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Effect of Antisynunetric Exchange Interaction on the Magnetization
and Resonance in Antiferromagnets~
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The magnetization curves and the resonance frequencies are calculated for two types of antiferromagnets
with an antisymmetric exchange interaction of the form 9;;.M;&(M; and a uniaxial magnetocrystalline
anisotropy term X sin'8. In one type of these antiferromagnets, the D vector is perpendicular to the easy
axis. This is presumably the case in the orthoferrites. For this case, we have calculated the resonance fre-
quency as a function of an external Geld applied parallel to the easy axis. In the second type of these anti-
ferromagnets the 9 vector lies parallel to the easy axis. This is the situation in hematite below the Morin
temperature. For this case, we have calculated the resonance frequency as a function of an external Geld
applied in the plane perpendicular to the easy axis. In both cases we obtained two resonance modes, and
the lower mode was found to have a frequency S' =0 for a characteristic critical Geld, at which the anti-
ferromagnetic axis becomes perpendicular to the easy axis.

INTRODUCTION

HE canting eGect responsible for weak ferro-
magnetism in essentially antiferromagnetic ma-

terials is attributed primarily to two types of mech-
anisms, i.e., single-ion anisotropy and antisymmetric
exchange. The second is an exchange interaction of the
form D;; S;)&S;.This term was originally suggested by
Dzyaboshinsky, ' who showed, on purely symmetrical
grounds, that such a terxn may exist. A theoretical
derivation of this term was given by Moriya' who
showed that it was due to the effect of the spin-orbit
term on the superexchange interaction. In this paper
we shall deal only with antiferromagnets of the second
kind, having uniaxial magnetocrystalline anisotropy
of the form E sin'8. The D vector can be perpendicular
to the easy axis, as is presumably the case in the ortho-
ferrites (RFeOs where R is a rare-earth element),
Rccordiilg to Tleves~ ol palaM to the eRsy axis' Rs

occurs, for example, in hematite below its Morin
transition temperature. (Hematite in this temperature
range is in the antiferromagnetic phase, because the
magnetocrystalline anisotropy energy is lower than
the antisymmetric exchange energy. )

D PERPENDICULAR TO EASY DIRECTION

The Equilibrium Position

The situabon where the external applied 6eM is
perpendicular to the easy axis in materials with D
perpendicular to the easy axis had been discussed by
Herrmann' as a special case of a Hamiltonian having a

more general form of the magnetocrystalline anisotropy.
Ke shall consider in this section the case where the
external field is parallel to the easy axis, taking the X
axis in the easy direction and the I' axis parallel to 9;
the free energy F is given by

P= JMr Mo—D MrXMs —(g/2Mo')(Mie'+Moss)
—H(Ms, +Ms ), (1)

where Mo ——~M;~ is the magnitude of the sublattice
Inagnetization, J is the molecular 6eld constant, 9 is
the Dzyaloshinsky-Moriya vector, X is the uniaxial
magnetocrystalline anisotropy constant, and H is the
applied field in the X direction. Solving the equilibrium
and stability equations obtained by considering the
6rst and second derivatives of Ii, we found that there
is a gradual rotation of the antiferromagnetic (AF)
axis (see Fig. 1) with increasing fmld from a position
parallel to one perpendicular to the easy direction.
Thus there is no spin Qop as would occur in the case of
an antiferromagnet.

The equilibrium directions of the sublattice mag-

netization vectors Ms, Ms may be deaned by means of

the angles ag and 0.2, respectively, as shown in Fig. 4,
or alternatively, by the canting angle 4 and the rotation
angle 8 of the AF axis. These sets of angles are related

by ce~=C —8; css ——4+8. The equilibrium values of 4

~ The research reported in this document has been sponsored in
part by the Air Force Materials Laboratory, Research and
Technology Division, AFSC through the European Once of
Aerospace Research, U. S. Air Force.

f Present address: Israel Atomic Energy Commission, Yavne,
Israel.' T. Moriya, J. Phys. Chem. Solids 11, 13 (1959).

~I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 {1958).
'T. Moriya, Phys. Rev. 120, 91 (1960).
4 D. Treves, Phys. Rev. 125, 1843 (1962).' G. F. Herrmann, J. Phys. Chem. Solids 24, 597 (1963).

