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The low-frequency longitudinal ultrasonic attenuation of strong-coupling superconductors is discussed.
The starting point is a formula due to Kadanoff and Falko which expresses the attenuation in terms of
various correlation functions. These functions were evaluated in the ladder approximation. The results
are valid for all values of ¢/ (/=electron mean free path, ¢=phonon wave number). In the limit ¢i>>1, the
contribution of the density-density correlation function is dominant and we obtain Ambegaokar’s result
for the reduced attenuation (ratio of attenuation in superconducting to normal states). In the limit ¢/<1, all
correlation functions are equally important. The reduced attenuation is a function of ¢ and differs from the
results of the BCS isotropic model. Numerical calculations for the reduced attenuation in lead were per-
formed for various values of ¢ which satisfy g/<<1. The results are in rough agreement with those of Deaton’s

experiment.

I. INTRODUCTION

ECENTLY, there has been considerable interest
in the ultrasonic attenuation of pure strong-
coupling superconductors.'—? Although an expression for
the longitudinal attenuation (az) in the ¢/>>1 limit
(g, the impressed phonon wave number; /, the electronic
mean free path) has been obtained,? no calculation valid
for all values of ¢/ has been done. In this paper, such a
calculation is presented.

We consider a pure crystal with no defects. The only
way the impressed sound wave can lose energy is then
through the electron-phonon interaction, and the pho-
nons will be assumed to be in equilibrium. The effects
of anisotropy will not be considered. In the low-fre-
quency limit, Kadanoff and Falko? showed that the
attenuation can be expressed in the following form:
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a(q6)=Re- {(['rzz,m]>(q,w)
UPionVs
Zpﬁ ) A\ 2 '
2 <t7,z,nj><q,w>+(3;) <[n,n]><q,w>], (1.1)

where v, is the sound velocity, pion is the ionic mass,
747 is the stress tensor, and # is the electron density. In
terms of the electronic wave function y¥(r,t),
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spin 21, 2mz 1/ =r
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Brackets indicate equilibrium ensemble average. q is in
the z direction.
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The correlation functions that appear in Eq. (1.1) are
given by

1 t
(T4, — L & / dt' explis(i—t)—ig- (r—r')]

X{[A4(xn),B@¢)]). (1.2)

The last term on the right-hand side of Eq. (1.1) comes
from the reciprocal of the lifetime of a phonon of wave
number g¢. It is the term that would appear in a golden-
rule calculation. The first term on the right-hand side
represents the effects of collision drag. In the long-
wavelength limit, it may be thought of as due to the
viscosity of the electrons. The second term is then the
result of interference between these two processes. For
gi>>1, an electron sees only an averaged motion of the
ions so that collision-drag effects are unimportant. Thus,
the density-density correlation function should domi-
nate in this limit. For ¢/«<1, the collision-drag terms
are important. We will show that in this case, all terms
of Eq. (1.1) are of the same order of magnitude.

In the following section, we will derive an integral
equation for the stress-tensor-stress-tensor correlation
function. Similar equations for the other functions will
be obtained in Sec. III. In Sec. IV, we compare our re-
sults with experiment in the ¢/>>1 and ¢l«<1 limit.

II. THE STRESS-TENSOR-STRESS-TENSOR
CORRELATION FUNCTION

We will use the techniques developed by Ambegaokar
and Tewordt® in their solution of the thermal-conduc-
tivity problem.

It is convenient to define the function

P(q,t)s <T7'zz(q’t)7'zz(_ q, O)):
where 7,.(q,?) is given by
To(,) =2 €1°77,,(q,1)

(2.1)
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=3 8’“"(““)G*p—qn(l)cwq/z(l) , (2.2)
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§ V. Ambegaokar and L. Tewordt, Phys. Rev. 134, A805 (1964).
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¢t and ¢ are the electronic creation and annihilation
operators. We will need the Fourier transform of P(q,?).

