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Theory of the Gunn Effect

B. W. KNIGHT* AND G. A. PETERSON

United Aircraft Reseurch Luborutories, Eust Hurtford, Connecticut

(Received 15 September 1966)

This paper analyzes the possible forms of propagating Geld inhomogeneities in media with a negative
differential resistance. A formula for the velocity is derived for both layers and domains. We discuss the
stability of a pulse and calculate the impedance across a sample with a mode excited.

I. INTRODUCTION
' 'N this paper, a mathematical framework for analyz-
- - ing space-charge waves in a Gunn diode is presented.
Some of the results have appeared in a prior publica-
tion. ' Our intention here is to elaborate on the tech-
niques, to further develop the physical implications,
and to evaluate explicitly certain expressions which

appear in the theory.
The approach is through the rigorous analysis of a

model. We show that under steady operating conditions,
6eld inhomogeneities persist only in specific propagat-
ing forms or "modes. " These are: (1) isolated dipole
domains (either high or low field, but selected by the
current), (2) a family of periodic domains, and (3)
charge accumulation or depletion layers. Salient features
of the pulse are determined and the domain shape is re-
duced to quadratures. Velocity criteria are derived.
Finally, we calculate the ac impedance for a diode
with one of these modes excited.

What causes these waves to form and propagate is a
negative differential resistance. Such media are un-
stable against charge bunching of the Qowing carriers.
These effects were first discussed by Shockley, ' Reik, '
and Ridley. 4 Ridley was able to argue the existence of
dipole domains and charge layers. Indeed, his con-
clusions provided the support for Kroemer's' explana-
tion of Gunn's observation of propagating electronic
fronts in GaAs.

Subsequent numerical studies'~ have re6ned the
model and revealed further properties. Other workers,
Bonch-Bruevich' and Ridley' among them, have
analyzed the linear-stability criterion in these systems.
The present authors have solved the nonlinear problem
of amplification of a Quctuation. " The erst analytic

*Permanent addresses: The Rockefeller University, New York,
New York, and Cornell University Graduate School of Medical
Sciences, New York, New York.' B.W. Knight and G. A. Peterson, Phys. Rev. Letters 17, 257
(1966).

'%. Shockley, Bell System Tech. J.33, 799 (1954).' T. Reik (unpublished).
4 B. K. Ridley, Proc. Phys. Soc. (London) 82, 954 (1963).
'H. Kroemer, Proc. IEEE 52, 1736 (1964).' D. E. McCumber and A. G. Cynoweth, Trans. IREE ED-13,

4 (1966).
7 J. A. Copeland, Trans. IEEE ED-13, 185 (1966).
s V. Bonch-Bruevich and Sh. M. Kogan, Fiz. Tverd. Tela 7,

23 (1965) )English transl. : Soviet Phys. —Solid State 7, 15
(1965)g.' B.K. Ridley, Proc. Phys. Soc. (London) 86, 637 (1965).' B.W. Knight and G. A. Peterson, Phys. Rev. 147, 617 (1966).

155

work on steady-state domain structure is due to
Butcher. "He derived a geometrical criterionfor the
peak 6eld strength and proved that with field-independ-
ent diffusion the domain velocity was equal to the out-
side carrier velocity.

In Ref. 10 it was shown how a disturbance evolves,
propagates, and develops into a domain bounded by
shock discontinuities. The technique consisted of
solving for the force on a bit of the compressible charge
Quid assuming its trajectory was known. The trajec-
tories were then evaluated and an exact solution re-
sulted. When trajectories collide, shock fronts form.
The present paper continues from that point, with
particular emphasis on the effects of diffusion.

II. FORMULATION

The model is de6ned through the law of internal cur-
rent J,

J(X,T)= V(E)$(X,T)—D(E)E~(X,T). (1)

E is the total charge density of mobile carriers and
V is their average velocity. Subscripts denote partial
differentiation.

We take V to be a function of E alone, the electro-
static field strength. This assumes that the intra- and
intervalley relaxation times are short compared to the
various times characterizing the dielectric relaxation.
The important feature here is a negative differential
resistance, i.e., V(E)(0 in some range of E (see I'ig. 2).
In select semiconductors, such as GaAs and InP, the
intervalley transfer mechanism of Ridley, Watkins, "
and Hilsum" provides the microscopic basis for such
an anomalous resistance. In their mechanism, fast
electrons are converted to a slower species by shift-
ing the population of carriers from a light- to a
heavier-mass valley with increasing 6eld. For other
materials, resonance in the ionized impurity elastic-
scattering cross section could lower the mobility at
higher energy. ""Virtual levels associated with sub-
sidiary valleys could be responsible.

' P. N. Butcher, Phys. Letters 19, 546 (1965).' B.K. Ridley and T. B. Watkins, Proc. Phys. Soc. (London),
78, 293 (1961)."C. Hilsnm, Proc. IRK 50, 185 (1962)."G. A. Peterson, United Aircraft Corporation, Research
Laboratories Report, 1965 (unpublished).

