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Zero-Field Splitting of 8-State Ions. II. Overlay and Covalency Model*
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A general formulation including both overlap and charge-transfer covalency sects is developed for the
parameters D and E in the spin Hamiltonian Xq ——D(35$ —S(S+1))+E(S~—S 2) for a 'S ion surrounded
by six singly charged negative closed-shell ions. The contributions to D and E arise in second order from
the spin-orbit interaction and in first order from the spin-spin interaction. These contributions can be broken
down into three categories. ' local, nonlocal, and distant, depending on whether the ligand orbitals are
involved not at all, once, or twice. Specific application is made to the case of a Mn'+ ion surrounded by six
F ions (Mn'+:ZnF2). The calculations are performed for the recent crystal-structure parameters given by
Baur. We find, on the one hand, that for the spin-spin interaction, the nonlocal terms predominate over the
local and distant terms, and are of the same sign. On the other hand, for the spin-orbit interaction, the local
and distant terms predominate over the nonlocal terms, and are of opposite sign, though. similar in magni-
tude. The total (overlap only) contribution to D is found to be —10.94)&10 cm ', which is comparable
and of opposite sign to the point-charge contribution 24.01&(10 cm ' calculated in our earlier publication
on this problem. The sum of the two contributions (point charge and overlap) is found to be 13.07)&10 4 cm ',
very close to the experimental value of +10.5)&10 4 cm '. The overlap contribution to E is found to be
—19.77)&10 ' cm ', which is rather smaller than the point-charge contribution of —102.32&10 ' cm '.
The combined result, E= —122.09&10 ' cm ', is also close to the experimental value of —113.5&(10 cm '.

I. INTRODUCTION
' 'N an earlier paper' (to be referred to as i), we dis-
~ - cussed the zero-field splitting of an 5-state ion,
speci6cally Mn'+, using an external point-charge and
point-multipole model. We found values for D and E
in MnF2 and Mn'+:ZnF2 of the same sign and order of
magnitude as those observed experimentally. ' This re-
sult is in contradiction with previous point-charge esti-
mates. In order to remedy this supposed deficiency" of
the point-multipole model, Kondo4 had earlier de-
veloped an approximate theory relating D and E to
overlap and charge transfer in number of different en-
vironments. Unfortunately, we shall show that Kondo's
calculations were quite approximate and in fact can-
not account for the observed values of D and E for
Mn'+: ZnF2.

Ke construct in this paper a general formulation for
D and E for 5-state ions surrounded by ligand ion orbi-
tals which overlap and take part in covalent binding.
All the relevant two-electron terms are retained up to
second order in overlap and charge-transfer coefficients.
The resulting expressions are then evaluated using
Hartree-Pock wave functions and Lowdin s o,-function
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technique whenever more. than one-center integrals are
involved.

In Sec. II we outline the method we have used for the
inclusion of overlap and charge transfer by introducing
a simple three-electron —two-atom model. For conven-
ience of calculation and interpretation, a separation is
made into local, nonlocal, and distant terms when taking
expectation values of relevant operators. The distinction
between these three terms is whether the ligand orbitals
are involved not at all, once, or twice. In Sec. III the
orbitals for a Mn'+-Ps complex (Mns+:ZnI's) are
formulated, after incorporating overlap and charge
transfer. The local, nonlocal, and distant contributions
to D and E via the spin-spin interaction are considered
in Sec. IV. In Sec. V, the local, nonlocal, and distant
contributions from the spin-orbit interaction (in second
order) are analyzed. A comparison of our work with the
earlier results is made in both these sections. Finally, in
Sec. VI we discuss the over-all results and speculate on
directions for future improvements.

There are two sets of crystal-structure data available
for ZnF2. One set was used by Mukherji and Das, '
Tinkham, ' and Kondo. ' The other set of data was deter-
mined recently by Saur. The parameters for both de-
terminations are listed in Table I.Wt: have used Baur's
data for the calculation of D and E in order to compare
the results obtained here with experiment. The older
set of data leads to a slightly larger over-all value for
E and a value for D of half the magnitude and of oppo-
site sign to that found using Baur's data.

' A. Mukherji and T. P. Das, Phys. Rev. 111,1479 (1958).
6 W. H. Baur, Acta Cryst. 11,488 (1958).An earlier determina-

tion, which divers slightly from Baur's, was made by J. W. Stout
and S. A. Reed, J. Am. Chem. Soc. 5, 5279 (1954).
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ZERO —F IELD SPLITTING OF S-STATE IONS

TmLE I. The lattice parameters for the ZnF2 lattice as deter-
mined at room temperature by Baur and by Sout and Reed
(Ref. 6). Referring to Fig. 1, the parameters a(Mn'+-F1), a{Mn'+-
F5), a(FI-F2), and a(FI-F4) are the distances between, respectively,
the central Mnm+ ion and F ion 1, the central Mn2+ ion and F ion
5, the F's numbered 1 and 2 and the F's numbered 1 and 4.
Cos(2p) is the cosine of the angle between the diagonals FI-F3
and F2-F4.

a(Mn2+-FI) a(Mn'+-F5) a(FI-F2) a(FI-F4) cos2p
A A 4. A

by p, ' and the bonding orbital by xq'. We have

p, '= S~(yg —Xx~)

xp ——iV'(x~+yy g), (2)

where X and y are the mixing parameters for the anti-
bonding and bonding orbitals, respectively. The nor-
malization constants E and 1V&~ are given by,

Baur ZnF2
Stout ZnF2

2.04
2.03

2.01
2.04

3.13
3.13

2.62 0.1769
2.59 0.1871

Ã.= [1+I Zl
2—(XS»*+y*S»)j-r~2

N'= [1+I y I
'+ (ys~s*+y*sgs) g-'I' (4)

II. TWO-ATOM FRAGMENT MODEL FOR INCLU-
SION OF OVERLAP AND CHARGE TRANSFER

Before discussing the effects of overlap and covalency
on D and E., it is important to clarify the terminology
and notation. To retain continuity with the literature,
we shall use a notation similar to that adopted by
Shubnan and Sugano, Watson and Freeman, ' and
Simanek and Sroubek. '

For simplicity, we shall consider in this section a
three-electron molecular fragment made up of two
atoms, A and B.The proximity of the two atoms is as-
sumed to be great enough so that the electronic cloud of
one perturbs the other. This perturbation can arise in
three ways. First, there can be an electrostatic deforma-
tion due to the potential produced by the charge distri-
bution on the neighboring atom. This effect has already
been dealt with in our earlier paper, ' neglecting the
effects of overlap on the potential. A second effect can
arise out of a charge transfer between the atoms leading
to partial formation of the fragment 2+ 8(or—
A 8+). Finally—, because of overlap between the ions,
the Pauli principle necessitates either, (1) use of a deter-
minantal wave function in which the nonorthogonality
of the wave functions is automatically taken into ac-
count, or (2) use of the orthogonalized atomic or-
bital (OAO) formalism developed by Lowdin. " In our
consideration of the overlap effect we would like to work
with orthogonal one-electron wave functions and graft
onto the atomic wave functions the effects of overlap
and charge transfer. In effect, then, we shall use the
molecular orbital (MO) approach, identical with the
OAO in the absence of charge transfer.

I.et the unperturbed wave function of the electron on
atom A be p.q and that on the atom 8 be x~. We can
form two molecular orbitals, bonding and antibonding,
by combining p& and. xz with the help of the mixing
parameters y and A, . We denote the antibonding orbital

7 R. G. Shulman and S. Sugano, Phys. Rev. 130, 506 (1963);
K. Knox, R. G. Shulman and S. Sugano, ibid. 130, 512 (1963);
S. Sugano and R. G. Shulman, ibid. 130, 517 (1963).

8R. E. Watson and A. J. Freeman, Phys. Rev. 134, A1526
(1964).' E. Simanek and Z. Sroubek, Phys. Status Solidi 4, 251 {1964).