P(ay) =;— S P(apw) expl—ival],  (2.3)

where v,=2wmi/B, m is an integer and B= (kpT)!
where kg is Boltzmann’s constant and T is tempera-
ture. We will be working with Nambu’s two-component
field operators® defined by

¥1(1)
o= ),
Yat(1)
¥1(1) destroys an electron of spin ¢ at the space-time
point 1.
In terms of these
Pz2 Pz’ 2
P(g,)=2

— ——(TY:t(t, p—59¥:(t, p+39)
m m
X0, p'+3q)¥2(0, ' —3a) )(75)(75)"?,

where 73 is the Pauli spin matrix

1 0

0o —1
Using the functions defined above and the definition of
([Tzz,'rzz])(q,w), we obtain

(2.4)

ImP(q, w+101)
—_—. (25

w

1
Re - (725,72 (@) =
7w

In the following, we will calculate ImP(q, w+:0t) in
the ladder approximation and in the limit of small fre-
quencies. But let us consider the Hartree-Fock approxi-
mation first. This is defined by

(Tt QW5 (1) )= Ga(1,2)Gri(2,1) , (2.6)

where G;;(1,2) is the electron Green’s function

Gii(1,2)=—uTY:(1¥:1(2)); 2.7
using (2.6) in (2.4), we find
Pla)=5 (?—)
p \m
Xtr[7:G(t, p+3q) G0, p—30)]. (2.8)
Thus
) p2\?2
Pas= ( ”:)
Xtr[T:‘G(p—l_%qs §l+ym)T3G(p—%q> fl)] b (2'9)

¢1=1(2l41)xi/B, I runs through all integers.
6Y. Nambu, Phys. Rev. 117, 648 (1960).
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The Hartree-Fock approximation, however, is in-
adequate. This approximation considers the relaxation
of a particular electron when all the other electrons are
in equilibrium. Thus, it does not consider properly the
screening of the electrons. Furthermore, we know that
the Ward identities are not satisfied in this approxima-
tion so that momentum conservation is violated. These
defects are remedied in the ladder approximation.

In the ladder approximation, Eq. (2.9) becomes

2

(1’—’) tr{rsG@+3a, Frtwm)

m
X TaP(Py‘l,g'l,Vm) T3G(p— %qy g.l)}

i
P(q)Vm)=— Z

».81

P

i 2
=t (—) rrX(p,a,om) (2.10)
Brii \m

where 1
s 1
P(p,q,i'z,vm) - Z G(p+k+%q: g‘l+ﬂn+Vm)73
m B .k

X P(D+k, q, §l+ﬂn, Vm)T3G(p+k_ _1211: §l+ﬂn)D(kyﬂn)

p 1
=Ty Z X(P+k; q, g‘l+””7 V"‘)D(kﬂ‘n) (2'11)

m B unk

and D(k,u,) is the phonon propagator (u,=2wni/B, n
is an integer) which has the spectral representation

* dp d(k,u)
D (k’”n) = - : .

—0 2T fn—

(2.12)

The following double spectral representation for X has
been obtained in Ref. 5.

X( ¢ ) fw dw]_dwzl fl(pyq:w15w8)
P,4,$1,Vm) =
S SO P (7
f 2(1),(],0)1,&)2)

T . (213
(i"l—w1)(§'z+vm—w2)}‘ (2.13)

Putting (2.13) into (2.10) and doing the frequency sum
in the usual way, we obtain

] oo

where f(w) is the Fermi function. Thus,

dw1

Pa
X trra{ f(w1) f1(p,8,01,0)+ [ f(w1)— flotw)]

sz(py q, wi, wl+"’)} .

2 (g, o+i0) -5 (P—)

m

(2.15)
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Using (2.15) in (2.5) and taking the low-frequency limit, . and (2.11), we have

we have X(0,0,¢17m) = (p:2/m)G(p+3, S1+vm)TsG(D—3a, 1)
1 1 d%pdwr/ p.? —(1/8) X G+349, Sitvm)7s
i Re—(Cror D)= [ ()
e 27 (@2m)t A m XX(p+k, 4, §1tin, vm) 716G (P34, £)Dlun) . (2.17)
f1(p,q,01,0) 3 f(wr) Introducing the spectral representation for G
Xllin% flwn)— 3 fz(p,q,wx,wx)] . “ des a(p,w)
o= w w1 y
Gps)=| — 2.18
(2.16) (p,$1) e (2.18)

Thus, we must determine the function f; and f,. To into (2.17), using (2.12) and (2.13), and doing the sum
do this, we examine the equation for X. From Egs. (2.10) over u, we obtain