"A. G. Foyt, R. E. Halsted, and W. Paul, Phys. Rev. Letters
16, 55 (1966).
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continuity: J~= —E~. (3)

Here Eo is the fixed, uniform neutralizing background
charge density; z is the dielectric constant. These two
equations combined result in

Er(X,T) = (4rr/)()( J(X,T)+—F(T)). (4)

LTake the partial time derivative of (3) and substitute
for Er from (3). The subsequent equation admits (4)
as a first integral. ]This states that there are two sources
for the displacement current: (1) due to the internal
leakage current J and (2) due to the charge Qux

supplied to the ends of the diode by the external circuit.
Substituting for J from Eq. (1) and eliminating from
Poisson's equation S and E& in favor of Ez and Ezz,
respectively, we derive the fundamental equation of
the theory,
—D(E)Exx+ V (E)Ex+Er

= (47r/)()(F(T) —V(E)Xp) (5)

We render this to dimensionless form by the following
scaling transformation:

t 4~ V(E.)
T ,t„=

I

'
N.)=E.

where E, is any characteristic field strength in V;

X=lx, t= V(E.)r;
E=E,B, V= V(E.)(),
D= (tp/r) 5),

F=XpV(E.)f.
Thus Eq. (5) becomes

—X)(8)8.,+ p(8)8.+8,=f(t)—p(8) .

IG. ANALYSIS

The implications of Kq. (6) will be explored sys-
tematically. For the case of constant external current

In Eq. (1), D(E) is the field-dependent diffusion
coefficient. With species conversion, irreversible thermo-
dynamics does not uniquely specify the form of the
diffusion current. The term is sensitive to details of the
scattering within and between valleys. Without a
solution to the transport equation it is not possible to
pass judgment on the most realistic model. The model
chosen, however, is favored by analytic simplicity and
by obeying the ordinary Einstein relation

eD(E)= kT))(E) .
The analysis, however, does not depend on the com-
mitment of functions D(E) to this relation.

The equation of motion for the electrostatic field
is simply derived from Kq. (1) with the aid of Poisson's
equation and the law of continuity:

Poisson's equation: Ex——(4rr/i()(1V(X, T) Xp), —(2)

(f= const) the sequence of topics will be small depart-
ures from equilibrium, traveling waves of finite ampli-
tude, and the stability of these waves. Finally, these
results will be applied to the general situation of in-
teraction between traveling waves and the current
from the external circuit.

—Sn'+()n+(() p+) ) =0, (10)

which specifies the relationship between the "space
constant" 0. and the "time constant" 'A. To examine the
implications of (10) it is convenient first to limitjthe
investigation to small exponential traveling waves

Bi(x,t) = Bi(x ct) = Bi—el(* ") (»)
moving at velocity c. This is equivalent to choosing
)(=—cn, and Eq. (10) becomes

Sn'+ (c ())n () p—=0— (12)

If Ip is positive (the ohmic-resistance case, i.e., for
Bp——8 or Br in Fig. 2), Eq. (12) has real positive
and negative solutions for n. Either sign will lead the
exponential (11) beyond the bounds of linearity in one
end of the range —pp (x&~ . If pe(0 (the anomalous-
resistance case, for Bp——Bt)), n may be either complex
or real depending on the magnitude of (c—p). Unless
c—v=0, n will have a real part, and h~ will again exceed
linearity in one extreme range of x. The case c=e,
e,&0 is special in that it yields a pure sinusoidal wave-
form with wavelength

L=2)r(n/) ep()"' (13)

which streams across the diode at the carrier velocity e.
Consider now more general streaming sinusoidal

waves

8 (x t) 8 e(pwitc) (x-et)est (14)

which stream at velocity v but also grow or decay at a
rate given by P. Here L is not constrained by (13) but is
freely chosen. Substitution into Kq. (8) yields

P= —() p
—(2n./L) 'X) (15)

A. Small Departures Prom Equilibrium

Equation (6) evidently permits the equilibrium solu-
tions (p(Bp) =f). If there is a small departure from one
of these solutions, then

8(x,t) = Bp+Bi(x,t), (&)

where Bi is small, and Eq. (6) yields the linearized
equation

5)(Bp)8) +p(Bp)8) +() (Bp)8)+Bii=0. (8)

This equation has constant coefficients; the standard
approach is to investigate solutions of the form

Bi(x,t) =8)e~*e"'.

Substitution into (8) yields
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From this result we draw the following conclusions:
(1) The effect of diffusion is always dissipative and is
emphasized more at shorter wavelengths; (2) the
effect of the voltage-current characteristic is dissipa-
tive in the ohmic regions and antidissipative in the
anomalous region; and (3) in the anomalous region
short wavelengths will collapse but long wavelengths
will explode; the critical wavelength is given by Eq.
(13).

Note that any small initial perturbation of limited
extent can be Fourier expanded as a superposition of
the waves given by (9).

a &p &s'

B. Traveling Waves of Finite Amplitude

If one assumes in Eq. (6) that 8 has the form

8(x, t) = 8(x—ct)—=8(]) (16)

of a traveling wave moving at velocity c, then Eq. (6)
becomes

$(8)8))—+(v (8) c)8) f—r(8),——— (17)

which is a nonlinear ordinary differential equation for
8. Solution of (17) by numerical means would be
straightforward, but with no guarantee that the
boundary conditions, as $~ &~, would make the
solution acceptable. As in the linearized case, the wave
velocity c must be properly chosen.

The strategy against an equation such as (17) is to
re-express it as a pair of first-order equations:

dB) 1
(L~(8)—~38~+ 1)—(f—~)) (19)

d& X)(8)

r(8) =f, 8)=0. (20)

These "singular points" (Fig. 1) are recognized as the
equilibrium conditions already discussed.

