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The magnetization curves and the resonance frequencies are calculated for two types of antiferromagnets
with an antisymmetric exchange interaction of the form D;;-M;XM; and a uniaxial magnetocrystalline
anisotropy term K sin%. In one type of these antiferromagnets, the D vector is perpendicular to the easy
axis. This is presumably the case in the orthoferrites. For this case, we have calculated the resonance fre-
quency as a function of an external field applied parallel to the easy axis. In the second type of these anti-
ferromagnets the D vector lies parallel to the easy axis. This is the situation in hematite below the Morin
temperature. For this case, we have calculated the resonance frequency as a function of an external field
applied in the plane perpendicular to the easy axis. In both cases we obtained two resonance modes, and

the lower mode was found to have a frequency W_=

0 for a characteristic critical field, at which the anti-

ferromagnetic axis becomes perpendicular to the easy axis.

INTRODUCTION

HE canting effect responsible for weak ferro-

magnetism in essentially antiferromagnetic ma-
terials is attributed primarily to two types of mech-
anisms, i.e., single-ion anisotropy' and antisymmetric
exchange. The second is an exchange interaction of the
form D;;-S;XS;. This term was originally suggested by
Dzyaboshinsky,? who showed, on purely symmetrical
grounds, that such a term may exist. A theoretical
derivation of this term was given by Moriya® who
showed that it was due to the effect of the spin-orbit
term on the superexchange interaction. In this paper
we shall deal only with antiferromagnets of the second
kind, having uniaxial magnetocrystalline anisotropy
of the form K sin?. The D vector can be perpendicular
to the easy axis, as is presumably the case in the ortho-
ferrites (R FeO; where R is a rare-earth element),
according to Treves,* or parallel to the easy axis, as
occurs, for example, in hematite below its Morin
transition temperature. (Hematite in this temperature
range is in the antiferromagnetic phase, because the
magnetocrystalline anisotropy energy is lower than
the antisymmetric exchange energy.)

D PERPENDICULAR TO EASY DIRECTION

The Equilibrium Position

The situation where the external applied field is
perpendicular to the easy axis in materials with D
perpendicular to the easy axis had been discussed by
Herrmann® as a special case of a Hamiltonian having a
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Technology Division, AFSC through the European Office of
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more general form of the magnetocrystalline anisotropy.
We shall consider in this section the case where the
external field is parallel to the easy axis, taking the X
axis in the easy direction and the ¥ axis parallel to D;
the free energy F is given by

F=JM;-My—D-MXMy— (K/2M o?)(M 1.2+ M 2,%)
_H(Mlx"I‘MZz) ] (1)

where Mo=|M;| is the magnitude of the sublattice
magnetization, J is the molecular field constant, D is
the Dzyaloshinsky-Moriya vector, K is the uniaxial
magnetocrystalline anisotropy constant, and H is the
applied field in the X direction. Solving the equilibrium
and stability equations obtained by considering the
first and second derivatives of F, we found that there
is a gradual rotation of the antiferromagnetic (AF)
axis (see Fig. 1) with increasing field from a position
parallel to one perpendicular to the easy direction.
Thus there is no spin flop as would occur in the case of
an antiferromagnet.

The equilibrium directions of the sublattice mag-
netization vectors My, M, may be defined by means of
the angles @; and s, respectively, as shown in Fig. 1,
or alternatively, by the canting angle ® and the rotation
angle 6 of the AF axis. These sets of angles are related
by ai=®—0; as=%®+6. The equilibrium values of ®
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and 6 are found to be

sin®=~HH;/(H*—H?, for H<H, 2)
>(Hg+H)/2H o, for H>>H2 H,,
sin0_—"_’HdH/(H”c2——H2), for HgHo (3)

o~ for H2H,,
where
H=JMo, Hs=DM, Hx=K/M,,
Hl|0=[(2Hex+HK)HK]1/2’
and
Ho=3[—Ha+ (Ho+4H,%)'7]. )

Hj. is the field at which spin flop would occur in
the case of an antiferromagnet. The magnetization
in the X direction as a function of H is M ,=2M sin®
Xsing, and is shown in Fig. 2 for the case of SmFeO;
at room temperature. Here we have® H x=4.6X10° Qe,
H;=6X10* Oe, and Hx=170 Oe. For the pure anti-
ferromagnetic case, where H;=0, we get from (3)
the well-known spin flop at H.=H,. As H, increases,
we see from (4) that H, decreases and the transition of
the AF axis from parallel to perpendicular to the easy
axis becomes more and more gradual. This is to be ex-
pected, as there is a corresponding increase in the
ferromagnetic moment.