/ dodoy il gwnws)  fa(pg,wnw) :|= / dwrdewr ( &“_’\a(p+%q, w2)T3a(p—3q, w1)
@n)? Lo m—w)  Gro)Grtrm—w)d J @0 \m/  (Erbrm—on) @)

/d3kdw1dw2d£1d£2dp d(k,u)a(p+3q, w2)7s {[ n(u)+ f(&)

fl(p+k: q, Ely 52)

(2r)8 Srtvm—ws Crtu—E)rm— &)
+( n(u) | (&)
Crtu—E)Crbutrn—E)  Crbu— &) Etrn— i)
f(&) a(p—3q, w1)
+ op+k, q, &, &) | —-————-——} , (2.19
Crtvmtp— &) (f— 51—Vm))f ® 1 ):I ’ S1—w1 (2.19)

where f is the Fermi function and # the Planck function. Equations for f; and f are obtained by taking discon-
tinuities across the real axis as we let {; — {—45 and then »,, — »—i8 and in the reversed order. The equations are

S0t /d% /dwldwzd&dnd(k aphd ) {21 [ 1 ]
,d,$ V) = ) 24 m
TR ) Ty T T e ) i 10 —wr—0)

1
XEAGH SEIAHo 0, b D2 T o )
y—wg— —&a— —w1—

X[f(gl)—f(£1+y)]f2(p+k’ q, Ela é}ﬁ-u)}ma(p—%q, wl) ’ (220)

a% f dwidwedE1dEdu
(2m)? (2m)°
Xre{2 Im[ (¢ —w1—i8) (¢ +u— 1—18) ]2 Im[ (v— £o—i8) (¢ +v—ws—1i8) 1]
X[+ f(£)1fip+k, g, &, &)+2 Im[(¢+u— &1—68) (¢ —w1—16)~1]

X2 Im[(¢+p+r— £a—i8) " (F+r—wi—i8) " Tn(w) f2(p+k, g, &, &)

+2 Im[(§—w1—38)~ S+ u— £1—18) ]2 Im[ (+v—we—1i8) v+ b1— £2—145) ]

X f(&) fa(0+k, q, &, &)—278(C—w1) (&) f2(p+K, q, &, £)

X2 Im[ (§+v—we—1i8) " (§+v+p— £2—i8) 1o+ £1— £2—148) 1]}

fl(p:q;.{‘:”)'l_.ﬁ(p; q,§, £‘+V) b [d(k,p)a(p+%q, 0)2)

p:?
X r3a(p—3q, w1) ]+ (—)a(p+%q, §SHv)rsalp—3q, $). (2.21)
m
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Since the attenuation is expected to be finite, we expect f1(p,q,{,0) to be zero. This conjecture is consistent with
the above equations. Since we will only calculate in the limit of small frequencies, let us take the » going to the zero

limit. In this limit Eqgs. (2.20) and (2.21) become

afl (p:q,g‘)”)
v

dskdw1dwgd Eldy,
/ e ky)a(p+3a, wn)ra
(2m)"

r=0

X {z Im[ (f —we—18) " ({+p— E1—18) (¢ — w1—i8) "] n(w)+ f(£1) ]

afl(p+k) q, ‘El; p)
X_______~__._—_

v

2

af(&)
{9‘51 fo(p+K, q, &, &)  rsa(p—3q, w1). (2.22)
1

v=0

d3kdw1dw2d£1d Ezdﬂ

fz(p,q,s“,f)=(-—2)a(p+%q, Orale—a, O+ /

m

d(k,y)a(p—l—%q, w2)73

(2m)®

X{2 Im[(§—w1—48) (¢ +u— £1—146) 7112 Im[(— &—16) (¢ —we— 1) ]

X[nG)+ (&) 1ilo+k, q, &, &)

+(n(w)2 Im[ (¢+p— £1—40) (¢ —w1—i8) ]2 Im[ (¢ +p— £—i8) (S — we—16) "]

+ f(£)2 Im[(§+p— £1—i8) (¢ — w1— i8) ]2 Im[ (¢ — wa—148) " (£1— £2—16)~"]— f(£2) 276(¢ — w1)

X2 Im[ (§—we—18) (¢ +p— £2—18) 11— £2—18) "1 ]) fo(p+K, 4, &, &)} rsa(p—134q, w1).