If the phase-plane trajectory of the system point ap-
proaches close to a singular point, that part of its path
can be calculated in detail from the linear analysis of
Sec. III.A. It is easily shown that for the "ohmic"
singular points, where the roots of (12) are real and op-
posite, there is a unique line of approach, and another
unique line of departure (Fig. 1). At the "anomalous"

Imagine a "phase-plane" whose points have coordinates
(8,8~). Then as f increases, the two components of
motion of the "system point" on this phase plane will
always be given by Eqs. (18) and (19).The coordinate
8~ is the total charge density. Thus the Eqs. (18) and
(19) express the rates of change for 6eld and charge in
terms of their local values. Evidently both deriva-
tives in (18) and (19) vanish if (8,8~) satisfy both the
relationships

FIG. i. Features of system-point trajectories.

C (8,8()—=8(—ln(8(+ 1)—

Then"

e(8') —c
d8' . (23)

&(8')

C(8,8)=C(8,0)+(c—f), (24)
~s &(8')[«(8')+1]

where 8q is a value of 8 at which 8~=0 (see Fig. 1),
and 8~(8) is the solution to (22) which passes through
this point. Expression (24) checks at the point (8= 8q,
8~=0) and also differentiates back to (22). Notice that
4'(8r, 8) has a unique value at any point on the phase
plane.

singular point, complex roots of (12) lead to a spiral
trajectory for the system point in that neighborhood.

Other interesting qualitative information may be de-
duced from the system-point equations (18) and (19).In
particular, if the system point is on the line b~= —1
(Fig. 1), then by Eq. (19) it is crossing that line in a
direction that is determined by the signature of (f c)—
alone; as a consequence, the system point can cross
that line only once.

Another deduction from the phase plane: By the
fixed-point theorem of topology, any closed trajectory
must encircle a singular point.

The above two paragraphs lead to the observation
that neither (a) a trajectory between singular points
nor (b) a closed trajectory can cross the line 8t.———1,
whence

8)&—1

for these categories. Now category (a) corresponds to
traveling waves which approach equilibrium conditions
as $

—+ +~, while category (b) includes periodic waves.
These are the physically interesting solutions to Eq.
(17).

Dividing (19) by (18) yields

8( dh) 1 f c—
(~(8)—~)—,(22)

8)+1 d8 $(8) 8)+1
and integration on 8 leads to the following results:
Define
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If cW f, then the system point cannot follow a closed
path on the phase plane. Proof is by contradiction.
Assume a closed path as in Fig. 1. Extend the integra-
tion (24) all the way around the loop, so that 8 returns
to 8= 8q. Then Eq. (24) gives

dgI
=0.

&(8')L8r(8')+1j

But the integrand of (25) is manifestly smaller on the
outward arc than on the return, whence cA f and a
closed path are contradictory assumptions. Physically,
this means that neither a periodic traveling wave nor a
pulse bounded on each side by the same equilibrium
condition (a domain) can propagate at a velocity other
than the equilibrium drift velocity. However, a wave-

form bounded by two digerewt equilibrium conditions

(a depletion or accumulation layer) has no such simple
constraint on its propagation velocity.

For c=f, Eq. (24) becomes

I
'

l

l

I

I

I l

I"xG. 2. Velocity
versus field char-
acteristic, and a peri-
odic wave solution.

C(8,8r) =— n(8') —c
dh'

n(8')
(26)

The right-hand expression is a constant. The curve on
the phase plane, whose points yield this constant in

(26), is the trajectory of the system point. Thus (26)
implicitly specifies 8r(8), whereupon

dh'

8r(8')
(27)

f
v(8) —c

d8 =0,
$(8)

(28)

which is a relationship between the extreme field values
of the wave. In the special case of S not dependent on

8, the criterion (28) is equivalent to the statement that
the two hatched areas in the figure are equal. "In the
general case, the vertical elements of area must be
weighted by 1/50(8).

Figure 3 shows three limiting cases of the previous
mode, in which one or more singular points are included

completes the integration of Eq. (17).
The various types of steady traveling waves now can

be classiGed exhaustively. The various possibilities for
c=f are shown in Figs. 2 and 3. In each case the top
diagram shows the graphical solution of v(8) =f.
Directly below is the phase-plane trajectory, and on the
bottom is the corresponding waveform.

Figure 2 shows the case where the closed locus of
C'(8, 8 )=rE PEq. (26)j does not include any singular
points. The solution is a periodic wave, and is in fact
the Gnite-amplitude generalization of the wave dis-
cussed in Eq. (13).Notice that 8~=0 for two values of
8, 8= 8~ and 8= 8~ . Substituting the latter value into
Eq. (26) yields

in the system-point trajectory. External current de-
creases in the sequence from left to right. For high ex-
ternal currents, the low-Geld singular point is included
in the largest closed trajectory. This evidently cor-
responds to a high-Geld domain. As the current is re-
duced, a critical situation is achieved, in which both
outside singular points are included in the trajectory,
as shown in column 2 of Fig. 3. In this situation there
is no longer a propa, gating domain, but instead two dis-
tinct solutions, I'~ and F2, corresponding, respectively,
to traveling accumulation and depletion layers. Further
reduction of external current (column 3 of Fig. 3) leads
to a critical closed trajectory including a singular point
at maximum Geld. The Geld strength within the wave
will be lower than that which bounds it: This is a prop-
agating low-Geld domain.

For cWf, only accumulation- and depletion-layer
solutions, comparable to solutions F~ and F2 in Fig. 3,
remain as possibilities. Section III.C examines the rela-
tion between external current and wave velocity for
these cases.

