Binding Energies of Electrons in Positive Ions for Statistical Potentials

D. SHALITIN

Department of Theoretical Physics, The Hebrew University of Jerusalem, Jerusalem, Israel (Received 21 April 1966; revised manuscript received 14 November 1966)

Binding energies of electrons in several positive ions of some light elements and of iron are calculated for six statistical models. The models discussed are the Thomas-Fermi, Fermi-Amaldi, and Thomas-Fermi-Dirac models and three other modified models, in which the self-interaction of the electrons is explicitly treated.

INTRODUCTION

IN a recent work,¹ energy levels of electrons in several neutral atoms have been computed for six statistical models. These models were the Thomas-Fermi (TF), Fermi-Amaldi (FA), and Thomas-Fermi-Dirac (TFD) models and three modifications which were denoted by TFM, FAM, and TFDM. In the modified models, special attention was paid to the self-interaction of each individual electron. The agreement of the calculated energies with the experimental values was found to be reasonably good for not too heavy elements (especially for the FAM and the TFD models).

In the present paper, similar calculations are repeated for some positive ions in their ground state: some light elements (from Z=3 to Z=13) in several degrees of ionization and several iron ions. Unfortunately, hardly any measurement is available for these binding energies, and direct comparison with experimental results is practically impossible. This is due to difficulties of experimenting with highly-ionized atoms in terrestrial laboratories. However, these ions may exist as free long-lived ions in stellar atomspheres or the solar corona. Although we should assume high temperatures for a rigorous treatment of these astrophysical ions, it is hoped that the zero-temperature binding energies, as calculated in the present work, may be regarded as a plausible approximation to the actual values.

EVALUATION OF THE POTENTIALS

The potentials V_q or $V_{q \mod}$ acting on an electron within an ion are, according to the various models^{1,2}

$$V_{q} = V_{TF} = V_{e} + Ze/r$$

= $V_{FA} = [(N-1)V_{e}/N] + Ze/r$
= $V_{TFD} = V_{e} + Ze/r + 2\chi_{a}\rho^{1/3}/e.$ (1)

$$V_{q \mod} = V_{e} + Ze/r - V_{self}$$

= $V_{TFM} = V_{TF} - V_{self}$
= $V_{FAM} = (NV_{FA} - Ze/r)/(N-1) - V_{self}$
= $V_{TFDM} = V_{TFD} - 2X_a \rho^{1/3}/e - V_{self}$. (1')

Here V_e is the electrostatic potential produced by *all* the electrons of the ion and acting on a test charge; V_{self} is the electrostatic potential produced by the electron whose level is calculated; ρ is the electron density; Z is the atomic number of the ion; N is the number of electrons in the ion; and $\chi_a = \frac{3}{4}(3/\pi)^{1/3}e^2$.

The differential equation for the potentials V_{TF} and V_{FA} of a free ion is³

$$d^{2}\Phi/dx^{2} = \Phi^{3/2}/x^{1/2}, \qquad (2)$$

with the boundary conditions

$$\Phi(0)=1, \quad \Phi(x_0)=0, \quad x_0\Phi'(x_0)=-q/Z, \quad (3)$$

where

$$\begin{split} \Phi(x) &= r(V_q - eq/r_0)/Ze, \\ x &= r/\mu, \\ \mu &= \mu_0 = (9\pi^2/128Z)^{1/3}a_0 \\ a &= Z - N \end{split} \quad \text{for TF}, \end{split}$$

and

$$\mu = \mu_0 (N/N - 1)^{2/3}$$
 for FA.
 $q = Z - N + 1$

The solutions of this differential equation form a family of functions whose only parameter Z/q is always positive for positive ions. Equations (2) and (3) are singular at the origin, and hence it is more convenient to solve them inwardly. For this purpose we transform them by $x=x_0\xi$, $\Phi=q\Psi/Z$ to the equations

$$d^2\Psi/d\xi^2 = \alpha \Psi^{3/2}/\xi^{1/2}, \qquad (2')$$

with the boundary conditions

$$\Psi(0) = Z/q, \quad \Psi(1) = 0, \quad \Psi'(1) = -1.$$
 (3')

The only parameter for these equations is $\alpha = (qx_0^3/Z)^{1/2}$, and its functional dependence on Z/q is just like the dependence of α on Z in Table III of Ref. 1 This table may be used for interpolation, also for the solutions of Eqs. (2') and (3').

