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Green's-Function Theory of Nonlinear Transport CoeRcients*
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The nonlinear transport coefBcients are expressed in terms of many-time Green's functions. Except for the
inhomogeneous term, the equation of motion for the many-time Green's functions is shown to be the same
as that for the two-time Green's function. Some simple applications of the method are discussed.

I. INTRODUCTION
' 'N a celebrated paper, Kubo' derived the theory of
~ ~ linear transport coeKcients for quantum-statistical

systems and gave exact expressions for these coefficients

in a closed form. Since then many attempts' have been

made to actually calculate the transport coeKcients
starting from the so-called Kubo formula.

Since in the Kubo formulation the frequency-

dependent linear transport coeKcients are expressed in

terms of Fourier transforms of appropriate correlation
functions, the obvious connection with temperature-

dependent two-time Green's functions has been noticed
and extensively discussed in the literature. ' The Green's-

function method has the well-known advantage that it
always deals with the directly measurable quantities
and therefore avoids the need for first calculating the
wave functions of the perturbed system.

Recently, with the advent of high-power microwave

sources, high magnetic fields, and lasers, various non-

linear phenomena have been observed. Many micro-

wave devices (e.g., power limiter, frequency doubler,

and ferromagnetic amplifier) which utilize nonlinear

effects have been developed4 and a host of interesting
nonlinear effects (e.g., harmonic generation, mixing,

intensity-dependent index of refraction, quadratic
polarization, parametric ampliftcation, etc.) with ex-

citing possibilities have been seen with the lasers. '
As is discussed in Kubo's original paper, ' the formula-

tion of the transport theory is not at all limited to the
linear phenomena. The solution of the Liouville equa-

tion for the density matrix is given to an arbitrary
order in the strength of disturbance, and hence the
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nonlinear transport coeflicients can in principle be cal-
culated by the Kubo formulation.

The main purpose of this paper is to show that it is
indeed possible to 6nd an explicit formula for the higher-
order transport coeKcients. In analogy with the con-
nection between linear transport coeflicients and the
two-time Green's function referred to above, in Sec. II
we show that the nonlinear transport coeKcients can be
expressed in terms of (re+1)-time (tt) 1) Green's
functions. ' Except for the inhomogeneous term, the
equation of motion for the (st+1)-time Green's function
is found to be the same as for the two-time Green's func-
tion. In Sec. III we show some simple applications of the
method in order to discuss the nonlinear susceptibilities
of a Heisenberg ferromagnet and nonlinear polariza-
bility of an anharmonic oscillator and a free-electron gas.

II. THEORY

A. Solution of the Liouville Equation

In order to make our discussion self-contained, the
solution of the Liouville equation, correct up to arbi-

trary order in perturbation strength, is sketched below.
The equation of motion for the density matrix p(t) of

a system described by the Hamiltonian 3.' and under the
inhuence of an external disturbance 3'.1 is

iBp/Bt=[X+XI, p], A=1.

The disturbance X1 is assumed to be harmonic and
turned on adiabatically as

A p
—i(69+is) t

t

where A is a dynamical variable of the system. The
general case in which the external disturbance consists
of a spectrum of frequencies instead of a single fre-

quency is treated in the Appendix.
Correspondingly, the density matrix is also divided

into two parts as

P(t) =Ps+PI(t),

where po is the equilibrium canonical distribution for
the system with Hamiltonian K,

pp
——e &+/Tracee e+, Qp,X]=P,

6 An earlier attempt to relate nonlinear response functions to
lower-order driven correlation moments was included in a paper
by W. Bernard and H. B. Callen, Rev. Mod. Phys. 31, 1017
(1959).
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and p)(t) is the deviation from the equilibrium dis-
tribution. Substituting Eq. (3) into Eq. (1), one
obtains

Bpq/R= —i(& p)+&Ppo+~). p)} i

The crossed operators are introduced as

e"b= [(t b]. (6)
Equation (5) can be formally solved by the usual itera-
tion procedure to yield the expression given by Kubo'

where

p((t) = g (i)" dsg
n=l

s2 ~ ~ ~ ds e iix—Ax(s&)Ax(so). . .Ax(s )p~-i(e+ie) (st+co+ ~ +a~) (7)

A(s~) =e~&Ae sc'&, etc. (g)

Introducing the transformation of variables r =s„1—s„and using the identity e "b=e'be, one can rewrite
Eq. (7) as

p (t)= P o"e ("(~+'6)' dry

Xexpi((o+io)[nr(+(n —1)ro+ +2r„r+r„]. (9)

The thermodynamic average of a dynamical variable 8 can now be calculated by

B=TraceB(po+ p))

(B)+P i"e '"("+")
n 1

where

7 1 ~ ~ ~ g~ ~'( +'.) (n.1+"+. )

X(EE" EEB,A(—.,)],A(—ro)], "],A(—ri" —..)]), (10)

(' ' ') =T «e(' po).