C. Propagation of Layers

Column 2 of Fig. 3 shows particular layer solutions
which, because of the criterion of equal weighted areas,
propagate at velocity c=f, which is the equilibrium
drift velocity. If the current f departs from the equal-
weighted-area criterion, the propagation velocity will

depart from the drift velocity. To develop a criterion
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obtainable by differentiatin F. 17a result direct y o
ainder of thisand which will be important for the remain

straightforward way. Then the actual prob em wi

S pose a second-order diGerential operation asuppos
the self-adjoint property

&E (I)»(I) fdp=Mp~(()
p

G. . H' h-Geld domain, accumulation and pnd de letion
d 1 -fi ld domain solutions.layers, an ow- e h d d s. Suppose further that thefor any well-behave r an s.

eigenfunctions I(t ($), which satisfy

(40)
de arture, suppose a layer solution Bp($) to

Bf =X/
he sense that s may be ex-

q. (
J Th a sl'ght alterat'o 'n e ter a

form a complete set in t e sen
external current Jp. en a

pressed as
current

s($)=Q a~4m($). (41)
will yield a corresponding small change in wavefor

B(~)= B (~)+B (~),

and in propagation velocity

C= Cp+Ci.

Substitution in o
' t (17) yields the linearized equation

(P(Bp)—cp) Bip+(P p(Bp) Bi—ci)B«—&(Bp) Bip p

—$p(Bp) BiBppp= fi—p, (Bp) Bi (3 )

(42)

The inhomogeneous equation

(43)=S)
or

(30) It is famiiar af 'l' r that (41) will hold under very general
circumstances, with u given by

fdic-(~) (~)

fd (It-(5))'

ct' p —cp d p p(B«+1) npB«—,~
1

&&p n d( x)

correspon ing od' t (34) above has the solution

1
~(&)=Z —.e.(&)

m g~
Bppcl+ fl

43 and use of (40) shows at once.(33) as substitution into anI wever an evident dHBculty arises inow
valuet eeigen unn

' f ctions f~ has a zero eigenv

(45)

or even more brieQy

() ()
(I)

ere
' '

b 4 '
(33). If corresponding to 38 a ove. enw erehere A is the linear operator in brackets in

(33) can be utilized to obtain ci from fi,
' - on

~j~z can be obtained by noting thattion concerning c

Bi——pBpt., fi=0, ci——0

solves (32) or (33). Equivalently, (34) gives

A Bp(=0,

(37)

dc/d f=Ci/fi. 35

Notice that a translated solution to,~1/, is also a solu-
tion H e is chosen small and constant, then

Bp(&+p) = Bp(&)+pBpp(k) (36')

hence

(46)

is a condition s must satisfy, if P in (43) exists.
n . '

h (f/d& term which prevents theIn E . (33) it is t e
U in self-adjoint. This annoyanceo eator A from e g

can be reme ie in ed' d the following way: Construe
function

'( r(Bf)) c—
~(t)=exp—
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then the transformations

g= TBg,

s= T(8prc, +f,)/S,

H= TA2 &(4t) = @o(5)+h (4t),(50)

For a steady waveform traveling at velocity c, 8~=0
above and the equation reduces to (17). This makes
the form (59) convenient for studying the evolution of

(49) small initial departures from a traveling wave-form. Let

(60)

(61)f(t) =fo+f~(t)

Linearizing, as in Eq. (32), gives

convert Kq. (34) (upon multiplication by T) into Eq.
(43). Explicit evaluation of HP= TAT 'P demonstrates
that H is indeed self-adjoint.

The transformation ~lt+(v c) hlr+v ohlhpp Sh1rp +phlhopr
= f~—v, h), (62)

1t' 8
Ah~= ——

I f~
x)& at )' (63)

where A is the operator which erst appeared in Eqs.
(33) and (34).

The term f~(t) has been introduced to include ex-
ternal current changes brought about by changes in
voltage across the diode. This term will be considered

(53) later, but first we investigate the case of fixed external
current (or infinite driving impedance) for which fr=0,
giving

d&T'Bpr/n
dc

dP'(@p~)'/&

8
Agg= ——bg.

S Bt

Now for the deptetiorl, layer (1'p in Fig. 2) the slope
go& is negative but less negative than —1 LKq. (21)
or Fig. 2g. This gives L

—Bpr)(hpr)'] everywhere in
the integrands of (53); therefore

(64)

The solution of (64) can be expressed as a superposition
(54) of separated functions of the formdc/df)1

P~= TBpp (51)
or brieQy

converts (38) to (45); hence by (46) a solution b&

exists only if

(@pr)' "
Pop

ci dPT' +fi d)T' =0. (52)
S — S

With (35) this gives

for a depletion layer. This says that if the external
current is higher than f„ then for the equal-weighted-
area (or c=f,) condition, the wave velocity exceeds the
equilibrium drift velocity. Similarly, for an acclmulutioe
layer,

Substitution into (64) yields

A 8,.= (1/n)z„h, „,

(65)

(66)

dc/d f(0, (55)

so that increasing the external current makes the wave
velocity of the accumulation layer decrease.

D. Stability of Traveling Waves

If one makes the Galilean transformation to the
moving space coordinate

$=x ct, —
p =TIE„

b g Kq. (66) to th fo

(67)

an eigenvalue equation jointly for the spatial function
h~„($) and for the mth time-rate constant X .