Since only the 75 components of df1/d» and of f, appear
in the expression for the attenuation constant, we con-
sider only this component. We will show that the in-
tegral over p of the left-hand side of (2.22) multiplied
by p.%/m is zero. The 73 component of df1/dv is coupled
to all components of df;/d» and f,. The coefficients of
these components are even in ¢ except for that of the
72 components. Let us forget about the 7, components
for the present. The attenuation constant is an even
function of g. Hence, we can assume the following form
for the 7o, 71, and 73 components:

f2(p:q’§-;§) = (P22/m)f~2(epyq,g-) ’

af, b2 (2.24)
l(p’q’g.,y) = fl(elbq){) .
% m

We put this into (2.23) and do the k integral. After in-
tegrating over the solid angle, the integrand becomes a
function of %2 and ey1x. Now, we multiply by p.? and
integrate over p .The following integrals occur:

L= / dep tTrG(p+3a, —i8)riGlo—ba, —i0)],

‘ (2.25)
I,= / des[Ga(pt+349, §—8)G10)(D—34, §—16)

+Ga(p_%q7 &— ia)Gl(O)(p_i_%q, ;—16)];

(2.23)

where G; is the 7;th component of G. In an Appendix,
we show that I;=0. I, is zero because the integrand is
odd in e,. Now we come back to the 72 component. We
integrate over w; and ws resulting in the term

Go(p+34, {—10)Gi(p—3q, {—1d)

—Gi(p+34, §—18)Go(p—34q, §—135). (2.26)

Making the Eliashberg weak-momentum-dependence
approximation, we find that (2.26) is zero. Thus, we
find that only fu(p,q,t,¢) contributes to the atten-
uation.

We now look at this function. It is convenient to add
and subtract from Eq. (2.23) the terms

(2m)*

4

{0(¢—w1)d(§—wa)8(§+p— £1)8(£2) [m(w)+ f(£1)]

Xfl(p"_ k) q, EI) 52)+En(ﬂ)6(?—w1)6(§-_ w2)
X6 +u—E)8(+u— &)+ f(£)0(—w1)d(C+u— &)
Xo(§—w2)d(1— £2) 1f2(p+k, q, &, &)} .

The equation for fa(p,q,{,¢) may then be written in the
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form
1 rdud?k
f2(p,qy§)§) = a’(p+%q; g‘)T:f[P(p)q)g‘yO)—l_Zv/-(z )4 {d(k)“) [”(I‘)‘*'f(f"‘ﬂ)]f?(l"l‘k, q, §‘+M, §-+M) }]TBa(p_ %q} g-)
m
d%kdwidwedt1d Exdu 1 1
/ ieaato+ia, rs(an [ s—anate) Re Re———
(2m)® Htu—&1—i6 (—we—1d

1 1 1 1
+(+u—£)5(&) Re Re —+8(¢+u— £1)8(f—w2) Re R ]

f—wl—ia {—wg—zs —52—16 g‘—wl—iﬁ

XLA(E)+n) 1fio+k, 4, &, Ez)+([5(§'—w1)5(§'+u- &)

1 1 1
XRe — Re —+8(C+u—£)8(+u— &) Re—————
Stu—6—i6  §—we—1id $—w1—10
1 1 1
XRe————+6(¢+u—£)8(¢—ws) Re — Re - ]ﬂ(u)
§—we—1 §—wr—i6  {+p—E—id

1 1
+[8(§—w1)6(£1— £) Re _ Re——— (¢ um £)8(E1— &)
Ftu—E8—186  f—we—1d
1 1 1
X Re Re————8(¢+u— £2)(¢— wr) Re————

{—wl—is ‘('—wz—'la (—w1~i6

1 1
><Re—~—,—]f<sl>— [a(m— £) Re——— Re————+5(ts— &)
1= 52‘13 f—wz—is El— Ez—iﬁ

1
XRe Re ]
§—we—16  {tpu—E&—1id

5(5'—w1)f(fz))f2(9+k, q, &, &) raa(p—3q, w1). (2.27)

In (2.27) T'(p,q,;,0) describes the vertex associated with the ladder approximation. It is given by