Fxo. 1. Equilibrium sublattice
magnetization directions. =z
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sine —HgH/(H( (,'—H'), for H ~& Hp
for H~&Hp,

and 0 are found to be

sin4 —HdHq/(H~~P —H'), for H&~HO
(H—e+H)/2H, , for H.„))H&~ Ho,

(3)

tion is formally given by

Xq ——S~ cosn~+ T~ sinn~,

X2= S2 CORX2+ T2 sin+2,
Z~= S~ sino. ~

—Ty cosa',
Z2 S2 SlnCK2+ T2 cos~2 ~

In terms of the new variable, (1) becomes

H, =JMp, He=DMO, HIr K/M——o,

H) i,= [(2H,„+Hrr)Hrr]"')

H 1[ He+ (H~2+4'HI
I
&2) 1/2] (4)

H~~, is the 6eld at which spin Aop would occur in
the case of an antiferromagnet. The magnetization
in the X direction as a function of H is M, =2Mpsin4
&(sino, and is shown in Fig. 2 for the case of SmFe03
at room temperature. Here we have H, =4.6)&10' Oe,
Hg=6X104 Oe, and H~=170 Oe. For the pure anti-
ferromagnetic case, where Hd, 0, we get——from (3)
the well-known spin Qop at H~~, =Hp. As H~ increases,
we see from (4) that HD decreases and the transition of
the AF axis from parallel to perpendicular to the easy
axis becomes more and more gradual. This is to be ex-
pected, as there is a corresponding increase in the
ferromagnetic moment.

P= JMp YgY2—(JMO' cos24+DMO sin24)

X (SgS2+ TQT2)+ (JMo' sin24 —DMO' cos24')

X (SiT2—S2Ti)—-', K(SP cos'ni+Sm' cos'n 2

+Tg' sin'ng+ T2 sin'ng+ 2SgTg sinn' cosng —2SRT2

Xsinai cosnq) —HMO(Sr cosa'+ Ty sing —S2 coso.2

+T2 sinn2), (6)

where X;, F;, Z;, and S,, I";, T; are the components of
unit vectors R; along the sublattice magnetization
vectors R;=M;/Mo. The dynamic equations may now
be written as

(Mp/~p~)R;=R;XV+, i=1,2, (7)

wherethegyromagneticratio ~7~ =1.86X10'Oe 'sec '.
In the small-signal approximation, the component of
M; along S; is taken as constant, and (7) yields the set
of four equations

Resonance Frequencies

To obtain the resonance frequencies, we resort to
the usual small-signal approximation. This is done by
expressing the motion of the magnetization vectors in
terms of their deviation from equilibrium. Ke follow
the customary procedure' of transforming to two
separate coordinate systems, (S~,T~, Y~) and (Sg, T2Y2),
which describe, respectively, the motion of M& and M&.
The S~ and Sg axes are chosen so as to coincide with
the equilibrium positions of M~ and M2. Also, Fq, F2,
and F are taken parallel (see Fig. 3). The transforma-

l.6—

l.2

E 0;8

(8)

Taking the time dependence of the components of M;
perpendicular to S; in the form e'w', (8) becomes

~Tx+gx Y~+H~ F2=0,
(aTg+g pFg+H~Yg=0,

&o Yi biTi+cT p 0,— ——
~Ys—bgTg+cTg ——0,

where co=i(W/jy~), and

c=H,„cos24+He sin24,

g; =c+Hrr cos'n;+ (—)'+'H cosn;,
5;=g;—H~ sin'0.;.

'o IO

H(koe)

20

t el

&Qp

9) ~Tg

FxG. 3. Equilibrium
coordinate system.

FIG. 2. Magnetization in the X (easy) direction Mx, as a
function of an external field H in this direction, for the case of
SmFeOI at room temperature. (H, =4.6X10 Oe, Hq=6)&10
Oe, and HER=170 Oe.)

6 G. Gorodetsky and D. Treves, Phys. Rev. 135, A97 (1964).
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The condition for obtaining a nontrivial solution of this
set of equations is that its determinant vanish. This
requirement yields the secular equation

(W/7)'+A (W/y)' —B=0,
where

A—2cBex—gybe
—g2b2

y Hsc

B=(btbs —c') (H. '—gtgs) .
Setting II~=0 gives, as a special case, the well-known
antiferromagnetic modes' [see Fig. 4(a)]. The two
modes obtained from the secular equation are

(Wg/y)'= sL—A+(A'+48)' 'j. (10)

This general result can be simplified for the following
cases:

(1) In the range H«H j/HI I,. Here

A~ —(2HI I,'+He'+2H')
and

(HII +HII H&)
giving

~W+ ' HI I.) '
=HI I,'+He'+2 1+ ——

[
Hs

Ey Hei

o 5
Ill

O

20-

W HII,

I 7 i H„i 40200 0
H (kOe)

FIG. 4. Resonance frequencies W+ as a function of H for dif-
ferent values of Hg. (a) Hg=0 Oe, (b)Hg=10' Oe, (c) Hg=10'
Oe, (d) He=3X104 Oe, (e) He=6X104 Oe ('(the case of StnFeOs
at room temperature), and (f) Hq=10' Oe. All cases are for
HX=4. 6&&10' Oe and H~=170 Oe.

