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CONCLUSIONS

The critical Geld Hp is quite large at most tempera-
tures. The simplest method of obtaining such high fields
is by utilizing pulsed-Geld techniques, but, with this
method, it is dificult to measure the weak ferromagnetic
moment directly, in the absence of spin Qop. A measure-
ment of IIO using a magnetic-resonance method could
avoid this diQiculty. Using such magnetic-resonance
studies, the theoretical rotating AI -axis picture could
be investigated. Also, more information about the
canting mechanism, especially at low temperatures,
could be obtained, and, from a knowledge of EIe(T),
it would be possible to find the temperature dependence
of the uniaxial magnetocrystalline anisotropy constant.

To calculate the resonance modes in the case where the
applied field deviates slightly from the special directions
considered here is somewhat more dificult as the sym-
metry of the equilibrium configuration is reduced. All
the above calculations were performed at essentially
O'K using the molecular-field approximation.
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The technique of temperature-dependent Green's functions is applied to a molecular-Geld model of the
orientational order-disorder transition of ortho-H~ molecules on a face-centered-cubic {fcc) lattice. The
chain of equations for the various Green's functions is decoupled by an approximation similar to the one used
by Tahir-Kheli and ter Haar, which enables one to solve the three remaining Green s-function equations of
motion. It is shown that the Green's-function approach leads to the same results as the more conventional
methods.

I. MODEL

A THEORETICAL discussion of the cooperative
orientational ordering of ortho-H2 molecules on

both face-centered-cubic (fcc) and hexagonal-close-
packed (hcp) lattices has recently been given by Raich
and James. ' ' For the case of a rigid fcc lattice it was
shown that the internal-6eld approximation (or molecu-
lar-field approximation) leads to a first-order phase
transition between an orientationally ordered phase,
stable at low temperatures, and an orientationally dis-
ordered phase, stable at high temperatures.

The purpose of this paper is to indicate how the
technique of temperature-dependent Green's functions
can be applied to a model of the ordering of ortho-H2
molecules on a rigid fcc lattice, valid within the frame-
work of the internal-6eld approximation. It is shown

that this technique leads to the same results as the more
conventional one, based on the minimization of the free
energy.

Leaving off the rotational energy of the molecules, the
Hamiltonian for the model to be considered is

where &;= (0;,Q;) speciaes the orientation of molecule
i. If we assume that the orientational coupling of the
molecules arises from quadrupole-quadrupole coupling,
the potential energy of interaction of molecules i and
j, V;; can be written as'

V,,=(20 /9)(70 )"'I';; P C(224 M(V)

' J. C. Raich and H. M. James, Phys. Rev. Letters 16, 173
(1966). This paper gives a list of references to previous experi-
mental and theoretical work on this problem.' H. M. James and J. C. Raich (to be published).

X&mes(&c) &sir(@s)&e,erprr(&;;) . (2)

' H. P. Gush and J. Van Kranendonk, Can. J. Phys. 40, 1461
(196').

'
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Here C(224; ME) is a Clebsch-Gordan coeiiicient, s and

r,,=6ssP/(2SZ, ,s), (3)

II. EQUATIONS OF MOTION FOR THE
GREEN'S FUNCTIONS

Temperature-dependent Green's functions have been
applied to a variety of problems in solid-state physics.
A review of this application of Green's functions has
been given by Zubarev. ' The Green's-function technique
was first applied to the theory of the Heisenberg ferro-
magnet with spin ~ by Tyablikov. ' An extension of this
theory to higher spin has been given by Tahir-Kheli
and ter Haar" and by Callen. "

The Fourier transform of the Green's function,
((A; B)), involving the two operators A and B satisfies
the equation of motion'

where Q is the molecular quadrupole moment, and R;;
is the vector connecting sites i and j, measured relative
to the crystal axis.

The space group Ea3 (Tss) assumed' for the crystal
structure of fcc solid ortho-H2 is in good agreement with
experiment. ' In this structure the molecules are distri-
buted over four simple cubic sublattices. The molecular
orientational distributions on each sublattice are axially
symmetric about equilibrium configurations oriented
along a different threefold axis of the crystal. Through
the center of each molecular distribution passes a three-
fold axis of the average charge distribution of the rest of
the crystal. Thus, the average charge distribution
around the molecule on site i will have a threefold axis
of symmetry in the equilibrium direction assumed to be
characteristic of molecules on that sublattice.