M6tk T / e o {[%(V1)+f(w1)]f1(p+k, 4, @1, o) Re :
m k (2n)3 (t+rvi—w1—1i8) (p—w2—10)
1 ' 1
+[“(V’) A o)t R o)t r—10)
1
/e Rc(i’ +v+v1—ws—i5) (w1+V"w2*1'5)]f2(p+k’ s wz)} - @)
This function is related to the analytic continuation of Eq. (2.11) by
T'(p,a,¢) =3[T(p,a,51,vm) | fi=g—is +T(p,q,8 1vm) | n=rti 1. (2.29)

The Ward identity, reflecting momentum conservation, satisfied by this function in the weak momentum depend-
ence approximation is

T(p,q,$ )= (p:2/m+p.q./m~+-q.%/4m)7s. (2.30)

Now, the wave number of the impressed sound wave is generally much smaller than that of a thermal phonon. If
we restrict ourselves to this approximation, we can neglect ¢,%/m compared to p.2/m. The p.q./m term will vanish
upon integration over p since it is odd in p,. That is,

I'(p,q,5,0)= (p2/m)7s. (2.31)
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Equation (2.27) can be simplified further. The first and second terms in the integrand of the second integral are
zero because of (&) fi(p+k, q, £, £). After using Eq. (2.24) and integrating Eq. (2.27) over p, we find that to
order (kT/cpr) (c=sound velocity), the 73 component of f, satisfies the following equation

2 d?p
m (27r)3

asp
(2m)?

/tr73f2(p:q)§')f)

(P )tr[a(p+zq, Orsalp—1a, O)7s]

+E / (Z:j;s / / (z:aid(k,u)[u(u)-l-f(i‘ +u)]( )tr[a(p-i—zq, $raalp—3q, $)7s]

Farfilotk, 6 ¢hu, H—u)}-l—f’(q,f), 2.32)

f'(q,¢) represents the contributions of the 7, components of f; and fo. Its explicit form is

d? 22 (d3kdEdEd, 1
flag)=i / b2 / act “fzvrvd(k,n){(f(sl)+n<n>)a(r+u—zo Re———

@n)® m (2r)®

—§—16

1
Xtrrafilp+k, q, &, &)+[f(E)+ f(&)+2n(u) 166 +n— &) Rem trrofo(p+k, q, &, 52)]
H— 521

1

X120 R
e

where we have used
$Z@)+eprsto ()
PZ220) = et —97)
(p+3q)*

2m

G(p:$)=

€= —ue; M= chemical potential

As(§)=Im((s)/Z(5))-

This term is of negligible importance for our problem
because of the smallness of A..%7 After explicitly doing
the p integral Eq. (2.32) becomes

d*p [ p.? pr®\* TN (0)
/ <2w>3(7) terefilpal)= ( )(m/zm
P-1Al47 1 @)

1+
X[ e2—a gl 3

ql(f)-l—tan‘lql(?):'

1 rdu
X[H-* — > | dwoaF\(w)) / deprrd(wi,u)
2J 2@

XCn(u)+ fG4u)] trraflo+k, g m)], (2.33)

7J. C. Swihart (private communication); J. W. F. Woo, thesis,
Cornell University, 1966 (unpublished). Seé also V. Ambegaokar
and J. Woo, Phys. Rev. 139, A1818 (1965). The model of the
eIectron-phonon coupling constant and the frequency distribution
of phonons used in the present calculation is identical to that used
in the paper of Ambegaokar and Woo.

Re }
$2Z%(§)— e 2—¢%(¢)

1 1
Im: Im :l,
FZHO)— e =) $222(5) — e 2— %)

where we have neglected the contribution of the 7,
terms. N(0) is the density of states at the Fermi surface
and /(¢), the mean free path, is defined by

pr
2m|ImZ(¢) (=A%) V2| |
From Eq. (2.16) we have

)=

dw1a w1)
hm Re—(["'thzz])(‘I;"-’)——" — f

2 2r Odw
asp
x[
(2m)?

In Eq. (2.33), X is the phonon branch index and F, is
the phonon density of states.

t[’Tafz(p,(],LOﬂ(%) . (234)

III. THE OTHER FUNCTIONS

The evaluation of Re(1/iw){[7..,%])(q,»») and Re(1/
iw){[n,n])(q,0) proceeds in exactly the same way. The
only differences are in the number of p.%/m that
arise in the equations for X and p. For the stress-tensor—
density correlation function, the analog of Eq. (2.10)
is

P(q,um) = (7'/:3) Z{ tr73x(pyq)§‘l;1’m) ’ (31)

while Eq. (2.17) remains unchanged. Making the same
assumptions and approximations as in Sec. II, we ob-
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tain the equation corresponding to (2.33).