The traveling waveform Bp($) is stable only if all the
eigenvalues of Eq. (66) are nonpositive. This question
of signature will now be considered. Again utilizing
Kq. (51), and defining

HP =X„(1/n)y„.
which was introduced in Kq. (16), a waveform pre-
viously dependent on space only will subsequently de-
pend on time; the elementary differential operators

Now H can be written
undergo the transformations

(68)

8/Bx +8/8&, -
8/Bt -+ 8/Bt c(a/i7 ]), —

which brings Kq. (6) to the form

nbr p+ h, +(v c—) b,=f v. — —

(57) H= ~'/~P+h(&), (69)

(58) and the function 1/S(&) is always positive. These
features of Eq. (68) justify the following assertion: The
eigenfunctions may be listed in such an order that p (()

(59) has m zeros, starting with m=0; and A will be in-



&~(&)= &4)@«(k), (70)

creasingly negative with increasing ns."Notice 6nally
that if

If the ends of the diode in which this occurs are at e
and b, then the voltage change across the diode is

Vi ——(b—u) hi.

(71) If, further, Vi has the time dependence

in Eq. (68) follows easily from the earlier result (38).
From the above observations we conclude: (1) If
80($) is an accumulation or depletion layer, then

ho~($) has no zeros. By (70) &jr(&) has no zeros, giving
M =0, and (71) becomes Xo ——0. Thus all eigenvalues are
zero or negative, and a layer solution is stable if. the ex-
ternal current is fixed." (2) For a propagating domain,
80($) has an extreme electric Geld value at which

&or(f)=0 Equ. ation (70) gives a zero to fir($) at that
point; thus %=i and Xj=0. There must be one
eigenfunction &0($) with no zeros and an eigenvalue
)0&0. Thus for 6xed external current a propagating
domain mill be unstable.

The positive eigenvalue Xo for a propagating domain
mill be of subsequent interest, and is evaluated for
certain limiting cases in Appendix C. That Appendix
also reinforces the following qualitative argument con-
cerning the nature of the instability: If the external
current is Gxed near (but not at) the critical value f,
of column 2 in I ig. 3, then the front and back faces of
the domain will be separated by a long "plateau" (or
"valley" for a low-Geld domain). If the two edges, where

80~ is large, are mell separated, then in these regions the
solution bj.o mill not differ signi6cantly from the solu-
tion hqj= ho~, and me write approximately

810=0,bog for the trailing edge,

bio——p 80) for front edge.

(72)

E. Domain Imyedance and Interaction mith
the External Circuit

Here a and p have the same sign, and the minus sign
appears because 80~ crosses zero, while B~o does not. The
full Geld LEq. (60)1may then be written

@(P)=@0($)+«""@or(5)=@o(&+«"')
for the trailing edge, (74)

&(P)=&0(&—P~'o') for front edge.

Thus the effect of the instability. is to make the tmo
fRccs of thc doIQRln slide ln opposltc dlrcctlons Rt an
exponentiating rate.

1/C.

(1/RZ. )+is)
(80)

where in our dimensionless units C,=(b—u) ' is the
distributed capacitance, Z, = (b—o)/w~ is the dc resist-
ance, and (1/R,C,) is the dielectric relaxation time.

Now a similar analysis may be performed on Eq. (62)
in the less trivial case mhere a propagating domain is
present, and departures from (79) can be ascribed to the
impedance of the domain itself. The voltage perturba-
tion across the diode is

«& (~). (81)

%C assume that the domain is mell removed. from both
ends of the diode, so that Gxing the limits of (81) in
the moving coordinate system mill do no violence to
the physics of the situation. Assume again the oscillat-
ing voltage (78); the impedance is still given by

Z(~) = Vi/fi

which brings Eq. (63) to the form

What follows is the determination of Z(&u) from (84).
Multiplying (83) by T($) brings it to the form

Hx —(m/n)x = (1/n)s, (85)

Vi(&) = Vi(o)~*"',

then hi and fi will respond sympathetically, and the
above cqQRtlons yield thc equilibrium 1IQpcdRncc

Z.= Vi/fi ——(fi e)/—(v,+ice).

This may be written in terms of equivalent parallel
resistance and capacitance circuit components as

A space-independent perturbation from equilibrium
reduces Eq. (62) to the simple form

@i~=fi ii,~i—
where

X= TBj., (86)

16 E. L. Ince, Oratory DQTereetial EqNatiog (Longmans-Green
and Company, Inc. , London, 1927), p. 231.

'V In another context, the stability of a monotonic front has
been analyzed by T. B.Zeldovich and G, I. Barenblatt, Combust.
Flame 3, 61 (1959).

(~)=-(V /Z) &(~). (87)

Now a familiar generalization of Eqs. (40), (41), and

(42) is that if p„(g) satisfies (68), then any well-behaved
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function s($) can be represented as

(&)=2 b-~-(&),

where

(88)

ternal current oscillations from building up a charge
difference on the ends of the domain, for the m=1
contribution to the resulting voltage in (92) vanishes
with

& (k)&(8
~(~)

"
(89)

d&8«r—- 8p(b) —Bp(a) =0. (96)

(~-(&))'
&(5)

Thus a solution to (85) is

x(e=z ~.(e.
~A, —zco

Multiplying by T ' gives

hence

(9o)

(91)

As m increases in (91), the higher modes must ac-
count for the fluctuations in the Geld outside the
domain, in the quiescent regions of the diode. The
sinusoidal form of the eigenfunctions in these regions
has already been indicated in Eq. (14), and the eigen-
values have been given by P in Eq. (15). If (b—u) is
large, there will be many eigenfunctions for which L is
large in. Eq. (15), so that the corresponding eigenvalues
will be well approximated by