20

(2) In the range H, »H~& H, . Here,

Irw'

err =—+C', c=H. +(He H) sinC, —
2

'
2

g= gg= gs Bee+He slIlC'q—

and
5=br= bs—c+H slnC' —Htr cos C'

giving
(W+/v)'=H"+H. H,
(W /y)'=H'+HeH —HI I,'. (12)

It is clear from (12) that the lower mode vanishes at
H=BO. The resonance frequencies as a function of H,
for different values of He, are shown in Fig. 4. LFig. 4(e)
describes the case for SmFeOs at room temperature).

found at HI I,=P(2H, +Htr)Htr He'Jt', whic—h is the
critical 6eld at which spin flop occurs. Note that for this
kind of material, the expression of H~ ~. is diferent from
the corresponding critical field in the previous case.
Assuming a uniaxial magnetocrystalline anisotropy
E~=E sin'8, one 6nds, in the two-sublattice approxi-
mation, with the applied Geld'in the plane perpendicular
to the easy axis, a gradual rotation of the AF axis
(see Fig. 5) from parallel to perpendicular to the easy
axis. ' This rotation of the AF axis is caused by the
torque due to the antisymmetric exchange interaction.

D PARALLEL TO EASY DIRECTION

The Equilibrium Position

The case wherein D is parallel to the easy axis occurs,
for example, in hematite o.—I'e203, below its Morin
transition temperature (Ttkr—263'I). The case where
the external field is parallel to the easy axis, in such a
material, is well known. ' A zero-frequency field was

~ C. Kittel, Phys. Rev. 82, 565 {1951);T. Nagamiya, Progr.
Theoret. Phys. (Kyoto) 6, 342 (1951); S. Foner, in Magnetism,
edited by G. T. Rado and H. Suhl (Academic Press Inc., New
York, 1963), Vol. I.' S. Foner, in Proceedhngs of the International Conference on

Fro. 5. Sublattice magnetization
vectors.

j/lagnetism, Nottingham, England, 1964 (Institute of Physics
and The Physical Society, London, 1965).

9 G. Cinader and S. Shtrikman, Solid State Commun. 4, 459
{1966).
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FIG. 6. MagnetizatiOn
M as a function of an
applied 6eld H perpen-
dicular to the easy axis.

By straightforward calculations, we obtain

(li'+/v)'= (&+~)((:+H-)—(G+F)' (1g)

where

Hp

The free energy for this case may be written in the
form

F=JMt Mr, —D MrXMs —(E/2Mp')

X (Mt.'+Ms, ') —H(Mrs+Ms„), (13)

sinC HrrH/H—
~ ~,', for H&Hp

(Hs+H—)/2H. „, forH, »H &&Hp, (14)

(15)sin8 —HqH/H
~ ~ P,

—=1

for H+ Hp

for H&~ Hp,

(16)Hp ——Hi (,'/Hs .
The net magnetization 3f=23'p sin@, as a function of
H, is shown in Fig. 6.

where D= (O,O,D).
Taking Z as the crystal's easy axis (i.e., the [1,1,1j

direction in hematite) and F as the direction of the
applied field, the canting angle C and the angle 8 be-
tween the AF axis and Z are found to be

A = H,„cos24+ Hq sin24 sin8,
8=A+H sln4+H~ cos24 cos 8,
C=A+H sinC +Ha (cos'4 cos'8 —sin'8),
G=Hd cosC cos0, and Ii =-,'H~ sinC sin20.

For H~O, (18) may be written as

(~+/v)'=Hi i.'+H',

(W /y)' —H(i,'.
(19a)

(19b)

25

20

o i5

IO

This is the result that is obtained for the case of the
antiferromagnet. "This equality is to be expected in this
range as E~= —D MIXM2 —0 for H—0. In the range

X;=(—)~+' cos8 e,'+(—)' sinC sin8 e '
+(—)'+' cosC sin8 e,',

(17)Y;= cosC a„',+sinC e,',

Resonance Frequencies

As previously, we use the small-signal approximation
and transform to more convenient coordinate systems.
The transformed coordinate system used for each sub-
lattice is shown in Fig. 7. Formally, the transformations
are given by

0
30 60

H(kOe)

Hp 90 l 20

H,x))H &~ Hp, we obtain

FIG. 8. Resonance frequencies W+ as a function of H for the
case of a—Fe203 below its Morin transition temperature with
H, =10'Oe, Hg=2X1040e, and H~=1000e.

