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Ultrasonic Attenuation of Pure Strong-Coupling Superconductors~
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The low-frequency longitudinal ultrasonic attenuation of strong-coupling superconductors is discussed.
The starting point is a formula due to Kadanoff and Falko which expresses the attenuation in terms of
various correlation functions. These functions were evaluated in the ladder approximation. The results
are valid for all values of q/ (l= electron mean free path, q= phonon wave number). In the limit ql&&1, the
contribution of the density-density correlation function is dominant and we obtain Ambegaokar's result
for the reduced attenuation (ratio of attenuation in superconducting to normal states). In the limit ql«1, all
correlation functions are equally important. The reduced attenuation is a function of q and differs from the
results of the BCS isotropic model. Numerical calculations for the reduced attenuation in lead were per-
formed for various values of q which satisfy ql«1. The results are in rough agreement with those of Deaton's
experiment.

I. INTRODUCTION

ECENTLY, there has been considerable interest
in the ultrasonic attenuation of pure strong-

coupling superconductors. ' ' Although an expression for
the longitudinal attenuation (nl, ) in the ql»1 limit

(q, the impressed phonon wave number; /, the electronic
mean free path) has been obtained, ' no calculation valid
for all values of ql has been done. In this paper, such a
calculation is presented.

We consider a pure crystal with no defects. The only
way the impressed sound wave can lose energy is then
through the electron-phonon interaction, and the pho-
nons will be assumed to be in equilibrium. The e6ects
of anisotropy will not be considered. In the low-fre-

quency limit, KadanoG and Falko4 showed that the
attenuation can be expressed in the following form:
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where e, is the sound velocity, pio is the ionic mass,
r;; is the stress tensor, and n is the electron density. In
terms of the electronic wave function f(r,t),
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r„(r,t) = P |t &(r',t)f(r, t)
spin 2g 2tsz r'~r

e(r, t)= Q Pt(r, tg(r, t).
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The correlation functions that appear in Eq. (1.1) are
given by

t

&[A,B])(q,s)=- dt' dr' exp[is(t —t') —iq (r—r')]

X&[A (r,t),B(r',t')]) . (1.2)

The last term on the right-hand side of Eq. (1.1) comes
from the reciprocal of the lifetime of a phonon of wave
number q. It is the term that would appear in a golden-
rule calculation. The 6rst term on the right-hand side
represents the effects of collision drag. In the long-
wavelength limit, it may be thought of as due to the
viscosity of the electrons. The second term is then the
result of interference between these two processes. For
ql»1, an electron sees only an averaged motion of the
ions so that collision-drag eBects are unimportant. Thus,
the density-density correlation function should domi-
nate in this limit. For q/«1, the collision-drag terms
are important. Ke mill show that in this case, all terms
of Eq. (1.1) are of the same order of magnitude.

In the following section, we will derive an integral
equation for the stress-tensor-stress-tensor correlation
function. Similar equations for the other functions will
be obtained in Sec. III. In Sec. IV, we compare our re-
sults with experiment in the ql»1 and qt«1 limit.

II. THE STRESS-TENSOR-STRESS-TENSOR
CORRELATION FUNCTION

We will use the techniques developed by Ambegaokar
and Te~ordts in their solution of the thermal-conduc-
tivity problem.

It is convenient to de6ne the function
Brackets indicate equilibrium ensemble average. q is in
the s direction. &(q,t)=—&2'r.*(q,t)r..(—q, o)), (2.1)
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where r„(q,t) is given by

r.,(r,t) =P e*'&'r..(q, t)

=P e*'&' ~ct, ,ts(t)cp+ ts(t), (2.2)
se m&

''
' V. Ambegaokar and L. Tewordt, Phys. Rev. 134, A805 (1964).
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ct and c are the electronic creation. and annihilation
operators. We will need the Fourier transform of P(q, t).

Z

P(q, t)=—P P(q, v„) exp[—iv t],
&m

(23)

&Ps(1) destroys an electron of spin e at the space-time
point j..

In terms of these

p' p"'
P(q, t) =P (TP;1(t, y——',q)P;(t, p+-,'q)

where v =2 smi/P, m is an, integer and P=(ksT) '
where k~ is Boltzmann's constant and T is tempera-
ture. We will be working with Nambu's two-component
6eld operators' deined by
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The Hartree-Fock approximation, however, is in-
adequate. This approximation considers the relaxation
of a particular electron when all the other electrons are
in equilibrium. Thus, it does not consider properly the
screening of the electrons. Furthermore, we know that
the Ward identities are not satisfied in this approxima-
tion so that momentum conservation is violated. These
defects are remedied in the ladder approximation.