Because of this threefold axis of symmetry, one can,
within the internal-field approximation, replace the in-
teraction (2) by the effective interaction, valid for the
particular crystal structure assumed above, ' '

V,;=—(95 /18)1';;F o(;)F o(,), (4)

E&(A; B))=(1/2s)([A,B] &+(([A,Hj; B)), (12)

where the double brackets (( )) indicate Fourier
forms of Green's functions, and the single brackets ( )
indicate averages over the canonical ensemble at tem-
perature T. The correlation function is found from the
relation~

(B(t')A(1)&

'"(&A B)) +'.—«A B&) -'.
e

'-sE(t—t')dg
et'~ —1

=limi
e~O

where m; specifies the orientation of molecule i relative
to its symxnetry axis. For the case of solid ortho-H2, the
temperature is so low and the orientational interactions
so small that J=1 can be considered a good quantum
number. Then the effective Hamiltonian, given by Eqs.
(1) and (4), can be written in operator formr:

(13)

where P=1/kT. The Green's-function approach yields
solutions for the desired expectation values (13) in the
form of a large number of coupled equations. A common
feature of this technique is that in order to obtain a
solution it becomes necessary to decouple these equa-
tions of motion. In the description of the application of
the temperature-dependent Green's functions to the
present model for the orientational ordering of ortho-H2
molecules on a rigid fcc lattice, we shall follow treat-
ment of the Heisenberg ferromagnet by Tahir-Kheli and
ter Haar, " and use a somewhat similar decoupling
approximation.

By Eq. (12), the equation of motion for the Fourier
transform of the Green's function ((J,+; B)) is

JJ=r, v I
3(J')'-2jL3(J')'-2j (5)

where y;;= —(19/144) I';;. Here and below units where
A= 1 are used. J; is the angular-momentum operator for
a molecule on site i, with the s; axis taken along the axis
of symmetry for molecule i. The components of 1;
satisfy the basic commutation relations:

[J;+,J; $=2J *8 [-J+J *j ="wJ;+8;;, (6)

where
J+=J*azJ ~

For J=1 the following relations hold:
where, following Tahir-Kheli and ter Haar, ' one takes

B=(Jr-)"(Jr+) ', n=1, 2. (15)
(g)

(9)

(10)

J-J+ 2 Jz (Jz)

(J )'(J+)'= —6J'+(J')'+4(J')'+(J')',
From Kq. (5) and the commutation relations (6), one
finds(Js) s—Jg

For the sake of simplicity let us assume
Z(&Js+; B))=(1/2')&[Js+,Bj )

+6+;y;s(([3(JP)s—2j(1—2Js*)Js+; B)). (16)if i and. J are nearest neighbor sites
=0, otherwise.

s D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) fEnghsh transl. :
Soviet Phys. —Usp. 3, 320 (1960)].' S. V. Tyablikov, Ukr. Mat. Zh. 112, 87 (1959);see also Ref. 8.' R. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 88 (1962).
This paper gives also a fairly complete list of references for the
application of Green's-function techniques to ferromagnetism."H. B. Callen, Phys. Rev. 130, 890 (1963).

4 M. E. Rose, ELementury Theory of AngNLur Momentum Qohn
Wiley R Sons, Enc., New York, 1957).

6 K. F. Mucker, S. Talhouk, P. M. Harris, D. White, and R. A.
Erickson, Phys. Rev. Letters 16, 799 (1966).

6 B. C. Kohin, J. Chem. Phys. 33, 882 (1960).
7 T. Nakamura, Progr. Theoret. Phys. (Kyoto) 14, 135 (1955}.

(7) ~&&J.+'B&&=(1/2s')&[J.+Bj-&+&&[J,+&j-; B)&,
(14)



155 ORIENTATIONAL ORDER IN Ice SOLI D ORTHO —H2

It is seen that Eq. (16) involves higher-order Green's

functions, and it now becomes necessary to decouple this
equation of motion. The decoupling procedure which
will be used here is