B. The (n+1)-Time Green's Function

In analogy with the two-time Green's function the (n+1)-time Green's function and its Fourier transform are de-
Gned as

G +l(Bj A(—rl); j A(—r). ' ' ' —r~))—= (—i)"0(r() ' t)(r~)(EE EBtA('«)]l—'']PA'( —rl rs)]),
1 00

G„+g(B;A) „+;,=— dry
(2ir)"

drnGs+1(B j A (—«);;A (—r j' ' ' r~))

Xexpi((o+io) [nrem+ (n—1)ro+ r„], (12)
where g(r) is the step function.

Equation (10) for the thermodynamic average B can now be written as

(B)+g ( 2~)ne in(co+ie) i—G (B.A)
n=1

(13)

1
n(M+io)G~+1(B j A)cg +si= drl; ' '

(2or)"
dr„G„+i(B;A(—rg)j; A(—r) —r„))

1 8
X- expi((o+io)(nr(+ ~ ~ +r„). (14)

Z 8T1

Thus the higher harmonic components of a dynamical quantity B can be calculated if one knows the (n+1,)-
time Green s function for n& 1. Its equation of motion can be set up by using the definition (12) and the following
identity:

Recognizing the time dependence of the Green's func-

tion and the fact that the Green's function is invariant
under uniform translations of the time variable, one can
transform the right-hand side of Eq. (14) by integrating

by parts to obtain

n((o+ie)G~~(B; A)~;.= (1/2or)G (EB,A]; A)„+;.
+G~g([B,3'.];A)„+;„(15)

where

G((EB,A]; A) = ([B,A]).

This is the equation of motion for the (n+1) tim
Green's function. One immediately notices the similarity
between Eq. (15) and the usual equation ofmotion for the
two-time Green's function which can be obtained from
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Eq. (15) by setting n= 1.

(~+z~)((» A))-+'. n(io+ie)G„+z(M, ; A)„+;,
= igzz HG„(M„;A)„;,. (23c)

where

=—&[»A])+«[»~1 A))-+', (17)
2'

Solving Eqs. (23) for G~z(M, ; A)„+,„G„+z(M„;A)„+,„
and G„+)(M,; A)„+,„we 6nd

((B;A)).+;,=Gz(B; A).p;, .

III. APPLICATIONS

igzzsH, G„([M„)A];A) ~;,
G„+z(M,; A)„+;,=

2)r[n'((o+ is) '—(gzzz)H. )']
(24a)

In this section we shall apply the formulation of n(id+ze)G„([M„,A]; A)„+;,
Sec. II to discuss nonlinear properties of some s~mple

G +z(M„; A)„.i.;,—— , (24b)
S CO Z6 —gPg z

systems.

A. Nonlinear Susceytibilities of an Ideal
Heisenberg Ferromagnet

To calculate the nonlinear susceptibility for an ideal
Heisenberg ferromagnet, the system Hamiltonian is
assumed to be given by

G ([M„A];A)~;,
G))+1(M)l) A ))l+))

2)rn ((o+is)

Since the eth-order susceptibility tensor is related to
the (n+1)-time Green's function, one can discuss non-
linear susceptibilities from the above equations. From
Eq. (16) we have

K= —P JrgSq Sg gzzzzH, P—Si',
fed f

(18)
Gz([M„)A]; A)„p;,——([My,A])= igpz)H, (—M,) (25)

where the first term is the usual Heisenberg exchange
contribution and the second term is the Zeeman con-
tribution due to the uniform static magnetic field H,
in the s direction. The disturbance

g S ):e i(,))+i))t-
f

is assumed to be applied in the x direction. Hence in this
particular case the operators A and 8 are

and

Gz([M.,A]; A)„+;,=Gz([M„A];A)„+,,=0.
The linear susceptibilities are obtained by combining
Eqs. (24) for n=1 with Eq. (25):

Gz(M„A)~;.=0,
(gzzzz) 'II,H,

Gz(M; A)~;,= (M,),
2zr[(a)+ze)' (gzzzzH—,)'] (26)

where
A =gzzzzH~, and B=M„M„,M„ (20)

—zgzizzH. (0)+M)
Gz(M„; A) p, ,= (M,),

2zr [(ca+ze)' —(gzzz)H. )')
M =+Sr ~

f

It is important to note that in this system all th
Cartesian components of the total magnetization c
mute with the exchange part of the Hamiltonian
thus the equations of motion for the (n+1)-time
Green's function become extremely simple. The com-
mutation relations lead to

Gz(M, ; A) +,,=Gz(My, A') p;.——0. (27b)

Equation (27a) reflects the known result' that the
lowest-order nonlinear susceptibility is proportional to
the saturation magnetization and square of the strength
of the disturbing field.