In the ladder approximation, Eq. (2.9) becomes

est(01, p'+-,'q)ps(0, p' —-', q))(rs)"(rs)", (2 4) XF(p+k, q, f'&+ts, v )rsG(p+k —-', q, f l+ts„)D(k,ts„)

where r3 is the Pauli spin matrix p 2
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ImP(q, (o+i01)

R= ([r...r„])(q,el) = (2.5)
The following double spectral representation for I has
been obtained in Ref. 5.

and D(k,ts„) is the phonon propagator (ts„=2srssi/P, I
is an integer) which has the spectral representation

Using the functions de6ned above and the definition of
([r„,r„])(q,el), We Obtain

" dts d(k, ts)

—oo 2sr tsn

In the following, we will calculate ImP(q, el+iOt) in
the ladder approximation and in the limit of small fre-
quencies. But let us consider the Hartree-Fock approxi-
mation 6rst. This is de6ned by

(T[p;(1)ps(2)i/it(2')p;t(1')]) =G l(1,2') Gs;(2,1'), (2.6)

where G@(1,2) is the electron Green's function

de)lkds fl(p, q,All, cos)
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(2.13)

G;;(1,2)= —i(Tf,(1)f;t(2));

using (2.6) in (2.4), we find

Putting (2.13) into (2.10) and doing the frequency sum
in the usual way, we obtain
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' Y. Nambu, Phys. Rev. 117, 648 (1960}.

where f(&o) is the Fermi function. Thus,
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Xfs(p, q, », atl+sp) }. (2.15)



Using (2.15) in (2.5) and taktng the low-frequency limit,
%le have
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Thus, we must determine the function ft and f2. To
do this, we examine the equation for X. From Eqs. (2.10)

and (2.11), we have
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Introducing the spectral representation for G
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into (2.17), using (2.12) and (2.13), and doing the sum
over p,.v e obtain
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where f is the Ferini function and I the Planck function. Equations for ft and f2 are obtained by taking discon-
tinuities across the real axis as we let i I +1 th -and then —v ~ v —iit and in the reversed order. The equations are
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Since the attenuation is expected to be finite, we expect fi(y, q,{',0) to be zero. This conjecture is consistent with
the above equations. Since we will only calculate in the limit of small frequencies, let us take the v going to the zero
limit. In this limit Eqs. (2.20) and (2.21) become
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v 0
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Since only the ri components of Bfi/Bv and of fi appear
in the expression for the attenuation constant, we con-
sider only this component. We will show that the in-
tegral over y of the left-hand side of (2.22) multiplied
by P,i/m is zero. The» component of Bfr/Bu is coupled
to all components of Bfi/Bi and fi The coeK. cients of
these components are even in q except for that of the
r2 components. Let us forget about the re components
for the present. The attenuation constant is an even
function of q. Hence, we can assume the following form
for the ro, r~, and r3 components:

f~(y, q i {)=(p'/iii)fi( ~ qZ)

where 6; is the r,th component of G. In an Appendix,
we show that I~=0. I~ is zero because the integrand is
odd in e„.Now we come back to the r2 component. We
integrate over co~ and ~2 resulting in the term

Go(y+lq, {—i~)Gi(y —lq, f ib)—
—G,(y+-,'q { ib)G0(y—,'q, f —ib)—. (—2.26)

Making the Kliashberg weak-momentum-dependence
approximation, we find that (2.26) is zero. Thus, we
find that only fi(y, q,{',{') contributes to the atten-
uation.

We now look at this function. It is convenient to add
and subtract from Eq. (2.23) the terms

We put this into (2.23) and do the it integraL After in-
tegrating over the solid angle, the integrand becomes a {b(f ~,)b(f ~,)b(f.+„~,)b(~,)~z(„)+y(g]
function of k' and e~q. Now, we multiply by p, i and
integrate over p .The following integrals occur:

Ii-— dpi, trg»G(y+2q, f'—ib)»G(y ——',q, { ib)], —

(2.25)
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Xfi(y+» q, $i, $i)+Lii(p)B(f' —a»)b(f' —a)&)

X8(f'+li gi) 8(/+p 6—)+f(&i)&(—f' ~i)&({+I 6)—
Xb({—~2)b(~i —b)]fi(y+» q, ki, b)) .

The equation for f&(y,q,{',{)may then be written in the
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form
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In (2.27) I'(y, q, i,0) describes the vertex associated with the ladder approximation. It is given by
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m

dpytfcoylM2 1
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This function is related to the analytic continuation of Eq. (2.11) by

r(,q, i',.)=-,'I I'(y, qZ, -)I„=„;,+ r(y, q,i„.„)l„, „;,j.
vm =V-ib Vm ~V+i5

(2.29)

The Ward identity, rejecting momentum conservation, satis6ed by this function in the weak momentum depend-
ence approximation is

I'(y, q,i,v) = (P,'/m+P, q,/m+q, z/4m) rz. (2.30)

Now, ' the wave number of the impressed sound wave is generally much smaller than that of a thermal phonon. If
we restrict ourselves to this approximation, we can neglect q, '/m compared to p, '/m. The p,q,/m term will vanish
upon integration over p since it is odd in p, . That is,

I'(y, q,f,0)= (P 2/m)rz (2.31)
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small in this im' . F
—'(2f(h)) for ql)&1,

(3.4)Xt«3f '"'(P+1 «, i+I) .