"Per-Olov Lowdin, Advan. Phys. 5, No. 17, (1956).

(4.'I x,'&= o. (6)

To lowest order (6) leads to the following relation be-
tween the mixing parameters X and y,

The quantity S~e in (5) will be referred. to hereafter as
the "overlap parameter" and y the "charge-transfer" or
"covalency" parameter. The relative magnitudes of y
and S~g determine whether charge transfer predomi-
nates over overlap or vice versa. Taking the expectation
value h of an operator, h(op), between the antibonding
wave functions (1) then leads to,

h= Q.'Ih(op)
I g.') =h(l)+h(ml)+h(d), (g)

where

h(i) =
I
&'I'&4 Ih(op)14 &

=(1-[1&12—(m*„+x+s, )j)
x(4~1h(op)14~&, (9)

h(«) = —
I
A'

I
'[l *&xs

I h(oP) I &~&+~&4~1h(oP) I
x~&j

—=—[1—
I
l

I
+(XS*~e+X*S,e)j

x[l *&x~lh(op) I @~&+~&e~lh(op) lx~&j, (1o)
and

h(d) =
I
A"

I
'I &

I
'&x

I h(op) I
x

&

=-
I
l

I
'&x~

I h(or ) I
x~& (»)

In (8) to (11), h(l), h(el), and h(d) are referred to as
"local," "nonlocal", and "distant" contributions, re-
spectively. Equations (9), (10), a,nd (11) are obtained
by retaining terms up to third order in the mixing pa-
rameters X and S». We are specihcally interested in
two types of operators, the spin-spin and spin-orbit
interactions. The spin-spin interaction operator does
not specifica, lly refer to any center because it is a func-
tion of only the interelectronic separation rq2. The non-

where S~~ is the overlap integral,

s =(x Iyg&.

Since there are three electrons, two of them pair up and
occupy the lower-energy bonding orbitals while the
other one is unpaired and occupies the antibonding or-
bital. In the one-electron MO theory, the bonding and
antibonding orbitals are orthogonal; that is,
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local spin-spin term mill turn out to yield a larger con-
tribution than the local term.

The situation is quite different for the spin-orbit
operator. Because the spin-orbit interaction arises from
the orbital motion of the electrons around the nuclei,
both atoms A and 8 contribute. The nonlocal term will
turn out to be small because the largest part of its con-
tribution arises from the region in which both p~ and.
x~ are appreciable. In this region the spin-orbit Hamil-
tonian due to either A or 8 is quite small. The local term
will be proportional to the spin-orbit interaction on
atom A itself, while the distant contribution will be
proportional to the spin-orbit interaction on atom B.

fP E ~LMa )l'FLMj y

FL3II
(12)

where fFLM is the F wave function for a fiuorine ion
F in the state I., M. The parameter A.LM is the com-
bined overlap and charge-transfer mixing parameter
analogous to that found in (1) and (7), and X is the
normalization constant. The summation in (12) extends
over all the 2s and 2p orbitsls of the ligand F ions.
The axes of quantiza. tion for the orbitals on the ligand
F ions can be chosen arbitrarily. For computational
convenience, we shall choose a different axis of quanti-
zation for each of the ligand ions; namely, the line join-
ing the ligand ion of interest to the Mn'+ ion.

IIL WAVE FUNCTION OF THE Mn+~-F6 CLUSTER
INCLUDING OVERLAP AND

CHARGE TRANSFER

In Fig. 1 the arrangement of the six ligand F ions
surrounding a Mn'+ in Mn'+:ZnF2 is pictured. The
four F ions in the plane, (F), F2, F2, Fi), are equivalent
to one another but distinct from the two, (F2,F,), lying
on the axis perpendicular to the plane. The point-group
symmetry at the Mn'+ site is orthorhombic. The Z axis
will be chosen to lie along the pair of ions F5 and F6, the
x axis is taken parallel to the longer side of the rectangle
formed by F&, F2, F3, and F4, and the y axis is parallel
to the shorter side of the rectangle. Let the unperturbed
unoccupied orbitals 3dg2 3dyy, 380 of the Mn'+ ion,
quantized along the Z axis, be denoted by P '(n=0,
&1, +2). Using (1), we write the perturbed 3d orbital

(&) ss

i'A

Siy

—-+
B z

Fn. 2. The definition of the
polar angles used in the text for
the Mn'+-Fe complex.

One can in a similar manner define the doubly oc-
cupied bonding orbitals, fFLM&o, as in (2),

fFLM —NFLMQ'FLM+Q rLMa' IIa' j p (13)
a'

where SFLM is the normalization constant and yL~ ~

represents the appropriate covalency parameter. The
orthogonality condition between the antibonding and
bonding orbitals yields, to lowest order in X and y,

~LMa ~LMa +VLMaF— F F (14)

where SLM is the overlap between the wave functions
)lI ' of Mn'+ and )IIFLM of a F ion:

s =&p lp ').
Using (14), the normalization constant iV appearing in
(12) can be shown to be,

Q =(1+ Q [(yLMi2F)' —lgLM 'I2j)—)/2 (16)
FLM

If the polar axis is chosen as the line joining the Mn'+
and a particular F ion (Fig. 2), the the F wave func-
tions can be expanded about the Mn'+ site as follows, "

n)2(FI.M
l
ar)

fFLM y M(g y) (17)

In (18), b)2 M,„,(F) are the requisite rotation group ele-
ments and 8, p are the polar and azimuthal angles in
the coordinate system deined by Fig. 1. The rotation
group elements are usually expressed in terms of the
Eulerian angles (nF,PF,yp) required for the transforma-
tion. Thus, if we de6ne

The polar coordinates (r,8,&) are referred to the Mn+'
ion as origin. Analytical integral forms have been de-
rived for the n functions appearing in (17) by Lowdinm
for a few values of L and l2. A general analytic form
applicable to all values of I. and l2 has been derived by
one of the authors (RRS) and is presented in Appendix
A. One can transform the above system of axes to that
shown in Fig. 1 by making use of the relation

I'. (8,~)=2 b .. ..(F)I',"(0,~) (»).

(& Il'p 2r)p ~
R2 2Q 2

-F~(a, a,K'»

4Z
I

/F5(0, 0,0)
I

yW l2PI A

~q(1r 7l' 1f' »

~p X

r IM+F~~~Oarg
fl

! 3l3A~

I

l20

v, (o,m, o)

FzG. 1. A schema-
tic showing the im-
mediate neighbor-
hood of a Mn'+ ion
in ZnF2. The F's
numbered 1, 2, 3,
and 4 lie in a plane
at right angles to the
line joining the F's
5 and 6.

(F) ( &)M
—m2&itn2yP&iMaP+& M ( P ) (19)

then the B&2,M, 2(PF) are real and given by

@l2, mM(P2)F
[(l2+M')!(l2—3/I)!(l2+m )!(l22 r)22)!g' '—

=Z (—1)'
(l2 ~ l) l(l2+2)22 l) l(l+3II tÃ2) )l!