Resonance Frequencies

To obtain the resonance frequencies, we resort to
the usual small-signal approximation. This is done by
expressing the motion of the magnetization vectors in
terms of their deviation from equilibrium. We follow
the customary procedure® of transforming to two
separate coordinate systems, (S1,71,Y1) and (Ss,T:2Y52),
which describe, respectively, the motion of M; and M.
The S; and S; axes are chosen so as to coincide with
the equilibrium positions of M; and M,. Also, V3, Vs,
and Y are taken parallel (see Fig. 3). The transforma-
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F1c. 2. Magnetization in the X (easy) direction Mx, as a
function of an external field H in this direction, for the case of

SmFeQ; at room temperature. (Hex=4.6X10% Oe, Hgz=6X10*
Oe, and Hg=170 Oe.)

6 G. Gorodetsky and D. Treves, Phys. Rev. 135, A97 (1964).
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tion is formally given by

X1=S51 cosay+ T sinay,

X2= '—'Sz COSD[2+ T2 sinag y

Z1= S1 sinal—— T1 cosag , (5)
Zo=S? sinas+ T cosag .

In terms of the new variable, (1) becomes

F=JM®Y 1Y s— (JM? cos2®+ DM ¢? sin2P)
X (S1Se+T1T2)+ (J M 2 sin2®— DM o2 cos2®)
X (S1T2— SzT1) o %K (512 C082a1-|-522 C0820£2
+ T12 Sin2011+ Tz sin2a2+ 251T1 sinotl cosa1— ZSsz
X sinas cosas)— HM (S cosar+ Ty sinay— Sz cosaz
+7T, Sinaz) ) (6)

where X;, Y, Z;, and S;, ¥, T; are the components of
unit vectors R; along the sublattice magnetization
vectors R;=M,/M,. The dynamic equations may now
be written as

(Mo/"Y|)R5=R;XViF, i=1;21 ) (7)

where the gyromagnetic ratio |y| =1.86X 107 Oe~! sec™1.
In the small-signal approximation, the component of
M, along S; is taken as constant, and (7) yields the set
of four equations

M, oF oF

— =V i——S—, i=1.2,

[’YI aSi aY,' (8)
Moy s 2 720 et

L = L 1=1.4.

I’YI aT,; aS; ’

Taking the time dependence of the components of M;
perpendicular to S; in the form ¢7¢, (8) becomes

o148 Y1+ He V=0,

wlotgoYot-HexY1=0, ®
er—'b1T1+GT2= 0 )
sz—'szz-l—CTl: 0 y

where w=:(W/|v|), and
¢=Hox cos2d+H, sin2dP,

gi=c+ Hg cos’a;+ (— )" H cosas,
b¢=g¢— HK sin2a,- .

Tl\ ////
z

F1c. 3. Equilibrium
coordinate system.
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The condition for obtaining a nontrivial solution of this
set of equations is that its determinant vanish. This
requirement yields the secular equation

(W/v)*4+A(W/~v)*—B=0,

A=20H ex— 11— gabo

where

and
B (b1bs—*) (Hex»—g182) -

Setting H;=0 gives, as a special case, the well-known
antiferromagnetic modes” [see Fig. 4(a)]. The two
modes obtained from the secular equation are

(Wy/y)=3[—A£(42+4B)"]. (10)

This general result can be simplified for the following
cases:

(1) In the range HKHy?/H)|,. Here

A=— (2H 24 HA+2H?)
and
=—(H+H HL),

Wi\2 Hj\2
(—‘> EH;102+Hd2+2[1+(~—> :|H2,
v H,

W_\? Hjje\?
(s
Y H,

(2) In the range H.>>H> H,. Here,

giving

(11)

™ m
a1=—<5—¢1>) , a2=5+<1>, ¢=Hx+ (Hy— H) sind,

g=g1=go=2H s+ H, sin®,

and
b=b1="b,~¢c+H sin®— Hg cos?P,
giving
(Wi/y)'=~H+H:H,
W_/v)=H*+H;H—H, . (12)

It is clear from (12) that the lower mode vanishes at
H=H,. The resonance frequencies as a function of H,
for different values of Hg, are shown in Fig. 4. [Fig. 4(e)
describes the case for SmFeO; at room temperature].