The above calculation is independent of the sign of
the exchange integral; hence the results are equally
applicable to the Heisenberg antiferromagnet. How-
ever, for an antiferromagnet, (M,) should be replaced by

[M,)X]= zglzzzH, M„,
[M„A]=igzzzzH. M„,
[M„)A]= i gIzzzH~, . —

[M„R]=0,
[M„,K]= i gzzz)H, M„—
[M„A]=0,

(22)

Introducing Eq. (20) into Eq. (15) and using the above
commutation relations, we obtain

n(a)+is)G +z(M, ; A) +;,
= (1/2)r)G„([M„A]; A) +;., (23a) (M,)=X H„)) (28)

and the lowest-order nonlinear susceptibilities, obtained
21

by putting n=2 in Eqs. (24), are

(gz ~H.)'
Gz(M„A) „p;,—— (M,) (27a)

and 4 [( + )'—(gz H.)']

n((a+is)G~z(M„; A) ~p,.
= (1/2)r) G„([M„,A]; A).+;.

iglzzzH, G~z(M, ; A) +... (2—3b)

where X&~ is the static parallel susceptibility.
' R. W. Roberts, W. P. Ayres, and P. H. Vartanian, in Qgentum

Electronics, edited by C. H. Townes (Columbia University Press,
New York, 1960).
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It should be pointed out that the treatment pre-
sented here is based on an oversimplified model, so
that the results obtained are useful only for qualitative
interpretation of the phenomenon. In a more realistic
treatment, effects such as the demagnetization field,
anisotropy energy, spin-lattice interaction, etc., should
be incorporated in the theory. However, the tensor
character of the susceptibility and the order of magni-
tude of various harmonic contributions is given. correctly.

4—Spg)Z $,5', Z

r),r;4, (29)

where the last two terms represent the anharmonic
part of the potential in which the ions oscillate. The
interaction of the system with radiation is represented by

X = —P erEe '&+"'
S=S,gp Z

(3o)

in the electric-dipole approximation. We will discuss the
particular case of second-harmonic generation [r)=0 in
Eq. (29)j and calculate the contribution of ionic mo-
tion to the x component of second-order polarizability
due to E,'. In this case the operators A and 8 are both
equal to E, and the Green's function of interest is
Gp(x;x) .

From Eq. (15) it immediately follows that (p ~ 0)

2ipGp(x; x)„=(i/m. )Gp(p. ; x). , (31)

2ppGp(p, ; x)„= im~p, 'G—p(x; x) +i).Gp(x', x)„, (32)

and'

1 1
LES g

y
S Q

2 (2prm. ) '(tp' ppp, s)'—

B. Nonlinear Ionic Polarization

As a second example, we consider the contribution of
ionic motion to the nonlinear electric polarization I'"'.
Such contributions arise from forced vibrations of
charged ions in an anharmonic potential. Following
Armstrong et aL, we simplify the Hamiltonian of the
system in the absence of radiation by decoupling the
spatial coordinates:

fp"X=-,' P ( +m,cppPr,'
)i=a, p, z & mr )

and the contribution to I'"' due to E,' is

P "'(2ip, ionic)

=Gp(e x; e,x) E,se "~'

3

2(2Pr)'5 m.i (cP'—(Pp, ') s((Pp, s—4iP')

2g 2sctl 8

which is the same expression" as obtained by Armstrong
et ul. Qne can similarly discuss third-harmonic genera-
tion; the last term containing r) in Eq. (29) must now
be retained and the appropriate Green's function is
G4(x; x)..

Xr= {eAp'/2mc'+As(2q)}p p,p ""' (37)

where ps=ega cata&+p is the charge-density fluctua-
tion operator. It can readily be shown that the eGect
of screening potential on the external perturbation is to
modify it by a factor c (2q, 2tp), which is the longitudinal
linear dielectric constant. Hence,

Xr——[eAp'/2mc'p'(2q, 2&p)]p ppe
""'

where

4 " f (")-fo(.+,)
"(q,~)=1-

pp+p+ pp+ pe

Also, the unperturbed Hamiltonian K of the system is
given by

(39)X Q pace irk p

and the dynamic variable of interest is the current
operator

C. Nonlinear Susceptibility of an Electron Gas

Recently, Bloembergen and Shen" have given an
expression for the lowest-order nonlinear susceptibility
of an electron gas under the inhuence of a transverse
electromagnetic wave. The dominant terms in the per-
turbation Hamiltonian, which includes the self-
consistent Coulomb screening potential P„"are"

Xl= (e'/2mc') A'+ ey, .
Taking A=Ape"P' "'&, we can write Xr, in second-
quantized formulation, as

Combining Eqs. (32) and (33) and substituting the re-
sult into Eq. (31), we obtain

j,= P(k+2q)a a+, .
25$

(40)

1 1 1 1
G.(', *).=- h. , (34)

2 (2s.)' m ' (ips —ppp. ')'(cp '—4ip')

' J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S.
Pershan, Phys. Rev. 127, 1918 (1962).' Since Gp(x'; x)„appears in Eq. (32) in the term proportional
to X„G3(x';x)„ is evaluated up to the zeroth-order term with re-
spect to the anharmonic term in X.