)&cos"2 M ~2 '(pp/2)sinM ~2+2i(pp/2). (20)
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TAnLE II. Tables of values for B~ssr, ,s( —s/2) defined in (20) for is=0, 2, and 4.

gm

0
1

1/2—1/VZ
1/v2
0—I/v2

&o.3f; (- /2)

1/2
1/V2

pcs

—2

0
1
2

0.25—0.5
0.61237—0.5
0.25

0.5—0.5
0
0.5—0.5

0.61237
0—0.5
0

0.61237

Bs,sr, (—s./2)

0.5
0.5
0—0.5—0.5

0.25
0.5
0.61237
0.5
0.25

84, ~, (—m/2)

—4—3—2

0
1
2
3
4

0.0625—0.1768
0.3307—0.4677
0.5229—0.4677
0.3307—0.1768
0.0625

0.1768—0.375
0.4677—0.3307

0
0.3307—0.4677
0.375—0.1768

0.3307—0.4677
0.25
0.1768—0.3953
0.1768
0.25—0.4677
0.3307

0.4677—0.3307—0.1768
0.375

0—0.375
0.1768
0.3307—0.4677

0.5229
0—0.3953
0

0.375
0—0.3953
0

0.5229

0.4677
0.3307—0.1768—0.375

0
0.375
0.1768—0.3307—0.4677

0.3307
0.4677
0.25—0.1768—0.3953—0.1768
0.25
0.4677
0.3307

0.1768
0.375
0.4677
0.3307

0—0.3307—0.4677—0.375—0.1768

0.0625
0.1768
0.3307
0.4677
0.5229
0.4677
0.3307
0.1768
0.0625

We have listed in Table II values of Bi,,sr,„,(—n/2) for In (26), Nsq' denotes the radial part of the Mns+ wave
the relevant l2, 3f, m2 which occur in Secs. IV and V. functions defined by,
On substituting expression (18) for Yi,~ in (17) one

1
'= Ns~o r Ys n=+2, +1, 0 . 27obtains

QFriLr= Q —ni, (FLM~gr)bt, sr, ,(F)Yt, '(8,$). (21)
l2, mg g

The overlap integrals (26) can be correlated with the
more commonly used s, 0, and m overlaps as follows,

Using Kq. (21), Eq. (12) can then be reduced to the
form

S,(Fr) =Ms' s' '(Fi),
S,(Fr) =Msg, s"(Fr),
S (Fi)=Ms', s"(Fr),

(28)

where

and

$=1Vgo
with similar expressions for the other five F ions.

23
Iv. SPIN-SPIN CONTRIBUTIONS TO D AND E

bP = NP P )r—,sr Fbi, ,sr, ,(P)
FLM lm, tn2

ni, (PLM i ar)
X Yis"'(»4) (24)

In keeping with our convention for "local," "non-
local, " and "distant" terms as discussed in Sec. II, we
shall denote those terms which contribute to D and E
and depend only on P but not on g as the "local"
contribution. Those terms that depend on g only once
will be termed the "nonlocal" contribution and those
terms that involve g twice will be called the "distant"
contribution.

The overlap integrals S&~ ~ can be simplified by sub-
stituting (21) for /Fr, sr in (15).One obtains,

Sz,sr
——bs sr ~*(F)Msg s (F) (25)

In our earlier paper, we defined the spin-spin contri-
butions to D and E using the following expressions,

D. = lDo&f"' I 2 (3s '—«")/r" 14"'), (29)

and

~ss=s~o(&"'I& 3(* '—
X ')flrvslf"') (3o)

where
De= E,= —g'Ps/20ass.

e- f.s&-"'.(1)A, "'(2)

In these equations the many-particle wave function P &'&

is defined by

where bs iu *(F) is the complex conjugate of (19)
Ms&, P ~(F) is a radial integral defined by

Msg, s ~ (F)= (Nsg'i ns(FLM i or)).

and
and we sum over repea, ted indices.

In order to evaluate Dss and Eas we use the one-

(26) electron expansion for the operators (3sos ms)/r;P—



and (x@'—y@')/r; given by Watson and Blume" and defined. in (26), the quantities Bo,u (Pp) defined, in
by Pitzer and I.ipscomb": (20), and the Eulerian angles appropriate to a particu-

lar F ion, displayed in Fig. i.
u = 2 u ' = 2 f~[Bo.u.-(—~/2)j'

3(x;ro—y;ro)/r;ro=Re P c'i,
)r ~r ~.l'+2

(l' —m'+1)!(l'+m+1)!

(2P—1)(2P+ 3)(E'+no' —1)!(l—m —1)!
(34)

(l'+ m'+2)!

-(8'—1)(8'+3)(l'+rN' —2) L
(35)

The expressions (32) and (33) are valid for r;&r;. If
r;&r;, the indices j and j shouM be interchanged
throughout. In the following subsections, we shall evalu-
ate (29) and (30) in detail.

X[cp,oFo, o (/' —1)Fo,o»P(l'+1)( —1) +~

cp pFo—o
I ~(l' —1)Fo o ~~(l'+1)j (36)

where the Fo o &(l) are defined and tabulated in Table
III of I, and are simply coeKcients for combining spheri-
cal harmonics. The quantities fo,o" and p are defined
by the equations,

uooo(1)uooo(2) uooo(1)uooo(2)dridro (37)

A. Local Spin-Spin Contribution, Das'

Substituting (32) into (29), and collecting all the
local terms, we obtain

Do
D»'= —Z f~..' ""Z (~-+~s)

Er l, a a,P

&&{I~oo,o' (Fi)j'—I v' (Fi)l')

+-,'[~o.o' ,"(Fo)7'(&u.+, &u .).—l (4o)

Dss'(L=O, M =0)= (6/'7)Do( [S,'(Fo)—y.'(Fo)j
—[S*'(F)—v*'(Fi)3/[f '—(8/7)f . "1 (42 )

Dss'(I-=1, ~=0)=(6/7)Do(LS. '(Fo) —v.'(Fo)1
—LS.'(Fi) —v.'(Fi)3}Lfo '—(8/7)f. 'j (42b)

Dss'(L=1, iV =1)= Dss'(L= 1, 3I= —1)
= (3/7)Do( LS-'(Fo) —v-'(Fo) j
—[S o(Fi) —y o(Fi)]}[fgoo o—(8/7) fg oo o$ (42c)

Here, the charge-transfer coefficients are de6ned in a
manner analogous to the definition of the overlap in-
tegrals (28). Using Watson's analytic expressions'o for
the 3d wave functions, we find from (37)

fo,oo '= 0.9799,

fo,oo o= 0.5353,
(43)

in atomic units. In addition, using %atson s analytical
expressions" for the F 2s and 2p functions, the expres-
sions (A1) to (A13) for the n functions, and the inter-
atomic distances given in Table I, we 6nd,

The overlaP integrals Moo, P u(F) in (40) can be evalu-
ated using (26) once the requisite n functions are known.
It turns out that, for each of the s, 0., or m. orbitals on
the F ions, we need only two types of n functions, one
corlespondlng to any of the foul F lons Fy F2 F3 F4
and the other to either of the ions Fq or F6.

Substituting (40) into (36) and making use of Table
III in I for Fi i ~'~o(lo) and Table II of this paper for
Bo,jr,„(—n./2), we find,

Dss'=Dss'(L=O, M=O)+Dss'(L=1, 35=0)
+Dss'(L=1, M=1)+Des'(L=1, 3I= —1), (41)

ga= ~ +a.

Expanding (16) and retaining only terms second order
in X and. S, we obtain from (38)

u =o 2 [ISiu-'I'-(v~~o')'j

S.(F)=Moo, oo o(F)= —0.0671
= —0.0708

S.(F)=Mop o' '(F)= 0.0785

0.0818

S,(F)=M'oo o' '(F)= 0.0504
0.0532

fol F=Fg

for F=F5 ~

for F= Fi (44)
for F=F5,
for F=Fi
fol F=F5.

One can express p. in terms of the integrals Moo, p u(F)

R. E. Watson and M. Blume, Phys. Rev. 139, A1209 (1965).
'~ R. M. Pitzer and W. N. Lipscomb, J. Chem. Phys; 39, 1995

(1963).

Secause of the great uncertainty in the charge-
transfer coeScients y and their expected smallness for

"R.E. Watson, MIT Solid State Molecular Group Technical
Report No. 12, 1959 (unpublished), and private communication.



Mn2+:Znp2, we evaluate (42) taking only overlap into
account. Ke hand

%2,m2 '=%2,mn '(1)+%2,m2 '(2)
p

Dss'(I-=O, M=O)= —0.95X10 ' cm ',
Dss'(L=1, 3f=0)=—1.00X10 ' cm ',

Dss'(L=1, 4M'=+1) = —0.28X10 4 Cm '.