[l emisomns= (g

§-2_ |Al 2-|
X 14
[ |¢2—a2| JLqu(e) e

x[1+§ / j—: E; f dwrF(w)) / deprrd(rh)

X[+ f+w ] trrsfe @ (o+k, ¢, §+0)], (3.2)

[ tan=gl(¢)—gl($)]

where fo(™ is the function which corresponds to fs. The
function which corresponds to f; is also zero. For the
density-density correlation function, Eq. (3.1) is correct
while Eq. (2.17) becomes

X(p,q,fz,vm) = G(p+%q, §-1+VM)T3G(p— %qy g-l)

1
“B kz: G(p+%q, fl‘f‘Vm)TsX(D‘i‘k: q, §l+ﬂn: Vm)
2

X T3G(p—%q; g‘l)D(k:#n) . (3'3)
We see that ), ¢, trrsX(p,q,{1,v») where X is given by
Eq. (3.3) is just the phonon self-energy. In the ladder
approximation, it satisfies the following integral
equation.

wNQO) [ - IAV]
1_L

dsp N
trrs fo™ ,q,$) = T
/ oy OO T e

1rd
Xtan"(ql(g‘))[1+-2-/2—u-%: /dw)‘F)‘(w)\)

X [ depad(orn) )+ fC+u)]
Xtrrsfo™(p+k, q, ¢ +ﬂ):| . (34)

The density-density correlation function which appears
in the formula for e, is then given by multiplying Eq.
(3.4) by —3[0f(¢)/0¢] and integrating the result over ¢.

IV. ¢>>1 AND ¢qiK1

In this section, we will consider the reduced attenua-
tion (ratio of the attenuations in the superconducting

/ do[ 1+ (wi— | A2])/(| = A2])] sechBeo tan—1gl,(v)
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(ezs) and the normal (az.) states) in the ¢I>>1 and
¢lk1 limits and compare our results with Deaton’s ex-
periment.! Since the mean free path is a function of fre-
quency, by ¢i<<1 we mean that this inequality holds
over most of the frequencies important in our problem.
The attenuation in the normal state is obtained by let-
ting A go to zero in the formula for ay,.

Perhaps it is appropriate to point out one difference
between our calculation and that for the impurity-
scattering case. In our problem, the mean free path de-
pends on frequency and differs in the normal and super-
conducting states. For impurity scattering, however,
the mean free path does not depend on frequency nor
does it differ in the two phases. This accounts for the
different results in the two cases.

(a) g>1

In this limit,
HH(I) Re(1/iw){[722,722 1)(q,0) l/qzr

lim Re(1/iw)([ram @) <1/, (41)

lim Re(1/io)( [, (a0 < 1,

where [ is some averaged mean free path. That is, the
density-density correlation function dominates and we
recover Ambegaokar’s result® that for ¢gI>>1,

arofazn=2/(0+1). 2)
This result is not in agreement with Deaton’s experi-
ment.!** He finds that the attenuation is anomalously
small in this limit. (For T/T.~0.95, (ars/0rs)expt
~3%(2f(4)) for g&>1, 2A(0)/kT.=4.3.)

(b) qiK1

There is now no real difference between Egs. (2.33),
(3.2), and (3.4). The only differences are in the factors
of pr?/m. Since the vertex corrections for the electron-
phonon interaction is small, the vertex corrections in
Eqgs. (2.33) and (3.2) are also small. The inhomogeneous
terms are all proportional to [1+ (w?— | A?] /| w2—A2|)]
X gls(w), except for a very small region around A where
gls~1. Thus, to a good approximation, (~10%) the
reduced attenuation is

QLn ©

(4.3)

2 / dw sech?2Bw tan—1ql,(w)
0
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_———a= Ocm-!
F emewe @ =160 cm~!
=== q=320 cm~!