(97)

The denominators of these terms in (92) and (94) will

thus be in agreement with that of (79), and no violence
is done if we make the approximation

dÃ~-(k) (92)
Z(c«)——Np/(Xp —i«o)+Z, (c«) . (98)

Now by (87) and (89),

Vg

Z

T2
d, h~

S
T2

d; (Sg )'
S

(93)

Z((u) = —P
T2

d," (Sg )'
Q

The physical distortion of a domain in response to a
sinusoidal Quctuation of external current can be seen
by inspection of (91), which can be written

Upon substitution into (92), V~ cancels, giving 6nally

T2

)& n 1™i

Therefore the contribution speciGc to the domain is

Equation (99) is in the form that one anticipates
for the impedance of a variable capacitor whose plate
separation at equilibrium is determined by the im-
pressed voltage, and which seeks that equilibrium with
a relaxation constant —Xo. This corresponds to the
physical picture of the dipole domain under conditions
of external voltage forcing. However, the lowest
eigenvalue X« is positive, and this gives an equivalent
picture of a voltage-forced capacitor whose equilibrium
is unstable. Another way of viewing Eq. (99) is to
re-express it as a parallel resistance-capacitance com-
bination, as was done for Eq. (79). It is seen that the
numerator No is positive, whereupon the positive
eigenvalue Xo leads to an EC combination in which R
is negative.

The evaluation of the diode impedance equation (94)
leads immediately to an understanding of the behavior
of a diode containing a domain plus the external circuit

I with known impedance Z, (&o)] to which the diode is
connected. Since the ac voltage drop around the entire
circuit must sum to zero, the impedance satisfies

@~($)= (95) Z(«o)+Z, ((o) =0, (100)

The same arguments that led to the results (74) and
(75) may again be applied, leading to the conclusion
that the m=0 term above leads to a periodic "breath-
ing" of the domain, while the m=1 term leads to a
rigid "back-and-forth" motion of the entire domain.
This rigid motion is just sufBcient to prevent the ex-

where Z(co) is given by (94). Equation (100) is to be
solved for co, which is the free-running frequency
(generally complex) of the entire system. A simple ex-
ample illustrates: Use the approximation of Eq. (98)
and ignore the capacitative part of the response in Z,.
(This is realistic if the time scale is slow compared to
that of dielectric relaxation in the diode). Assume
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further that the external load is purely resistive. The
quiescent diode impedance and that of the external load
may be lumped together as a single resistance R, and
Eq. (100) becomes

glvlng

—Np/(Xp —isa)+R= 0,

ztd=Xp —Np/R.

(101)

(102)

From (102) we conclude that the propagating domain is
stable for small external loads R&Np/Xp and unstable
if this critical load value is exceeded.

Note that the previous result for stability of a domain
against fluctuations which do not alter the external
current (see Sec. III.D) is recovered for the case of
an infinite external impedance.

IV. CONCLUDING REMARKS

This investigation should be regarded as exploratory;
however, its results are encouraging. Since our analysis
was completed, Copeland" has made available a set of
numerical calculations. Though his model divers some-
what from ours, his results show gratifying agreement.
We call attention particularly to Fig. 3 of that reference.

We suggest that the methods of this paper might be
applied to such questions as (a) more general current
models, (b) the input boundary condition, (c) analysis
of doping inhomogeneities, and (d) interaction of the
external circuit with accumulation and depletion layers,
and with periodic waves. In closing we mention that we
found in the course of this work a multitude of tantaliz-
ing relationships which we were unable to exploit; this
suggests that the analytic theory of the Gunn effect is
susceptible to extensive further development.

Pote added pe proof. An early paper containing ana-
lytic work has recently appeared in translation: V.
Bonch-Bruevich, Fiz. Tverd. Tela 8, 1753 (1966)
LEnglish transl. : Soviet Phys. —Solid State 8, 1397
(1966)j.

APPENDIX A: HAMILTONIAH, LAGRANGIAN,
AND NATURAL SELF-ADJOINT

FORMULATIONS

In the case where c=f, which leads to the prop-
agating-domain solutions, the traveling-wave equa-
tion can be derived from a Lagrangian. This feature is
of more than aesthetic interest because a Lagrange
equation linearizes to a self-adjoint operator. Thus a

J. A. Copeland, J. Appl. Phys. 37, 3602 (1966).
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natural self-adj oint form of the linearized laws is
easily derived.

If c=f, Eqs. (1S) and (19) become

d8
g$

d$

d8p fv(8) —c)
I ~(8) iI«&+1),

which possesses the integral invariant

(Ai)

is an alternative variable which brings these relations
to the form

v—c
C =n—i—inn — d8'

g~ cD

d8/d$=e —1,
d./d(= L(v-c)/njn.

The further transformation

(A3)

(A4)

(AS)

yields

n=e' (A6)

C =e'—i—s—
v—c

d8' (A7)

d8/d&=e' 1=84—/Bs,

ds/d(= (v—c)/n= —BC/a8.