5
(45) + l'(1)—&, ( 1)mnp l

—mn, m2(p+ 1)
4m'

Adding the various contributions we 6nd,

D88'= —2.51&10 4 cm '. (46)
p -mn, mn(p 1)p -mn, mn(p+ 1)

+QNsp

Kondo' neglected the I=0, M=O, and 1.=1, &=&1
contributions to Dss'. It is clear from (45) that this
neglect is in error by almost a factor of 2. In addition,
he neglected completely the nonlocal contribution to
D88 which we shall show in the next subsection to, in
fact, be larger than the local contribution (46).

B. NonIocal Spin-Syin Contribution, D88"'

The nonlocal contribution to D can be obtained from
(29) together with Kqs. (22) and (24) by retaining those
terms which arise out of the bf part of f &'&, and are
sc,cond ord.er in overlap and charge transfer. Using (32)
we obtain,

Do
Dss"' p——b—l, ,

—M, ,(p)
2 PI M, /2, Ns2

and finally,

f l
n,

m( FL~)—
r&"

ug'(1)ug'(2)

Xnln(FLM
~
ar2)us'(1)drldr2. (51)

The summation in (47) over the F ions can be per-
formed with the help of (19), (25), and the Eulerian
angles delned' in Pig. j.. %e find,

XP2 l,
— "2(p—1)P2,2™(p+1), (50a)

Ãl, , ,'(2) = —cl,2F2, l, "' n(p —1)F2,2-m'mn(p+1)

—Q cl,mn pF2, 2-"2 ~(p —1)F2,l2 ™(p+1),(50b)
p&m2

where
XDz. ,l, 2(p)4,M,', {47)

D& . M, mn(p) —Q f l' l, l'+2(FL~)-+ l'

(48) where

DQ
Vp M, mn(p) (52)

l2,I,M mg, V

"'(P)=4&, -,(—/2)& . ,-,(—/2)[3f ., ™(F)+ ™(F)jf ' "+'(FL~)
+ lid 24 2™(F2)fdl ' "+2(F2LM)[Bl2,M, m, (0)B2,M, m2(0)+ Bln, M, m, (—2r)82, M, m, (—2.)7. (53)

The properties of the quantities Fl, l,m "'(l2) in {50)limit the summation over p in (47) to the values p= 1, 3, and
5, and l2 to the values 0, 2, 4, 6, and 8. For compactness, we de6ne the quantities:

A2, M'(1) =2 &l.,M,-.(—~/2)&2, M, 2{—~/2)&l2. -2' (54)

+l2, M (2) 2 %2mn [f3ln,,M, mn(0)+2, M ,mn(0)++ln, u', mn( &)+2,M, m2( 2r)j ~

One can then rewrite (52) as

Do
D»"'= ——{4Z [~2.2™(pl)+V'"(Fl)j 2 [f« '-"+2(plL3d)~l M'(1)j

LM l' =1,3,5
lp =0,2,4,6,8

+2 [~2.,2' "(F4)+V™(F2)3 2 [f~.l2' "+'{F2L~)&ln,u'(2)l} (56)
l' =1,8,5
la =0,2,4,6,8

Going through the same steps that led to (41) and (42) for the local contribution, we find (56) reduces to,

Dss"'=Dss"'(L=O, M=O)+Dss"'(L=1, M=O)+Dss"'(L=1, %=1)+Dss"'(L=1)M'= —1),
where

D "'(L=0, M=O) = —2Do{[5,(F )+y,(F )][—1.7889fo"(F s)+2.6833f "(Fs)
0.8571f20'(Fls)+—0.9796f2"(Fls) 1.5333f4"(Fls)+—0.9309f42'(Fls)+3.1943f4"(Fls)5

—[sn(F2)+yn(F2)g[ —1.7889f2"(F2s)+2.6833f2"(F2s) —0.8571f2"(F2s)+0.9796f2"(F2s)
1 5333f4' 2(F2s)—+0.9309f42 '(F2s)+3. 1943f4"(F2s)j},. (58a)
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TABLE III. Table of values for f3&, &,
""+'(FLM) defined in (51) for the various values of separation u defined

in Fig. 1 and appropriate to ZnF2.

2.04

lg,L)M

0,0,0
2,0,0
4,0,0
0,1,0
2,1,0
4,1,0
2f 1/1
4,1,1

0.011399—0.005723
0.002066—0.056983
0.011507—0.002679
0.005356—0.002203

0.005409—0.002103
0.000548—0.029031
0.00476/—0.000869
0.002132—0.000530

0.003329—0.001232
0.000250—0.017822
0.002875—0.000172
0.001286—0.000049

2.03

lg,L,M

0,0,0
2,0,0
4,0,0
0,1,0
2,1,0
4,1,0
2 1 1
4,1,1

0.011721—0.005884
0.002159—0.05793
0.011745—0.002282
0.005482—0.002500

0.005565—0.002166
0.000549—0.029521
0.004870—0.000244
0.002184—0.000115

0.003422—0.001270
0.000259—0.018209
0.002934—0.000111
0.001271—0.000088

Dss"'(L= 1, &=0)=—2Dp(LSo(Ft)+y (Ft)][—1.7889fpP P(Fto)+2.6833fp"(Fto)
0.857—1fp' '(Fto)+0.9796fp' '(Fto) 1.533—3f4"(Fto)+0.9309f4' '(Fto)+3.1943f4' '(Fto)]

—ES,(Fp)+y, (Fp)]L—1.7889fp '(Fpo)+2.6833fp (Fpo) —0.8571fpe '(Fag)
+0.9796fp& P(Fpo) —1.5333f4P P(Fpo)+09309f4P P(Fpa)+3 '1943f. 44 r(Fpa)]), (58b)

Dss"'(L= 1, M'= 1)=Dss"'(L= 1, 3E= —1)= —Dp([S (Ft)+y (Ft)]L—0.8571fp"(Fts)
+0 9796fp.' '(Ftpr) 2.799—4f4"(Fts)+1 6996f4."(Fts)
+5.8322f44 r(Fgr)] —)S,(Fp) 17 (Fp)]$—0.85/1 fpP '(Fps)

+0.9796fp"(Fps) —2.7994f4' '(Fyr)+1.6996f4' '(Fppr)+5. 8322f44'(Fgr)]} . (58c)

These equations neglect terms corresponding to l&=6 and l& ——8 in (56) because the fo &,
" "+'(FLM) become very

small as 12 becomes large
The overlap integrals appearing in (58) are tabulated in (44), the fpq ~,

" "+'(FLM) in Tables III and IV. We
again neglect the charge-transfer coeKcients to find

so that, combining,

Dss"'(L=O~ M=O)= —0 51X10 ' cm ',
Dss"'(L=i, M=O)= —131X10 4 cm '

Dss"'(L=1, %=+1)=—0.67X10 ' cm '

ss"'= —3.16X10 4 cm '

(59)

(60)

C. Local Syin-Syin Contribution, Ess'

In order to obtain the local contribution to E, Ess', we make use of (30) and the expansion (33) for 3(x, —y;fe)/
r;;5. %e obtain, after some simplification,

go
Q ( + ) P o, ,f „v-t,l'+2( 1) +P

~,P V,tn'

XP'p, p
~ ~(&'—1)&p,p

o s(&'+1)&m,dm, —t—&p, u
~ s(& —1)&p,p P"(&+1)bm t « s&my—t .e-s]=0. -(6—1)

The zero result follows because the quantities inside the square brackets vanish as a consequence of the Kronecker-8
functions.

TAsLs 1V. Tahie of vaiues for pip, t,"'"+'(FLM) and M3p p~ ~(F) Ldefined in (26)j for the
separation u defined in Fig. 1 and appropriate to ZnF2.