Fic. 1. The re-
duced attenuation
for ¢=320, 160, O.
Vr is assumed to be
108 cm/sec. The cri-
tical temperature is
kT.,=0.6040 meV.
For ¢=2320, ql,~0.4.
The solid line repre-
sents 2f(A) with
2A(0)/kT.=4.3.

0.6

0

1
058
kT in mev

-t 1 1
0.57 059 0.60

In particular, our result is a function of ¢ while that for
impurity scattering is not.? Using the data of Swihart?
for the values of Z and A in lead, we did the integrals in
Eq. (4.3) for various values of ¢ for which ¢gl<<1 over
most of the important frequencies. The results are
shown in Fig. 1. For comparison, we have plotted 2f(A)
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with 2A(0)/4T.,=4.3 on the same graph. We notice that
over the temperature range for which we have theoreti-
cal data, the curve for g=320 cm™! differs only slightly
from 2f(A). This result is in approximate agreement
with that of Deaton. He finds that for ¢~290, the ex-
perimental value differs very little from the predic-
tions of the BCS model with impurity scattering and
2A(0)/kT.=3.5.

Finally we remark that for very low temperatures
(T/T«1, T.=critical temperature) the mean free
path becomes very long, so that g>>1. Thus for low
temperatures, the reduced attenuation should behave
like 2f(A).
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APPENDIX A

In this Appendix, we evaluate the integrals

a3
e [ 2

(2m)?

m
From

Pz2 n
(“) tr[TSG(p'i—%q: ?)Tsd(l)“%q, g‘):ls n=0’ 1, 2.

we find that
trlrsa(p+34, {)7sa(p—34q, ) 1= —tr[G(p4,$ ) 7:G (i )75

+G(p+!§'—) TaG(D—J_) T3 G(p+)§+) TG (p—yg‘_) T3 G(p+,§’_) T3G(p—7§‘+) 7'3] )

where p.=p=%1q. We first show that

tl‘[G(P+,§'+ (‘))raG(p_,§+('))13] =0,

_S“Z(i'”")‘l' eprs+ ()71

2 — e — )

ImG(p,s+)=—ImG(p,i),

[y
2 3
Using ()
G(p,s™)
and
we find
dSP P=2 n !
/ (_-) t[Gpe+ )G+ 7s]
@23\ m

PF2 n dQ
= <—~) /———N(O)x”fdc
m 4r (e— E; ¢

where
. pqx

P ¢
€L }
2m

_2ml8m

(22T O) tepe— ()
) (em E_+O) (et By +O) (e E+)

=et—,

2m

q
E O =[222(+0)) _¢2(§-+(—))]1/2:F5P_x’ ImE, >0,
m

x=cosf .
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Consider
/ e 2T O) = (pgr/2m)*— > +O) _ §Z2 (ST O) (B + )2 — (pgw/2m)*—$*(§+O)
(e— B4+ O)(e— EF ) (e Ex+O) (e E_* ) 2E OV ([EfH O P—[E+OT)
_s‘zZz(ﬁ O)+[EA O~ (pgw/ 2m)*— ()
2E_AO([EFOP—[E_tOT)

Next, we evaluate

d3 52 n
/ 4 (—”—) s () 7o s

@273\ m
JEX 14 2| Z(¢%) | 24 2— 52— +)|2
=(p__) NO) _xx%/dc S ZEE) | - e—22— | o(iE) | ’
m 1 2 (e— &+%)(e+ e1+%) (e— e*— E) (e+ &*— )

where €%+¢2((H) —222(+) =0, Ime;>0; £=prgx/2m. The e integral can be done by contour integration with
the result

Ba [ty L= 1AGN [ 2iIma pptat\

y~ HH O o ZI:IT[g""-A?(;‘*)[_’[(Imel)z-l-:i:z]\ m )

_1 =N() /p_nj)" 1 /Hs“*—lA(ﬁ)I”) /"’“’f_y_ s
20prg/2m N\ m ) [T\ |02=82D)]Y ey 2 1452

a®) dy g

EA"( ’q’g‘) - .
r —ay 2 1492

Therefore,

[g($)7?
3

Bo Bl Bz -
‘2*=A0(P,9,s“) tan~*(gl(¢)), 7=Ax(p,q,§)[ql(s“)—tan“[ql(r)]], 7=Az(i),q,s“)|: —ql(s“)+tan“’ql(s“)_]-