«(J'*) Ju Ju+; B&) -. &(J, ) &(&J. Ju+; fi)). (»)
sp g

This decoupling approximation ignores any fluctuations
in (J;*)', replacing this operator by its average value.
From the translational invariance of the lattice it follows
that all averages are independent of the lattice index, or
(J,z) —(Jz) and ((J.z)P) —((Jz)o)

Then using Eq. (11), Eq. (16) is written

E(&J' &))= (1/2~)(LJ."»]-)
+67~(3((J*)')—2) (((J.+' B)&—2((J.*J.+' fl))) (19)

where 5 is the number of nearest neighbors (12, for the
fcc lattice). Equation (19) can be rewritten. in the form

([J,+»] ) 2Eo&(J,*J,+; 8))
&(J"&&)= —,(2o)

2ur(E —Eo) E Eo—
where

Ep ——AS(3((Jz)')—2) . (21)

Note that Eq. (20) still involves the higher-order
Green's function ((J,*J,+; 8)). It therefore becomes
necessary to develop a system of equations for the three
Green's functions: ((J,+; 8)), ((J,*J,+; 8)), and

(((J,*)'J,+; 8)&. By Eq. (12), the equations of motion
for the last two Green's functions are

E(&J *J+ B)&=(1/2~)&LJ 'J+B]-&
+«LJ.'J.'»1- &)& (22)

and

E&((J.')'J."B))= (1/2 )&L(J.')'J'»]-)
+«L(Ju')'J', &] '&&) (23)-

By Eqs. (5), (6), (10) and the decoupling approxima-
tions (17) and (18), the equations of motion (22) and
(23) become, respectively,

E«J 'J+' B»=(1/2 )&LJ.'J.'&]
&

+Eo(((J.*J.+' fl))—2«(J *)'J +' B)&) (24)
3,nd

E«(J.*)'J.'»&=(1/2 )Z(J.*)'J.'»] &

+EoD((Ju')'Ju+ Il))—2((J 'J'.+' fl))] (25)

It is seen that Eqs. (24) and (25) involve only the two
Green's functions: ((J;J,+; 8)) and (((J,*)'J,+; 8)).
Solving Eqs. (24) and (25) for ((J,*J,+; 8)), the Green's
function that occurs on the right-hand side of Eq. (20),
one obtains

«Ju'Ju+' B))= L(Ep/~) &(J.*)'J.+ K-)
—(1/2ur)(E —Ep)&LJ *J+8] )]/

L4Eo'—(E—Ep)']. (26)

(LJ' J. ]-)=2&J'&

&t:J.J,',J;] )=&L(J, )'J;,J;]-)
=-2+(J )+3((J )'&;

for m=2:

(30)

(LJu+ (J. )'J.+]-&=4+2(J*)—6((J*)'&

(LJ.'J.+,(J. )'J.+]-& (31)
=&HJ, )'J;,(J;)'J. ] )=o.

For v= 1, combining Eqs. (8), (28), and (30), one can
write both the left- and right-hand sides of Eq. (28) as
a sum of averages of J' and (J')'.
2—(J*)—((J*)')=2&J')C'(Eo)

+ l:—+(J')+ ((J*)')]LC'(— o)—C'(Eo)] (32)

Similarly, combining Eqs. (9), (10), (28), and (31),
for m=2, one 6nds

—&J')+((J')'&= L2+&J')—3&(J')')]C'(Eo) (33)

III. ORDER-DISORDER TRAN'SITION

Equations (32) and (33) are solved for (J') and ((J')')
to give

(34)

(35)

&J)=o

3Ep coth(-', PEp) =Ep—24' S.