2.01

0,0,0
2,0,0
4,0,0
0,1,0
2,1,0
4,1,0
2,1,1
4,1,1

3II&d uL M(F)

~ ~ ~

—0.070807

~ ~ ~

0.081851
~ ~ ~

0.053231
~ ~ ~

f~p ~pP'P(FL~)

0.012392—0.006221
0.002224-0.059884
0.012225—0.003122
0.005743-0.002147

fgg. (p"(FLjf)
0.005890—0.002299
0.000602—0.030521
0.005084

-0.000948
0.002291—0.000854

fpd. ~p"(~FL)
0.003644—0.001356
0.000278—0.019807
0.003092—0.000478
0.001323
0.000290



D. Nonloeal Spin-Spin Contribution, Ess"'

The procedure for deriving the nonlocal contribution to E is similar to that employed for D88"', only one starts
from expressions (30) and (33).Thus, with the help of the (22), (23), (24), and {31),retaining only nonlocal terms,
one 6nds after some manipulation:

jVO

Es el—
F,L,M, /g„tn2

~lg, M,ml(F)EL, lg
' (F)~l„M,ms —'R (62)

M,mg(F) —Q, f~ v-l, v+2(FLM)G) v-1

G), , ,' '=-Gg, , ,' '(1-)+Gg, f, '(2)

(63)

5
( 1)m.l P 2—ml, mg 2(P 1) P R-ml, n(P+ 1)

4n.

+(&v,s—1) Z & i~,e ~~Ps,4 ~ "'(&'—1)F2,s' "'I(&'+1) (65a)

G) ~ '-'(2) = p Lc'' g(—1)"&+sF2 (
-~~+' "2(/' —1)Pg g-s s(l'+1)

Pgmp-2

i-pF» "'+"(f'—1)~»a '"'(l'+1)1 (65b)

The summation over the F ions in (62) can be accomplished as before by making use of (19) and the Fulerian
angles (ap,Ps,yp) indicated in Fig. 1.Equation (62) can then be rewritten in the form,

where

Ess"'= —2Eocos2PP $3fM ss ~(Fq)+y~ ~(Fq)j g fs ~
'—' '+'(FILM)Bq, ~' ',

LM L'~ j,,8,5

fflLM =p 'Rg, wag fllyMm2( ,&/, 2)+2M, mg 2(, &/2—) (67)

We notice from these equations that the I' ions 5 and 6 lying on the 3 axis do not contribute to K This is to be
expected because they can produce only axial distortions of the Mn'+ ion's charge distribution. Retaining only
terms for /2 ——0, 2, and 4 for the same reason as in IV3, we 6nd,

Ess"'=Ess"'(1.=0, M=O)+Ess"'(X=1, M=O)+Ess"'(X=1, M=1)+E "'(l.=1, M= —1),

E„.(r.=o, M=0) = —2E, o 2pLs. (F,)+7,(F,))c 5.3666', (F;)—8.0498',"(F.)
+2 5714f2"(F.&s) 2 9388fp'—(F&.s)+4.5999f40'(Fps) —2.7928f4"(Fis)—9.5831f4' '(Fxs)7, (69a)

Ess"'(2= 1, M =0)= —2' cos2pLS~(Fq)+y, (Fi)jL5.3666f0 '{Fia)—8 0498fo"(Fia')
+2.5714''(F&0) 2.9388''(F&—0)+4.5999f4"(F&o)—2.7928f4"(Fga) —9.5831/4"(Fia)j, (69b)

E...~(1.=1,M = 1)=E»"&(1.=1,M = —1)= —2EO cos2PP'. (F~)+v.(Fi)j
gL2.5714f "(F )—2.9388f ' '(F )+8.3982f ' '(F )—5.0990f "(F )—17.4964f "(F )j (69 )

fn (69), p is ttM angle measuring the departure of the surroundings of the Mn2+ ion from cylindrical symmetry,
as shown in Fig. 1. We evaluate (69) using the same tables referred to previously for the evaluation of D. For
Mn~:ZnFI, cos2p=0. 1/69 so that we 6nd

Ess"'(L=O, M=O)= —2.53&&10 4 cm ',
Ess"'(L=1, M=0) =—10.55X10-' cm ',

Ess"'(L,=1, M=+1)=—0.68&&10 ' cm '.
{70)

Esa"'= —14.43)&10 4 cm '.
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Our result at first sight appears similar to Kondo's4. However, Kondo was forced to make a number of numerical
approximations which considerably altered his value of E»"'. In essence, they consisted of approximating the n
function n~, (F~10i ar) appearing in the integrals fq ~,

" (FLM), (51), by S,(F~)ufo(r). This replacement leads to
serious numerical errors in the calculation of the two-center integrals which occur in (69).'4 In addition, Kondo4
neglected the 1.=0, &=0, and I-= 1, M= &1 contributions, as pointed out in our calculation of Dss. Finally we
make the somewhat trivial remark that he attributed the spin-spin contribution to E as arising from local terms
through, as we have shown, they in fact arise from nonlocal terms.

V. SPIN-ORBIT CONTRIBUTION TO D AND E

The hrst-order change in energy of the electrons due
to the spin-orbit interaction vanishes for Mn'+ because
of the absence of orbital moment in the half filled shell.
We shall therefore use second-order perturbation theory,
in conjunction with the wave functions perturbed by
overlap and charge transfer that were defined in Sec.
III. The second. -order energy using conventional per-
turbation theory is given by

(hei Vsoi'p~)(p~i Vso[+0)
IVso= —Q' (72)

n

where the +„represent the excited-state wave functions,
6„ is the energy difference between the ground state
and the eth excited state, and the prime restricts e from
denoting the ground state. In order to calculate this
energy one needs a knowledge of the wave functions
and energies of those excited states connected to the
ground term value by the spin-orbit coupling. These
levels must be of 'P character. ' To simplify our analysis
we shall use an average energy denominator 6 to denote
these excited-state splittings. This should not be a seri-
ous approximation since there is only a single 4P' term
in the d' configuration, and the cubic field admixtures
of other quartet states causes energy shifts which are
small compared to the difference in energy between the
'P level and the ground 'S level. Thus,

aild

1
D+.(l8) i

(V-)'i +.(l, l)&
126 —(+g(4 2)1(Vso)'I +g(~8))] (&&)

(10)"'6

where the ground-state wave functions, 4'g(S, M, ) are
characterized by total spin S and projection M, . To
include explicitly the effects of overlap and charge trans-
fer we write,

+g(S,Ms) = +~"
i S,Ms), (79)

where 4'&" is de6ned in (31)and
i S,Ms) is the appropri-

ate spin function for the five electrons of Mn'+. One
should remark that a separation into orbital and spin
parts, as in (79), greatly simpliaes the calculation, and
is only possible for the 'S level.

It is helpful to re-express (75) in terms of the compo-
nents of the one-electron orbital and spin operators.
Thus, we define,

Therefore, it is necessary to use the second term in order
to obtain a contribution to D and E.

In the spin-Hamiltonian, D and E occur in the form

Xs=DL3S '—S(S+1)]+8(S'—S ') (76)

It is trivially shown that,

1
~so= ——(+0 i (Vso)'i +0). (&3) where

(V o) (Vso )&+(Vso ) (80)

The Hamiltonian for the spin-orbit interaction may
be written as +-,'(1;+l, s, s;++i; 1,+s;+s; )], (81)

Vso=g f (r;)l,s;, (74)
(V o') =l2 f(')f( )(f"I" ~+~' I' '+ ') (82)

where li and si are the orbital and spin angular momenta
for the jth electron and f (r;) is the spin-orbit coupling
constant. Taking the square of (74),

It can be shown by inspection that the 6rst term in(75)
cannot lead to a tensor term in the spin-Hamiltonian
which is quadratic in the components of the total spin.

' Dennis Ikenberry and T. P. Das, Phys. Rev. 138, A822
(1965).

i'
The 6rst term of (75), and some additional components,
such as l;,lj+si,sj, which do not contribute to the
matrix elements in (77) and (78), have been omitted
from (81) and (82). The expression (Vso') ~ contributes
only to the expression (77) for D, while the expression
(Vso')z contributes only to (78) for E.