D PARALLEL TO EASY DIRECTION
The Equilibrium Position

The case wherein D is parallel to the easy axis occurs,
for example, in hematite a—Fe;0;, below its Morin
transition temperature (73=2263°K). The case where
the external field is parallel to the easy axis, in such a
material, is well known.® A zero-frequency field was

7 C. Kittel, Phys. Rev. 82, 565 (1951); T. Nagamiya, Progr.
Theoret. Phys. (Kyoto) 6, 342 (1951); S. Foner, in Magnetism,
edited by G. T. Rado and H. Suhl (Academic Press Inc., New

York, 1963), Vol. L.
8 S. Foner, in Proceedings of the International Conference on
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Fic. 4. Resonance frequencies W, as a function of H for dif-
ferent values of Hg: (a) Ha=0 Oe, (b)Ha=103 Oe, (c) Hy=10¢
Oe, (d) Hi=3X10% Oe, (e) Ha=6X10* Oe [(the case of SmFeOs
at room temperature), and (f) Hz=10% Oe. All cases are for
H.x=4.6X10% Oe and Hx=170 Oe.

found at H)|o;=[(2Hx+Hg)Hg— H2 "2, which is the
critical field at which spin flop occurs. Note that for this
kind of material, the expression of H). is different from
the corresponding critical field in the previous case.
Assuming a unjaxial magnetocrystalline anisotropy
Eg=K sin%, one finds, in the two-sublattice approxi-
mation, with the applied field"in the plane perpendicular
to the easy axis, a gradual rotation of the AF axis
(see Fig. 5) from parallel to perpendicular to the easy
axis.’ This rotation of the AF axis is caused by the
torque due to the antisymmetric exchange interaction.
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Fic. 5. Sublattice magnetization
vectors. — Y
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Magnetism, Nottingham, England, 1964 (Institute of Physics
and The Physical Society, London, 1965).

( ;G) Cinader and S. Shtrikman, Solid State Commun. 4, 459
1966).
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Fic. 6. Magnetization
M as a function of an
applied field H perpen-
dicular to the easy axis.
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The free energy for this case may be written in the
form

F=]M1'M2—D'M1><M2— (K/2M02)
X (M1 +M2)—H(My~+Ms)

where D= (0,0,D).

Taking Z as the crystal’s easy axis (i.e., the [1,1,1]
direction in hematite) and ¥ as the direction of the
applied field, the canting angle ® and the angle 6 be-
tween the AF axis and Z are found to be

(13)

sin@%HKH/H”}, for H<H,
~(Hg+H)/2H o, forH>>H> H,, (14)
sinBE—HdH/H”c?, for HSHO (15)
=1, for H2>H,,
Hy=H2/H,. (16)

The net magnetization M =2M, sin®, as a function of
H, is shown in Fig. 6.

Resonance Frequencies

As previously, we use the small-signal approximation
and transform to more convenient coordinate systems.
The transformed coordinate system used for each sub-
lattice is shown in Fig. 7. Formally, the transformations
are given by
X;= (=) cosf- e,*+ (—)? sin® sinf- g,°

+ (=) cos® sinf- &,°,
Y;=cos®e,?,+sinde,?, 1
Z;= (—)?sinfe,*+ (—)? sin® cosfe,*

+ (=) cos® cosbe,?, i=12.

N >y
)
|

Fic. 7. Equilibrium coordinates, where X is the easy axis,
D=(0,0,D), H=(0,H,0). &,/|M;, &’ is tangent to the base bound-
ary of the cone, so that when §=0 we have &[|(—)"X. &7 is
defined so as to make (g%,¢,%¢,") a right-hand set. |ex|=1;
k=x, v, z; =1, 2. 0 is the angle between the AF axis and the
easy axis Z. ¢ is the canting angle between M; and the ZX plane.
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By straightforward calculations, we obtain
(Wi/v)= (BFA)(Cx+He)— (GFF)?, (18)
where

A =H e cos2®+H, sin2® sind,

B=A+H sin®d+ Hg cos2® cos?d,
C=A+H sin®+ H g (cos’® cos’§—sin’f) ,
G=H; cos® cosf, and F=3Hg sin® sin2.