The nonlinear second-harmonic current density is given

"See Ref. 8, Eq. (2.25)."N. Bloembergen and Y. R. Shen, Phys. Rev. 141, 298 (1966)."In the preceding part of the paper the perturbation Hamil-
tonian X& has always represented the interaction of an external
disturbance with the system. But in this part we include the screen-
ing Coulomb potential in X& since its only inhuence is to modify
external perturbation and it gives rise to a self-consistent field in
which the free electrons LEq. (39)j move.
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e'As'
Z(it+ q)

2znscse'(2q, 2') k

f( ) f( +.)
43

ek ek+2q+2ie+ze

which is the same expression" as obtained by Bloem-
bergen and Shen. "

IV. CONCLUSION

In this paper we have extended Kubo's formula for
the linear transport coefEcients, and its connection with
the two-time Green's function, to the discussion of non-
linear transport coeKcients by introducing (n+1)-time
Green's functions. A method of calculating nonlinear
transport coeKcients by solving the equation of motion
for the (n+1)-time Green's function is proposed. It is
found that the equation of motion for the (n+1)-time
Green's function is the same as that for the two-time
Green's function except for the inhomogeneous term.
Thus the proposed method has the same advantages as
the two-time Green's function in the calculation of linear
transport coefBcients. To demonstrate the applicability
of the present formulation we have treated nonlinear
susceptibilities of a Heisenberg ferromagnet as well as
some other known results in the literature.

"Equation (43) follows if in Ref. 11 one substitutes Eq. (5)
into Eq. (7).

by the expression

eAp' 1
(Isq)s~ie 2zr((Jzqi p—zq))

2nzcs e'(2ql2(0)

eAp 1
=2zr— P P(lt+q)

zn 2mc'e'(2q, 2ie) k k

X ((ok izk+sq j izk'+sq izk'))se+ie ~ (41)

We notice that in the particular case of the free elec-
tron gas, the calculation of the nonlinear coeKcient
involves the two-time Green s function only. This is be-
cause one is essentially calculating the linear response
to the nonlinear perturbation A', which arises from the
dominance of the nonlinear contribution from A' over
that from the linear term —(e/2nzc)(y A+A p). The
equation of motion for ((ak izk+zqi ok'+2q irk'))2&a+is is
easily solved to yield

((irk izk+sq& izk'q. sq izk'))sro+iet

8kki (izk Ski) (Ck+sq irk'+2q)
(42)

2zr ek —ek+zq+ 2M+ ze

Introducing Eq. (42) into Eq. (41) we obtain

(isq)s~'

where
Xt ——A f—(t), (A1)

f(ie)e '"'die-. (A2)

Correspondingly the expressions for pq(t) t Eq. (7)] and
B $Eq. (10)$ are replaced by

pt(t)= P i" dsy d$2'''
sss-1

ds„e 'ne"A~(st)

and

XA (s) A"( )pof( )f( ) f( ), (A3)

B=(B)+P i" dst ds

XG.„EB(t);A(. );",A(..)j
Xf(s )f(s ) f( .), (A4)

where the (n+1)-time Green's function has been intro-
duced through

G~t(B(t); A(st); A(s ))
= (—z)"8(t—st) 8(st—ss) 8(s t—s„)

X((" L(B(t);A(st), A(»)), " 1A(s-))) (»)
Substituting Eq. (A2) into Eq. (A4) and introducing the
transformation of variables v„=s ~

—s„, we obtain

B=(B)+Z(2 ')"
a 1

dQy' ' '

where

g e-s(olX+f82+ "+88ss)&6 (g++~X ) /C81 ze82 z"'&a

Xf(~x)f(ies) f(ice), (A6)

G„+t(B;A)„,,~, , ...~„— drt
(2s)"

~+ + ~ Ie'~ 2+ + ~%+1

XLB A(—rt);; A(—rg ~ —r„)j. (A7)

Equation (A6) now replaces Eq. (13).
For example, when the perturbation Hamiltonian

involves two frequencies au' and e", the appropriate
Green's function for the discussion of sum frequency
(ie'+c»") is Gs(B; A)„,„-.

APPENDIX

The problem in which the external disturbance in-
volves more than one frequency is of interest in nonlinear
phenomena such as mixing. Here we treat the case in
which the disturbance has a spectrum of frequencies.
The perturbation Hamiltonian is modiied as