A. Local Spin-Orbit Contribution, Dao'

To evaluate the local spin-orbit contribution Dao',
we substitute (81) into (77) and expand in terms of one-
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electron integrals. We retain only those terms which do
rot involve ligand orbitals to obtain the local contribu-
tion. For ease of manipulation, it is helpful to handle the
expectation value of the space and spin parts of the
many-electron wave functions separately. Ke 6nd,

(+"'1(l'sp)D'I +"')I- =2(fdd), '[ —$1 $.2 .2 ~'u.

+2 +2

ljlaq2, a dsl $2 Q paq2, —a] q (83)

ql = [(l—II2) (7+212+1)]112

ud't (r)ud'dr,

and ll is defined in (40). Taking the expectation value of
(83) over the spin functions

I
SM,), the local contribu-

tion to D becomes

Adding the individual contributions, we 6nd

Dao'= —4.22&10 4 cm '. (89)

The expression (87b) for L=1, M=O, agrees exactly
with Kondo's' expression for Dso'. The other terms,
corresponding to the remaining I., M values, which
Kondo omitted, also contribute and. from (88) are seen

to be as large as the single term he considered.

8. ÃoQlocRI Sp1Q-01blt CoxltxlbQtloxl2 Dao"

To obtain the nonlocal contribution to D one must
again use (77), but now retain those one-electron inte-
grals which involve the ligand oribtals only once. It is
helpful once more to work with the space and spin parts
of the wave functions in successive steps. Thus, using

(31) and. (81), one obtains,

(+"'l(irs p')nl +'"&- I-
fII, 2Q'I, ,„,($1,$2)Ar„l, "', (90)

FI.M

Od. d)' +2
Dso'= —2 l -(~'—2).

206

l22tÃ2

where
85

/ +
lg, )~2 Sl)S2J —SltS2@~2 ~4Sg $2 g)p, ~ogQ, —Ntg —1

+ -,'$1+$2 ql, ,-m, q2, m,-1, (91)
Ec[uatlon (85) caI1 be coIlve111e11'tly split lip lll terms

of ligand I., M contributions, as done in Sec. IV for D.
We have

Dspl=Dspl(L=O M=O)+Dspl(L=1 M=O)
+Dsp'(I. = 1, M= 1)+Dsp'(L= 1, M= —1), (86)

+r l2
' 2 fII2, 2I, 2(Fm)gd, I2({1)t 2P LM)~Lsr, m2 , (92)

Here, the bl, II „,(F) and Xr, u, p have been defined

previously in (19) and (14), respectively, while,

where

(fd, d)
Dspl(L=O, M=O) = {[8,2(FI)—V,'(FI)]

106

—P'. '(FI)—v.'(F2)]}, (87a)

where
g, ,(f,f,FLM) ={',{'~, ,(FLM),

{.d, l, (FLM) = u2do{.(r)«, (FLM I
ar)ar (94).

(t d, d)'
Dao'(L=1, M=O)= {[5,2(FI)—V,'(FI)]

106

On taking the expectation values of (90) over spin func-
tions, (77) and (90) lead to

—[5'.'(F2) -v.'(F2)]}, (87b) Da onl— Q g Irm2

120+ L 2' 2~2
(95)

({dd)',
Dspl(L=1, M=1)=Dsol(L=1, M= —1)=

206

To evaluate Dso' for Mn'+, we set f'dd ——300 cm ', and
5=2.93+10' cm ', the same values employed in I and

by I&ondo, ' respectively. If charge transfer is ignored,
then, using the values for the overlap integrals given
in (44), one obtains the following results:

Dso'(L=0, M=0) = —1.56&(10 ' cm-',

Dsol(L=1 M=0)= —1.66X10 l cm I (88)

Dso'(L=1, M=~1)= —0.50&(10-' cm '.

Here, the Q„, are given by

Q'm2 42222 +q2, m2q2, —m2 —1+q2,—m2q2, m2 —1 ~ (96)

We can simplify AI, 2
m2 in (95) by substituting (14),

(19), and (93) into (92). We find,

&I„P 2=|d,did, 2(FLM) {4{M2d,2 u(FI)+V~ (FI)}
X[A,u, ,(—~/2)]2+ {Msd,2™(F2)+v~u(F2) }

X{[~. ..(0)]+[~.. ,..(- /2)]'} l. (97)

The various contributions to Dao"' can then be sepa-
rated. into the following four parts:

Dsp"'=Dsp"'(L=O, M=O)+Dspal(L=1, M=O)
+Dspal(L= 1, M= 1)+Dspal(L= 1, M'= —1) (98)
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where
1 {d,d

Dso"'(L=0, M=p) = —— ft'd, (F,OO)[S,(F,)
5

where r and V are in units of a(}and e'/2ao, respectively.
The potential function V(r) in (100) is obtained by using
the commonly adopted technique of writing,

+7.(P )]—{'.(P 00)[S.(F )+v.(F )]& (99 )
|'d'Nd'

V()=l-
k dr'

6
Nd

i
(101)

1 t'd, d
Dso"'(L=1, M=p)= — f{d,m(Fg10)[S,(Fx)

5

+p (Fg)] t d, g(Fs10)[S,(P5)+y (Ps)]), (99b)

%e Gnd,
{'d g(Fgpp) = —0.43 cm-',

{'d 2(Fg10) = 0.75 cm ',
{'d p(Fg11) = 0.35 an '.

(102)

Dso"'(L=1,M=1)=Dso"'(L=1 M= —1) Evaluating (99) we obtain,

Dso"'(L=p, M=p) =0.03X10-' cm-',

Dso"'(L=1, M=p)=0.05X10 4 cm ' (103)

Dso"'(I=1 M=&1)=0.01X10 4cm '.

1 {'d,d
{&d.m(P~11)[S-(Fi)+V.(Fi)]

10 a
—{d, m(Fs11)[S (Fs)+y (Fs)]) . (99c)

The total nonlocal contribution to D is thereby given

byTo evaluate (99) we need {d, ~(FLM) for L= 0, M= 0,
and L= 1, M=O, +1.We have calculated the pertinent
{'d,(,(FLM) using the usual expression for {'(r),

Dso"'=+0.10X10 4 cm '. (104)

e'h' 1 dV
{(r)=

4ns2c2a03 r dr

Comparing (104) with (89) we see that the nonlocal
spin-orbit contribution to D is a factor of 40 times

(1pp) smaller than the local contribution, and of opposite
sign.

C. Distant Spin-Orbit Contribution, Dgo"

To obtain the distant contribution Dso", we must collect the terms in (77) which involve the ligand orbitals
twice. We 6nd

(+
~ (Vso )z}~

+ )dist —2{d, d ZL, }(»1,)}f',»»», « t L,L(F )
X [Tzddsd»»»«(1)s»'(gsmg+Tz»jds»f»»»»«(2)s) sm++Tz»sdsd»»»»«(3)s&+s2 ], (105)

-where

Tz»sdsr»»» (1)= —(}lm{4X ~ (P&)1( ~ '(F&)B2 )}s (—s'/2)B2 jz, (—sr/2)Bz sd „( (r/2)Bz, })z „(—sr/2)—
+7» ' (Fs)$ ' (Fs)[4r, $})r', 4r, lsd', +lsd, bjd'; lsd b—j»( ]). (106a)

Tzsz})z»~«(2) = —
d(tm, «—gz,—~—&f41( (Fg)X '(Fs) Bm s(( «s(—m/2) B2,jd; «( n/2) Bz„sd~( —n/2)—

XBz„)(d,~x(—s/2)+&' (F5)l)' '(F())[bsr,. xbjr,.bsr, bsr, ~i+&sd, .+at')sd, b}(d, 4v, i]}, (106b)
and

Tzzfsd. ~«(3)= —
dq2, -«-)(7z„~-x{4K (Fx)l(™(Fx)B2,sr, «+i(—~/2)Bm, sd. , «(—s'/2)B2, )}d,~i(—s/2)

XBz„,zf,„(—s/2)+X (F5)l(, ~ '(Fs)[b))r, «+gbsd«bshe~»gb)(r», ~+8))r, «}8sz», «bzd», ~gt')}(z, „]). (106c)

Thus,

(108)X ' (F)=M()d g
' (F)+Pi' (F),

In (106), 1),
z ~(F) is connected to Xz))z ~ by the relation On taking the requisite expectation values of (106)

s $»(» M (p)~z» sz(F) (1p7)
over sPin states, one obtains

2 {..{-,,(F-){[~.(F )]'-[&.(P )]'
15'

and.

h„,(}") fl»'(v )((»}»»»'(v )—»}»=,
— —

—V3P,.(P,)X.(P,)—X.(F,)~.(P,)]), (110)

(109) where, as usual

where rdz0(F ) is r times the radial wave function associ-
ated with angular momentum I. for a v=2 I' ion
orbital.