For Ep/0, Eq. (35) can be rewritten in the form

6PT~L3&(J')'&—2]—»2=»{L1—&(J')'&]/&(J')'&} (36)

Similary, the internal energy, approximated by the
same technique used to decouple the Green's functions
(17) and (18), is, by Eq. (5),

&II&=—(19/3)&1'L1—3((J')')+(9/4)&(J')')'] (37)

Substituting Eq. (26) into Eq. (20), we 6nd

(LJ'»]-) Eo&P.*J'»]-)
((J,'; ~&)=

27r(E Ep)—n-(E+Ep) (E—3Ep)

2Ep'K(Ju*)'J. '»]-)
(27)

(E+Ep) (E Eo)—(E 3Ep)—

Using Eq. (13), an elementary complex integration
yields the following relation for the correlation function

(»."):
&&J.')= (LJu'»]-)C'(Eo)

+!&LJ,J,"»] &t C(-E.)-~(3E.)]
+l(L(J.*)'J.', fl]-&LC'(—Eo)—2~(E )+~(3E)],

(28)
where

C(E)=(eu~—1) '. (29)

For B=(J )"(J+)" ' with up=1, 2 and J=i, the
expectation values occurring in Eq. (28) are (in units
where A=1),

for s= 1:
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more conventional internal-6eld approximation, based
on the minimization of the free energy. ' "In that treat-
ment it was found' that the model undergoes a 6rst-
order orientational transition at a temperature given by
1sT,=191'/(4 ln2). Figure 1 shows ((J')s) as a function
of temperature. At T=0 there is an ordered phase with
((J')s)=0. At T= T., we see that ((J')s) abruptly as-
sumes the value ~~, characteristic of the orientationally
disordered phase, which is stable at all higher T. A com-
plete discussion of this transition is given elsewhere. "

In order to obtain a higher-order treatment (than
the internal-Geld approximation) of the orientational
order-disorder transition in fcc (or hcp) solid ortho-Hs, it
is of course necessary to consider the more general
Hamiltonian, given by Kqs. (1) and (2').

FIG. 1. The average value ((J')') as a function of temperature.

Equation (34) implies that the Mq ——+1 states must
contribute equally, i.e., that they correspond to a two-
fold degenerate level in the internal-6eld approximation.
The relation (36), specifying ((J')') as a function of
temperature, is the same as the one obtained by the
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Ferromagnetic transitions have been observed in dilute random solutions of Co in Pd having Co concen-
trations between 0.07 and 4.5 at.%.The transition regions near T, have been explored by using the Moss-
bauer effect of Fe"present as a very dilute impurity in the alloys. The hyperGne Gelds have been measured
by the standard Doppler technique at low temperatures and by a thermal scanning method near the tran-
sition temperatures. Data have been interpreted as showing the effects of statistical fiuctuations in the
concentration of the alloys, and have been analyeed to yield values for the mean Curie temperature and the
mean-square deviation in Curie temperature as a function of concentration. These values have been related
to the spatial dependence of the exchange interaction through a molecular-Geld calculation. It is found that
if one assumes the interaction is given by a Gaussian J(r) = exp( —r'/4o-~), in correspondence with neutron
diffraction results in Co-Pd alloys, then the values deduced from this study are &=11.5~1.2 & and
Jo/4 =0.02 K. However, comparison of the effective range obtained in the present study with the neutron
data and the total localized moment suggest that the Gaussian form factor is incorrect at large distances
and that the interaction has a more slowly varying and weak tail.

INTRODUCTION
' 'N certain solid solutions of magnetic ions in a non-
~ ~ magnetic material, the variation of Curie tempera-
ture with concentration may provide information on the
range of the magnetic interaction. It has been shown' '
that, within the Bethe-Peierls-Weiss approximation
with nearest-neighbor interactions, such a solid solution

*Work supported in part by the U. S. Air Force Once of Scien-
tiGc Research, Grant No. AF-AFOSR-594-64.

)Present address: Argonne National Laboratory, Argonne,
Illinois.' J. S. Smart, J. Phys. Chem. Solids 16, 169 (1960).

2 D. H. Lyons, Phys. Rev. 128, 2022 (1962).

will not support long-range magnetic order if the con-
centration is less than a critical value co, where

cp ——1/(s —1) .

Here s is the number of nearest-neighbor sites. If the
interaction is assumed to be constant over a larger num-
ber of sites E in the magnetic cluster, then s in Kq. (1)
is replaced by E. H in some alloy system one observes
a concentration below which the Curie temperature is
zero, then the inverse of this concentration gives the
approximate number of sites enclosed by the interaction.