'
n which appears— e

'
elation function w i-density corre a i n w i
the gi e b

8 dit tin theresu o(3.4) by ——',[Bf(t' 8 an
'

i

&1 AND ql«1

d tthe reduce aill consider the
nducting

Int isse
tion (ratio of t e a

(b) ql«1

e between Eqs. 2.33),
h fe rences are in. ) The only drffere34. e

ctiong or

d (3

d ttenuation isreduce a

nL, s

s '-' tan-'ql ((o)d(g (g — 2I a)2—62I)7 sech ~PM ta q,d Li+( '-I~'I)/(I '-~

h'-'P(o tan —
'ql„((o)2 der sec 2 co

(4 3)
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q — 0Cm-l
i.o ~6o

' 0.8-

0.6-

0.4-

I I I

0.57 0.58 Q.59 0.60
kT le ~ey kTc

Pro. 1. The re-
duced attenuation
for q=320, 160, 0.
V~ is assumed to be
10' cm/sec. The cri-
tical temperature is
AT, =O.%40 meV.
For g=320, ql ~0.4.
The solid line repre-
sents 2f(A) arith
2a(0)/kT, =43.

with 26(0)/kT, =4.3 on the same graph. We notice that
over the temperature range for which we have theoreti-
cal data, the curve for q= 320 cm ' diRers only slightly
from 2f(&). This result is in approximate agreement
with that of Deaton. He Gnds that for q 290, the ex-

perimental value differs very little from the predic-
tions of the BCS model with impurity scattering and

2~(0)/uT, =3.5.
Finally we remark that for very low temperatures

(T/T,«1, T,=critical temperature) the mean free

path becomes very long, so that q/)&1. Thus for low

temperatures, the reduced attenuation should behave
like 2f(h).

In particular, our result is a function of q while that for
impurity scattering is not. 4 Using the data of Swihart~
for the values of Z and 5 in lead, we did the integrals in
Eq. (4.3) for various values of g for which q/«1 over
most of the important frequencies. The results are
shown in Fig. 1.For comparison, we have plotted 2f(h)
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In this Appendix, we evaluate the integrals

APPENDIX A

From

we find that

d8p )p 2»

(2&r)'& m
trLr»a(p+k(1 1)r3a(p —k(1, t)], N=O, 1, 2.

a(p, l') =(LG(p, 1+++) G(P, i'——i0+)]=~LG(ps+) —G(P8 )]

trLrpa(p+-,' &(f1)rga(p ——,'q, t)]=—tr/G(p+, f'+)r&G(p t'+)r~

+G(p+, l )r(&G(p &
)ra—G(pi, i'+)r3G(p, t )r»—G(p+g )r»G(p t'+)rs],

where P~= p+~(1. We first show that

Using

d'p /p'&)"
trLG(p+g+(

—
&) riG(p p-(—))ra] —0

(2&r)8 m

and

we 6nd
ImG(p, f+) =—ImG(pg ),

dip (p 2)»
I

trEG(p 4'-') G(p-,i'" ') ]
(2n.)'& rN I

t&p),")" dQ $2z2(i.+(—))+6+6 y2Q-+( —))—A'(0) x'" de
k~) (~ g +(—))(~ g +(—))(~++„+(—))(g+g +(-))

where
p' 0 pÃ pv+ &t(+ =f+ x&
2m 8m 2m 2m

Eg+( )=Lf'z'(f+( &)—(t&'(f'+( ))]'('w x 1m'+( ))0
q

2m
'

x= cos~.
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Consider

i.2@2(i+(—)+22 (pqx/2m)2 Q2(i.+(—))

(2 g +(—))(2 jV +(—))(2++ +(—))(2++ +(—))

Next, we evaluate

d P /P'))"
I

«[ ~(p+»' ') G(p ,i-'+')]-
(22r)2( m )

i'&'(i+' ')-+(&++' ')-'-(pqx/2m)' ~-'(V' ')-

2g +(—)([g +(—)]2 [g +(—)]2)

V~'(f"' ')+Ã-" ']'—(Pq*/2m)' —4'(i ' ')

~-+ (Ã++(-)]2 [g +(-)]2)

=0.

(p 2 e 1 dx g2I Z(g+) I
2+» *—

I
y- 0—')

I— X(0)
E m 1 2 (6—81+x)(6+81+x)(2—61 —x)(6+61 —x)

where 212+y2(g) —i 2g2(i+) =0, Im21) 0; x=p) qx/2m. The 2 integral can be done bp contour integration with
the result g3„'dx i2 Ih(Q—)I'- 2i In)21 (p) 2x2)"—= ——,'(Ã(0)2ri) —1+

2 1 2
I i

2—6'(i'+)
I

[(In)21)'+x'] k m

1 )rx(0) p) '~" 1 ( i' IA(p—) I' y
2'«) dy y'"

I
1+

2 [p) q/2m] m ) [ql(P)]2" E Ii2—62(f+)
I
I2,&(r) 2 1+y'

qt(g) g~ ~~n
—=A „(p,q, i )

—2&(r) 2 1+y
Therefore,

&o ~1 [qi(i)]'
=A2(p, qz)—«n '(qi(i)), —=A1(p,qz)[qi(i) —«n '[qi(f)]], =A2(p, qz)

2 2 2
''

3
qi(i')+-tan 'qi(i)