&.(P)=S.(F)+v.(F),
~.(P)=S.(P)+ .(P).

Most of the quantities appearing in (110) have already
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been evaluated in the course of this paper. The only
parameter left to determine is the spin-orbit parameter

„(F, ) for the 2p states of the F ion. We have evalu-
ated f'2, 4(F ) using (101) and the definition (109), to-
gether with Watson's Hartree-Pock wave functions for
the F ion."We obtain,

where the sum over 202 runs from —2 to +2 and over
M from L t—o +L. Making use of Table II, one ob-
tains, after considerable algebra,

Eso"i=Eso"l(L=O, M=0)+Eso" (L= 1, M=O)
+Eso"'(L=1,M= 1)+Eso"'(I-=1,M= —1), (119)

f~,„(F )=207 cm ', (112) where

E. Honlocal Spin-Orbit Contribution, EgF"'

The nonlocal contribution to 8 arising from spin-
orbit eGects can be obtained in the same manner as
Dso"'. Using Eqs. (78) and (82), one obtains,

where

F,L,M 4 l24m2

b„M „,(F)4L l, (F), (114)

dL, l2M '(F)= —4&l2, 2t d, di d, l2(FLM)

X [44 (~ L,M, m2+2—~ L,M, m2+1)

+g+(& L M „, 2
—& L M m2-i)], (115)

and~

g——gin, —m~f2, mg+1$1 $2

g+= gg, g2, 2+1$1 $2+ + (116)

Substituting these expressions in (78) one obtains the
nonlocal contribution to E,

Es 0 p [bl22fll2Mm2(F, ), ,
20& F.I .M.II,m2

Xi d, di d, l2(FLM)lll2;m2l72, m2+1(~ L, M, m2 2— —

i)]. (117)

This expression can be simplified further using (14),
(19), and (25);

fddcos2P,
E.o"'= — p (id, d(F,LM)

L,M, m2

X+2,M, m2( 2r/2) +2,M, m2 —2( 2r/2) g2, m2g2, m2 —i

XI M ..,.(F,)+& „,,(F,)]), (»8)

which is near the value of 223 cm ' determined from
spectroscopic data for the neutral F atom. We evaluate
(110) to find

Dso"= —1.15X10 4 cm '. (113)

On comparing Dso" with Dso', [(89) with (113)],
we 6nd the distant contribution to be one-fourth of the
local contribution. This result could be anticipated. since
the expressions (87) and (110) resemble each other
closely, except for the replacement of one f'd, d by
f, .(F-').

D. Local Spin-Orbit Contribution, Eso'

After manipulating Eq. (78) in exactly the same man-
ner as was done for Dso', we Gnd a vanishing result.

Eso"'(L=O, M=O) =— (cos2p) fd, 2(F200)
5

X[S,(F )+y.(F )], (12o )

3 f'd, d
Eso"'(L=1, M=O)=- (cos2p)fd, 2(F210)

5

X[S.(F,)+&.(Fi)], (120b

Eso"'(L=1,M=+1)=E o"'(L=1,M= —1)

3 i'd, d

(cos2p)t d, 2(F211)[S,(Fi)+y„(Fi)]. (120c)
10 10

Again, our expressions for Eao"' differ from those of
Kondo4 because of a numerical approximation he was
forced to make, and because he omitted the L=0, 3f=0,
and L=O, M= +1 terms in (120).The specific approxi-
mation he made was to set

(Kondo) f d(2F12)0, id dS,(Fi). (121)

We Gnd this approximation to be ~cry poor; explicit
calculations show

d(2F120) = (1/40)t ddS (Fi) . , (122)

Hence, Kondo's calculated. value Eao"' is too large by
a factor of roughly 40. This, in large part, explains his
ability to Gt the experimental values of E for Mn'+: ZnF2
using the overlap model. We shall show that, to the
contrary, overlap contributions to E are signiGcantly
smaller than those obtained in Paper I. Evaluating
(120), we 6nd

Eso l(L=O M=O)=0.31X10 ' cm

Eso"'(L=1, M=O) =0.64X10 4 cm ', (123)

Eso"'(L= 1, M= &1)=0.09X10-4 cm-'

so that
Eso"'=1.13X10 4 cm '.

F. Distant Spin-Orbit Contribution, Esp"

(124)

The distant contribution to 8 can be obtained in a
similar manner as Dsod (110).After considerable alge-

bra, one obtains

2 cos2p
Eso"——— fd, di, ,„(F ){[S(Fi)+y,(Fi)]'

5

—V3[S (Fi)+y (Fi)][S,(Fi)+y,(F2)]). (125)
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Using the values f„„(,F )=207 cm ' and

iraq

——300
cm ', we obtain

Eso"= —&.4&X10 4 cm '. (126)

TABLE VI. Compilation of results for D and E appropriate to
Mn'+:ZnF2 from I and this paper, in units of 10 4 cm '.

It is interesting to note that the distant contribu-
tion to E is about 6ve times larger than the nonlocal
contribution (124) to E and of opposite sign.

VI. DISCUSSION

Point-Multipole
Model

Overlap Model
Total
Experimental

(Ref. 2)

+24.01

—10.94
+13.07
+10.50

—102.32

—19.77—122.09—113.50

The goal of these papers is the calculation of the spin-
Hamiltonian parameters D and E for an S-state ion,
specifically Mn'+:ZnF2. We have treated in this paper
the effects of overlap and charge transfer. Unfortun-

ately, the lack of a detailed knowledge of the charge-
transfer coeScients prevented us from including them
in our quantitative estimations for D and K However,
there exists evidence from other sources (transferred
hyperfine interactions and. g shifts) that charge-transfer
effects may not be very important for the Mn'+ ion.
In any case, our formalism does allow for charge trans-

fer, and can be used for quantitative estimates when

such parameters are available.
We summarize the results of Secs. IV and V in Table

TA&LE V. Overlap contribution to the spin-Hamiltonian
parameters D and E& for Mn'+:ZnF2, in units of 10 4 cm '.

Spin-Spin
Spin-Orbit

Total

D 8
Local Nonlocal Distant Local Nonlocal Distant

—2.51 —3.16 0 —14 43—4.22 +0.10 —1.15 0 +1.13 —6.47—10.94 —19.77

FIG. 3. A very pictorial view of
the charge distribution appropriate
to the Mn'+-F6 cluster.

V. The sum of the overlap contribution computed in
this paper and of the point-charge model from I (for
Baur's crystal parameters) are compared with the ex-

perimental results of Tinkham' in Table VI. From this
table it is clear that the point-charge mechanism and
overlap effects lead to contributions of nearly the same
magnitude as experiment. This conclusion should be
contrasted with that of Kondo, 4 who argued for the
dominance of overlap terms. In fact, the contribution to
8 from overlap effects (—19.77X10 4 cm ') is con-

siderably smaller in magnitude than the point-charge
contribution (—102.32X10 4 cm '). The sum of the
two contributions to E, —122.09X 10 ' cm ', is remark-
ably close to Tinkham's' experimental value of —113.50
X10 4 cm '.