(AS)

(A9)

These equations are in Hamiltonian form, with/4
playing the role of the Hamiltonian. The corresponding
Lagrangian is

v—c= 8p in(8p+ 1)—8p+ln(8&+ 1)— d8', (A10)
Ga

and the Lagrange equation of the system becomes

88 Bz
0=——

d&88p 88

v—c=—('n(8p+1))-
d$ S

(A11)

Performing the differentiation retrieves the original
equation for a propagating domain. The useful feature

v(8') —c
4(8,8t) =8p—ln(8p+1) — d8' . (A2)

p. S(8')

The mobile charge density
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of the above expression is that the nonlinear operator

d o(8)—c
Q(8) =—in(8p+1)—

d$ n(8)

linearizes at once to

(A12)

-d 1 d d o—c)
Q(8o+8,)-Q(8.)=-

d$ 8pp+1 d) d8 S J oo
Fxo. 4. The eigenfunctions 810 and 80'.

(A13) of the one known eigenfunction 8pp and its eigenvalue,
zero. Starting with (A13),

=—LBj,

which gives the linearized operator in manifestly
self-adjoint form. (C1)f-8io= lip[1/(8op+1) &]8io,

LBpp ——0.
and

(C2)APPENDIX B: EVALUATION OF T(g)
AND dc/df FOR DOMAINS Multiplying the 6rst equation by Bpp, the second by 8&p,

subtracting, and rearranging,
Equation (A11) can be integrated with respect to $,

yielding at once 1 1—~o — — @io@o]=-
(8ot+ I)& d5 (8pp+1)v —c

df (81)—T2=exp
8op+1 d d

X 810 80$ 80$ 810 ' (C3)
which gives a simpler expression for T than that in dt d$
the text.

Here 8op has only one zero and we set the origin of the

agree with the general expression (53). For a domain we coordinates there. Integrating both sides over the

can prove range (—op,0),

00 T2
d$—8pp

Q0 S

00

d5—(8pp)'
O0

(82)
)%,p= —8io(o) 8o op(0)

@io~pg
(c4)

(8op+1)m

Since this is equivalent to

T2
dt8pp(8pp+1) —=0,

S
(83)

Eq. (82) is seen to be true by using (81) which reduces
the left-hand side above to

" 8ppdt d8

n $(8)

which is manifestly zero.

(84)

APPENDIX C: DOMAINS ~ EVALUATION OF Xp

An expression for Xp valid as f~f„S—+0 is
derived below. Because of the ineffable nature of the
coeKcients in Eq. (62), a precise evaluation appears
diflicult. These coeflicients have a complicated spatial
variation through 8p($), which in turn is a solution to
the nonlinear system (17). Also, the usual maneuver
of exploiting a variational principle was unsuccessful,
inasmuch as we were unable to construct a usable trial
function falling below Bp].

The stratagem taken herc is t,o make maximal use

&io -. &o]
$-+—oo (c6)

The proportionality constant e is required to account

since 8ip, 8pp —& 0 as $ —+ —op. Now Xp so evaluated is
manifestly positive. For a high-field domain the curva-
ture is negative at the top; and furthermore Bo~ does
not change signature in the range of integration and is
positive. The converse holds for low-field domains, but
8op(0. Of course, 8ip has no zero. 8ort(0) can be
evaluated directly from (17):

8ppp(0) = (o(8o )—c)/$(8p ) . (C5)

As f + f„ then 8o -+—8~ and the configuration of the
domain approaches that of an accumulation and deple-
tion layer back to back. In this limit, the length in-
creases without bound. Also, B~p becomes localized in
the region about each domain edge; i.e., in the negative
resistance regions. (See Fig. 4.) The amplitude of 8io
drops oG exponentially in the interior of the domain.
Since the zero in the first-excited state occurs well
beyond the "turning point, " b&o and hp~ can be re-
garded as "bonding" and "antibonding" combinations
of the wave packets localized around each edge. Thus,
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+1) Consequen ytlg dominates»(8«since 0$

o gppA

$55

t ori in. 0. will be deter-
t 8

f th ym y
b the constraint o ormined y

u i i
'

the interiorsolutions are easi yil found in eApproximate so u i
by a WEB technique:

(p(go )—c)/&(go )

a(t) m(0)/(goo+ 1))'"

0 gop

„(go(+1)n
(C14)

p. n(8)

s e
' '

across the shocks the finite jumpwhich calculates e

t at im„= orthogonality,h li „=0.BWe prove now t at im„

0 g p

„(goy+1)X)

&(sinh d$'. (C15)
p (goo+1)n

qo(r)/(go+1))'"

&(cosh
0

(goo+ q|1 |d$, (C7)

the contention' thereforet e c

0

g
th d

' t h
0 h l d g

, fo (23)' '""") "" "--'- "-
where

(8.,+1)+—.
dgI n

(C9)
therefore,

—(1/g) u(&p)8() ——1+e

of C15)ralint e er
'

h d nominator of (CThus the integr

(C16)

the amplitudeC6) determine the ampin conditionsThe matching
A and phase 8. The resu

(p(go )—c)/&(go )

(Vo(k) Vo(0)/(goo+ 1))"'

2Go g

o (goo+1)&

ddle-point expansionUsing a sa e-

e (&/P)GG(oo)dg' (C17)

)&cosh
0

—' 1na . (C10)(goo+ 1)god &'+-, 1na e (&/p)M(po)dp'~

~ I/22ry
(1/p) GG (pe) (C1g)e

as been taken oAdvantage has

so that

Thus,

(goo+1)n,1(o«—! op

go=pi.

1 (()(gp )—c)/X)(gp.
0 =—

—I/22 —8 /G
—

G)
dg& n

(C12)

with the diffusion0. vanishes exponentially wit
constant.

C12), andPutting the partia resu
ether,

——1/2(gp )—c))

ngp)& dg nJ p, ,2 S gp.