Z.= (—)' sin8e '+ (—)' sinC cos8e„'

+(—)'+' cosC cos8e,', z 1p2 ~
i
=—H'+H, H,kyi

pW ~'
i
=H.(H—H,),

(20a)

(20b)

=Y

FIG. 7. Equilibrium coordinates, where X is the easy axis,
D= (O,O,D), H= (O,ff,O). e,'~iM;, s,' is tangent to the base bound-
ary of the cone, so that when 8=0 we have e,'~ (—)'+'X. e„' is
defmed so as to make (e;,e„',e,') a right-hand set. ies'i =f;
k=g, y, s; i=1, 2. 8 is the angle between the AIi axis and the
easy axis Z. p is the canting angle between M1 and the ZX plane.

which corresponds to Fink's results" above the Morin
transition point, as, it should. From (20b), it is clear
that the lower mode 8' is equal to zero at H=Hp.
The resonance frequencies 8"+, as a function of H, are
shown in Fig. 8 for H, =10' Oe, H~ ——2X10' Oe, and
Hrr 100 Oe (hematite at abo——ut 240'K). A numerical
check of the first derivative of 8'+ with respect to H
shows a discontinuity at H =Hp."

' F.Kefter and C. Kit tel, Phys. Rev. 85, 329 (1952).
J. FInk, Phys. Rev. 133, A1322 (1964)."I am indebted to R. Hornreich for calling my attention to

the existence of this discontinuity.
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CONCLUSIONS

The critical Geld Hp is quite large at most tempera-
tures. The simplest method of obtaining such high fields
is by utilizing pulsed-Geld techniques, but, with this
method, it is dificult to measure the weak ferromagnetic
moment directly, in the absence of spin Qop. A measure-
ment of IIO using a magnetic-resonance method could
avoid this diQiculty. Using such magnetic-resonance
studies, the theoretical rotating AI -axis picture could
be investigated. Also, more information about the
canting mechanism, especially at low temperatures,
could be obtained, and, from a knowledge of EIe(T),
it would be possible to find the temperature dependence
of the uniaxial magnetocrystalline anisotropy constant.

To calculate the resonance modes in the case where the
applied field deviates slightly from the special directions
considered here is somewhat more dificult as the sym-
metry of the equilibrium configuration is reduced. All
the above calculations were performed at essentially
O'K using the molecular-field approximation.
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The technique of temperature-dependent Green's functions is applied to a molecular-Geld model of the
orientational order-disorder transition of ortho-H~ molecules on a face-centered-cubic {fcc) lattice. The
chain of equations for the various Green's functions is decoupled by an approximation similar to the one used
by Tahir-Kheli and ter Haar, which enables one to solve the three remaining Green s-function equations of
motion. It is shown that the Green's-function approach leads to the same results as the more conventional
methods.

I. MODEL

A THEORETICAL discussion of the cooperative
orientational ordering of ortho-H2 molecules on

both face-centered-cubic (fcc) and hexagonal-close-
packed (hcp) lattices has recently been given by Raich
and James. ' ' For the case of a rigid fcc lattice it was
shown that the internal-6eld approximation (or molecu-
lar-field approximation) leads to a first-order phase
transition between an orientationally ordered phase,
stable at low temperatures, and an orientationally dis-
ordered phase, stable at high temperatures.

The purpose of this paper is to indicate how the
technique of temperature-dependent Green's functions
can be applied to a model of the ordering of ortho-H2
molecules on a rigid fcc lattice, valid within the frame-
work of the internal-6eld approximation. It is shown

that this technique leads to the same results as the more
conventional one, based on the minimization of the free
energy.

Leaving off the rotational energy of the molecules, the
Hamiltonian for the model to be considered is

where &;= (0;,Q;) speciaes the orientation of molecule
i. If we assume that the orientational coupling of the
molecules arises from quadrupole-quadrupole coupling,
the potential energy of interaction of molecules i and
j, V;; can be written as'

V,,=(20 /9)(70 )"'I';; P C(224 M(V)

' J. C. Raich and H. M. James, Phys. Rev. Letters 16, 173
(1966). This paper gives a list of references to previous experi-
mental and theoretical work on this problem.' H. M. James and J. C. Raich (to be published).

X&mes(&c) &sir(@s)&e,erprr(&;;) . (2)

' H. P. Gush and J. Van Kranendonk, Can. J. Phys. 40, 1461
(196').
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