The overlap contribution to D is seen to be opposite
in sign to the point-charge contribution so that a partial
cancellation occurs. The net result, 13.07X10 ' cm ',
is also close to Tinkham's value of 10.50X10 4 cm '.

It is of interest to n.ote that for both D and E: (i)
nonlocal terms dominate for spin-spin interactions, (ii)
the nonlocal terms play a negligible role in the case of
spin-orbit interaction, and (iii) the relative signs of local
and nonlocal terms for the spin-orbit mechanism are
different while the relative signs of the local and distant
terms are the same. One can construct physical argu-
ments for these results from a consideration of the
schematic diagram, Fig. 3, representing the distribution
of charge density in the Mn'+F 6 cluster. It is conve-
nient to divide the regions of the cluster into three parts;
A, B, and C. Region A represents the immediate vicinity
of the central ion, region B the immediate vicinity of the
ligand F ions, and C the intermediate or "neck
regions. "The contributions to D and E are 6nite only

when the charge distribution around the central ion de-

viates from cubic symmetry. The relative contributions

to D and E from regions A and B as compared to C will

depend on the extent of the departure from cubic sym-
metry in these regions. It is evident that the charge
density in region C is strong nonspherical compared to A
and B.This argument then explains the predominance
of the nonlocal terms over the local in the case of spin-

spin interaction. One might attempt to apply the same
argument to the spin-orbit interaction but, as we have
shown already in Sec. V, the nonlocal spin-orbit cou-

pling constants tq 2(FLM) are more than a factor of
260 smaller than fq, q or t „„(F). As a result, the non-

local contribution to D and E is vanishingly small. As
regards the third observation, we note that, because of
overlap effects, the charge density of the electrons sur-

rounding the central and ligand ions (regions A and B)
will increase as the electron density accumulates in the
regions A and B by migration from the region C as a
consequence of the Pauli correlation. An increase of
electron density means an increase of negative-charge
density while a decrease of electron density can be
thought of as an increase of positive-charge density.
Thus, in the regions A and B, an effective negative
perturbed charge density is present while, in region C,
a positive perturbed charge density is present. Because
the orbital moment has opposite sign for positive and
negative charge, the sign of the spin-orbit interaction
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and(but not of the spin-spin interaction) will depend on the

sign of the charge. Thus, the sign of the perturbed

charge in regions A and 8 is effectively opposite to that
in the region C and we expect that the local and distant
contributions should have the same relative sign but
that both should be opposite to that of the nonlocal

contribution.

It is also of interest to predict the over-all signs of D
and E on the basis of overlap model. For this purpose
one must analyze the various expressions derived in

Secs. IV and V. An examination of our results demon-

strates that the sign of D and E depends on the follow-

ing quantities:

8 —(cos2p) 5,2(Fi) . (128)

Thus, if the distance between the central ion and the
ligand ion F5 is larger than the distance between the
central ion and ligand ion F~, the sign of D due to over-
lap is positive. The value of D vanishes if these two
distances are equal. The sign of E, however, will be
negative if the angle 2p between the diagonals is less
than ~/2, otherwise it is positive. E is zero if p becomes
equal to vr/4.
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APPENDIX

We are interested in this Appendix in deriving an explicit form for the n functions de6ned in Eq. (17).Lowdin'p

has derived a few of these expressions for small /, L, and 3f, but to our knowledge no general formula for the
n functions has yet been given. These functions are found to be quite useful for a variety of problems. For example,
we have made use of them in the calculation of the overlap integrals (26) and (28), the double integrals (51), and
the nonlocal spin-orbit coupling constants (94). A detailed derivation of the results presented in this Appendix will

be given by one of the authors (RRS) elsewhere. "
According to our definition of the n function, we write

00

C(NLM
~
R, O,4) = P -n)(NLM

~
ar)Fg"(H, y),

O y
(Ai)

where C(NLM! R,O,4) is the wave function centered at the site 8 to be expanded about the center A which lies

a distance a away, as in Fig. 2. The polar coordinates (r,g,p) are the coordinates with respect to the center A, and.

R, 0, C are those with respect to center B.
According to Lowdin s de6nition of n function which we denote by nP(NLM

~
ar), we have

where

00

(cosmic)

C (NLM [ RQC) =br, M Q np(NLM [ar)I'r, (cos8)
~

L=O &sing&
'

(2L+1q (L M)! 'I'—-
u~M —— PM(

& 4~ i(L+M)!

(A2)

(A3)

pp= 1) p„= 2 (v& i).
It is clear from (A2) that Lowdin used real spherical harmonics instead of the complex expressions F'p which we

employ. One can relate our n functions to his, o;& and n&', by the simple relation

(2L+1)(L—M)!(I+M) t 'i'
/(FLM~ar)= r t, (NLM~ar).

(2l+ 1)(1+M)!(L+M)!
(A5)

In the paper by RRS, '5 a general and explicit form for 0«' is derived. He 6nds,

I+I
co'(NLM

~
ar) = &LMl(ar) g Hr.„P"(or)

s=O

la+rl

fear, M(R)R +"dR
la—rl

(A6)

'5 R. R. Sharma, J. Math. Phys. (to~be published).
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where

and

(2l+1) (—1)i [sin-', (l+M)s](l —M)! pr) ~ '( r')
~

1+—
~, l+M an odd integer

e 2' +' [~~(l—M—1)]![x~(l+M—1)]!&aj k a'j

1 +0 „& &0 p «2~ E r' ss s—+{r'-(1+«2/o2) 2e q'—
Hr, .P '(u«) =—P cc'~ 1——

~use„„iqi 0 !, gsj (r/g) mo

(2l+1) (—1)~ [cos2(l+M)s](l+M —1)!fr~ ~-'(l—M)!
&r,m(or) =

~

—~, l+M an even integer
a' ~ 2'~+'-~ [-'(l+M)]![-',(l+M) —1]I'Euj (l+M)!

(Aj)

(AS)

with ne= quotient of x2(l+M) (for example quotient of ss is 1 and quotient of -,'is 0),

re' qu——otient of 2(L—M), qo'= (2n) or (2n+1) according as l+M is even or odd,
and

(—1)"'+~'(2n)!(2L—2r')!
C=

n!q!(2n+ 1—q!)!(s—q' —r')!(L—r' —M—s+q)!(L—r')!r'!2'"-"'

l M~ !'1 l My 2n q'+—1
c'=

~

————
~ ~

-+-——~, if l+M= even integer
2 2 j E2 2 2 j (s')

(1 l M~ ! l M~
=~ ————

~ ~
1+———

~
(2n+1), if l+M=odd integer.

E2 2 2jE 2 2j„

(A9)

(A10)

The function f(R) occurring in (A6) is R times the radial part of the wave function 4(NLM! RQ~C). That is,

C (NLM i RSC)= [fNz, (R)/R]Fz~(O, C) . (A11)

The notations (b)„used in (A10) is de6ned by

(b)„=1 for n=0, (b)~=
r(b+n) =b(b+1) (b+n —1) for n= 1, 2, ~

1'(b)
(A12)

Equations (A6) to (A12) give explicit forms for the ot functions n& as denned by Lowdin (A2), which are applic-
able for all values of l, L, and 3f.

An asymptotic form for the 0; functions for small r can be derived as follows. For small values of r the integral

appearing in (A6) can be replaced by

(g+r) r+2a+1 ((o-«~ ) I+ss+1

fbi(R)R +"dR= far, (a)X for L—2s/1L+2s+1—
(6+r )

Xln/ ! /a —r/j
fol I—2$= 1,

(A13)

Using (A13), the value of the n function for small values of r can be obtained directly from (A6). For r=0, we 6nd

fez, js(o)
nP(NLM(eo)= (—1) b~.bshe, . (A14)


