
star graphs which satisfy m~+\ e, <M, are expanded
to O(K™), then the high-temperature series expansion
for InZy is given correctly to O(K™). For example,
the expansion of the expression

InZy=%Ng In\y(K)
6
+2 Nyt Naenebazn, (8.5)
n=3

gives the series for InZy correct to O(K®).

The advantage of this approach over the usual
Brout-Horwitz-Callen type of expansion (7.14) is that
a computer can be used to perform the algebra required
to expand expressions such as (8.4) and (8.5) into high-
temperature series. Thus the detailed calculation of
graph cumulants of multiple edge graphs is avoided.

A similar technique can be used to derive the high-
temperature series expansion for the zero-field sus-
ceptibility. The cluster series in this case is

(3kT/'m2)XN=N+(Z) N (m, 08 m,n(K,0), (8.6)

where
g(m,f)(K,0)=lim 3(62/6L2)¢(m,1)(K,L) . (8.7)
L-0

The application of Eq. (8.6) to finite graphs enables
the gm,n(&,0) functions to be expressed in terms of
the zero-field susceptibility of finite clusters. The latter
can be determined using the methods given in Sec. 5.
The high-temperature series expansions for the free
energy and susceptibility (in zero field) of the isotropic
classical Heisenberg model are at present being ex-
tended by the author in collaboration with R. G.
Bowers, using the techniques discussed above. It is
hoped to give the results in a future publication.?
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