(C19)
~(g)j

e denominator oof C4) can"g pp

Th refore we inves igoccurs where @co=bog. er

p

„(gop+1)X)

e of the domain steepensfthetrailingedgeo t e

) hd indeed fromas g —&0, an in

(C13)

D: LAYERS;' EVALUATION OF cAPPENDIX
IN THE L

and (82) stateEquations (53) an

goo

(goo+1) n

dc cy
(D1).(8«+1) ~df A

D~0. This result
f fo h

gas D~
g

For a epe
'

'
hborhood os for in the ne)gfo11ow

is given by Eq. (
-(&/n) ~(&0) (D2)go& ~ —1+e—(&/Gt)GG o

g~o

mostt in e hich contributest in the region w icThis implies that in e ic
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to the integrals

g ~ (g )s. (D3)

decreases. The numerator varies as g
' and the de-

nominator as ri '. Therefore ci 0(ri) which vanishes
in this limit of q —& 0, giving

consequently, the numerator and denominator of (D1)
are equal in the limit, giving

dc/df=0. (D6)

dc/d f=1. (D4)
The conclusion is that in the limit of slight diBusion,

the depletion layer has a velocity
On the other hand, for the isolated accumulation

layer ci —+ 0. This follows directly from (C13) inasmuch
as in the boundary

&os ~ (1/n)N(ho), (D5)

c=f=s(h, ), (D7)

while the velocity of the accumulation layer is the
constant

which becomes indefinitely large as the thickness independent of f.
c= fey (D8)
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Nature of the ac Transition in the Superconducting
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The response of the superconducting sheath state of Pb-2wt% In to low-frequency (20—500 cps), small-
amplitude (10 'Oe(h0&20 Oe) ac fields has been studied. Direct observation of the wave form shows that
screening currents are developed in the sheath up to a critical value J„when the field begins to penetrate.
The screening current continues to increase until a saturation value J, is reached, at which point the current
in the sheath stays constant for the remainder of the half-cycle. Fourier analysis of a model wave form for
which J =J,=J, indicates the harmonic content, and nonlinear nature, of the response. Measurements
of the real and imaginary parts of the ac permeability, p' and p,",at the fundamental frequency as a function
of the ac field amplitude at constant dc Geld shows that the transition is characterized by only one param-
eter, dependent on the dc field, and that the model gives an excellent description of the nonlinearity. Well-
defined quantitative critical-current data can be obtained for comparison with the theories of Abrikosov,
Park, and Fink and Barnes. The relationship between these observations and other measurements of p,

' and
p,
"as a function of dc field at constant ac Geld amplitude is discussed. It is shown that the transition is sensi-

tive to misalignment of the specimen relative to the dc Geld. The change in the transition as the frequency
is changed is explored, and a preliminary conclusion is that J, is much more sensitive to frequency than J,.

1. INTRODUCTION

UPERCONDUCTORS have been studied by ac
magnetic Geld techniques for a considerable time. '

We are concerned in this paper with experiments of the
type~ in which a small axial ac magnetic field h(t) =hp

corot with a frequency in the range 20 cps&co& 500 cps
is superimposed upon a coaxial dc Geld Ho. If Ho is in
the range H,~&HO&H, 3 for a type-II superconductor,
or in the range H.&HO&H, & for an appropriate type-I
superconductor, the specimen is in the superconducting
sheath state discussed by St. James and de Gennes'
and experimentally conGrmed by various investi-
gators. 4 ' The response of a specimen in this regime to

*Present address: Ohio University, Athens, Ohio.' D. Shoenberg, Proc. Cambridge Phil. Soc. 33, 559 (1937).
I See, e.g., R. A. Hein and R. L. Falge, Jr., Phys. Rev. 123,

407 {1961).
~ D. St. James and P. G. De Gennes, Phys. Letters 7, 306 (1963).
4C. F. Hempstead and Y. B. Kim, Phys. Rev. Letters 12,

145 (1964);W. J.Tomasch and A. S. Joseph, st. 12, 148 (1964);

such an ac Geld probe has in the past been measured in
the form of the in- and out-of-phase permeability corn-

ponents p,
' and p,

" as a function of the dc Geld Ho at
constant ac Geld amplitude ho and at the fundamental
frequency. Characteristic features' " of the response

G. Bon Mardion, B.B. Goodman, and A. Lacaze, Phys. Letters
8, 15 (1964); S. Gygax, J. L. Olsen, and R. H. Kropschot, ibid.
8, 228 (1964); M. Cardona and B. Rosenblum, ibid. 8, 308
(1964);B.Rosenblum and M. Cardona, ibid. 8, 220 (1964);J. P.
Burger, G. Deutscher, E. Guyon and A. Martinet, Solid State
Commun. 2, 101 {1964).

5 M. Strongin, A. Pash, in, D. G. Schweitzer, O. F. Kammerer,
and P. P. Craig, Phys. Rev. Letters 12, 442 (1964).

6K. Maxwell and M. Strongin, Phys. Rev. Letters 10, 212
(1963).' M. Strongin and E. Maxwell, Phys. Letters 6, 49 (1963).

SP. R. Doidge and Kwan Sik-Hung, Phys. Letters 12, 82
(1964).

9 P. P. j'. Van Engelen, G. J. C. Bots, and B. S. Blaisse, Phys.
Letters 19, 465 (1965).' R. W. Rollins and J. Silcox, in Proceedings of the Conference
on the Physics of Type-II Superconductivity, Western Reserve
University, 1964, p. III-32 (unpublished).