For H=0, (18) may be written as
(W+/’Y)2EJH] 1&+H?, (19a)
(W_/vy=H 2. (19b)

This is the result that is obtained for the case of the
antiferromagnet.’® This equality is to be expected in this
range as E;=—D-M;XM,=20 for H=0. In the range

25

0 30 ‘60 Hy 90 120
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Fic. 8. Resonance frequencies W as a function of H for the
case of «—Fe:0; below its Morin transition temperature with
Hex=107 Oe, Hy=2X10* Oe, and Hx =100 Oe.

H.>>H?2 H,, we obtain
Wy
(—~) ~HLHA, (202)
Y
W___ 2
(———) ~H,H—H,), (20b)
Y

which corresponds to Fink’s results!! above the Morin
transition point, as. it should. From (20b), it is clear
that the lower mode W_ is equal to zero at H=H,.
The resonance frequencies W, as a function of H, are
shown in Fig. 8 for Hex=107 Oe, H;=2X10* Oe, and
Hg=100 Oe (hematite at about 240°K). A numerical
check of the first derivative of W, with respect to H
shows a discontinuity at H=H,.12

10 F, Keffer and C. Kittel, Phys. Rev. 85, 329 (1952).

1 H. J. Fink, Phys. Rev. 133, A1322 (1964).

2T am indebted to R. Hornreich for calling my attention to
the existence of this discontinuity.
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CONCLUSIONS

The critical field H, is quite large at most tempera-
tures. The simplest method of obtaining such high fields
is by utilizing pulsed-field techniques, but, with this
method, it is difficult to measure the weak ferromagnetic
moment directly, in the absence of spin flop. A measure-
ment of H, using a magnetic-resonance method could
avoid this difficulty. Using such magnetic-resonance
studies, the theoretical rotating AF-axis picture could
be investigated. Also, more information about the
canting mechanism, especially at low temperatures,
could be obtained, and, from a knowledge of H,(T),
it would be possible to find the temperature dependence
of the uniaxial magnetocrystalline anisotropy constant.

ANTISYMMETRIC EXCHANGE
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To calculate the resonance modes in the case where the
applied field deviates slightly from the special directions
considered here is somewhat more difficult as the sym-
metry of the equilibrium configuration is reduced. All
the above calculations were performed at essentially
0°K using the molecular-field approximation.
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The technique of temperature-dependent Green’s functions is applied to a molecular-field model of the
orientational order-disorder transition of ortho-H; molecules on a face-centered-cubic (fcc) lattice. The
chain of equations for the various Green’s functions is decoupled by an approximation similar to the one used
by Tahir-Kheli and ter Haar, which enables one to solve the three remaining Green’s-function equations of
motion. It is shown that the Green’s-function approach leads to the same results as the more conventional

methods.

I. MODEL

THEORETICAL discussion of the cooperative

orientational ordering of ortho-H; molecules on
both face-centered-cubic (fcc) and hexagonal-close-
packed (hcp) lattices has recently been given by Raich
and James.!? For the case of a rigid fcc lattice it was
shown that the internal-field approximation (or molecu-
lar-field approximation) leads to a first-order phase
transition between an orientationally ordered phase,
stable at low temperatures, and an orientationally dis-
ordered phase, stable at high temperatures.

The purpose of this paper is to indicate how the
technique of temperature-dependent Green’s functions
can be applied to a model of the ordering of ortho-H,
molecules on a rigid fcc lattice, valid within the frame-
work of the internal-field approximation. It is shown

1J. C. Raich and H. M. James, Phys. Rev. Letters 16, 173
(1966). This paper gives a list of references to previous experi-
mental and theoretical work on this problem.

2H. M. James and J. C. Raich (to be published).

that this technique leads to the same results as the more
conventional one, based on the minimization of the free
energy.

Leaving off the rotational energy of the molecules, the
Hamiltonian for the model to be considered is

H=33 Vi(Q:,Q),

%7

1)

where Q;=(0;,¢;) specifies the orientation of molecule
1. If we assume that the orientational coupling of the
molecules arises from quadrupole-quadrupole coupling,
the potential energy of interaction of molecules 7 and
J, Vi; can be written as?

V= (20r/9)(70m)2Iy; ¥ C(224; MN)
MN

XY omu(Q)YVon(Q)Y 4, ar4n(Qi)*.  (2)

¢ H. P. Gush and J. Van Kranendonk, Can. J. Phys. 40, 1461
(1962).