¹ D. Shalitin, Phys. Rev. 140, A1857 (1965).

² The potentials V_q are not necessarily purely electrostatical. Specifically, $V_{\rm TFD}$ contains a term $2x_{\alpha\rho}^{1/2}/e$, which is Slater's average exchange potential within the ion. See, e.g., J. C. Slater, Phys. Rev. 81, 385 (1951), Eq. (13).

⁸ P. Gombas, *Die Statistische Theorie Des Atoms und Ihre Anwendungen* (Julius Springer-Verlag, Vienna, 1949), p. 30 ff. and p. 65 ff.

Z	4	6	10	13	26	50	82	100
1	0.281478	0.375851	0.495636	0.556705	0.713889	0.853790	0.952765	0.990649
2	0.104286	0.180824	0.283047	0.336668	0.477995	0.606761	0.699120	0.734701
3		0.089580	0.175634	0.221941	0.347916	0.465489	0.550977	0.584121
4		0.040616	0.112045	0.152563	0.265254	0.372988	0.452351	0.483304
5			0.071667	0.106973	0.208267	0.307492	0.381511	0.410544
6			0.044653	0.075393	0.166821	0.258656	0.328005	0.355352
7				0.052737	0.135510	0.220870	0.286108	0.311967
8				0.036100	0.111176	0.190807	0.252397	0.276931
9					0.091843	0.166363	0.224687	0.248034
10					0.076216	0.146135	0.201516	0.223791

TABLE I. α versus Z and p for the TFD potential.

The equation for the TFD potential in a free ion is^{4,5}

$$d^{2}\Phi/dx^{2} = x [(\Phi/x)^{1/2} + \beta_{0}]^{3}, \qquad (4)$$

with the boundary conditions

$$\Phi(0) = 1, \quad \Phi(x_0) = \beta_0^2 x_0, \quad x_0 \Phi'(x_0) - \Phi(x_0) = -p/Z.$$
(5)

Here

$$\Phi = r(V_e + Ze/r - pe/r_0 + e/32\pi^2 a_0)/Ze; \ \beta_0 = (3/32\pi^2 Z^2)^{1/3};$$

 $x=r/\mu_0$; $r_0=\mu_0x_0$, the finite radius of the ion; and p=Z-N, the degree of ionization. The solutions of Eqs. (4) and (5) form a two-parameter family. A convenient way to solve them is by the transformation $x=x_0\xi$, $\Phi=b\Psi$ (where b is yet unknown). The new equations are

$$d^{2}\Psi/d\xi^{2} = \alpha\xi[(\Psi/\xi)^{1/2} + \gamma]^{3},$$
 (4')

with the boundary conditions

 $\Psi(0) = 1/b$, $\Psi(1) = \frac{1}{16}\gamma^2$, $\Psi'(1) = \Psi(1) - p/Zb$, (5') where

$$\alpha = (x_0^3 b)^{1/2}, \quad \gamma = (x_0/b)^{1/2} \beta_0 = (9x_0^3/1024\pi^4 b^3 Z^4)^{1/6}.$$

With $\Psi(1)=1$ (and $\gamma=4$) and some chosen α , Zb is specified $[Zb=(3\alpha/32\pi^2\gamma^3)^{1/2}]$. Thus, with α , $\Psi(1)$, and $\Psi'(1)$ specified, Eqs. (4') and (5') may be integrated up to a small ξ and then interpolated for $\xi=0$. With the value $1/b=\Psi(0)$, Ψ and $V_{\rm TFD}$ may be calculated. It is found that for a fixed p, α is nearly linear with $\ln(Z-p)$. In Table I some values of α with the corresponding Z and p are listed.

RESULTS AND DISCUSSION

The binding energies have been calculated as eigenvalues of the Dirac equation with the six potentials and are presented in Table II. The method of calculation is

described in Ref. 1. All but some of the most loosely bound levels were computed. Because the only experimental binding energies known to the author are for the external electrons⁶ ('ionization potential') the comparison between theory and experiment is necessarily sporadic. The six sets of results should therefore be regarded as six sets of predictions, none of which may as yet be preferred to the others. Only in the future, when more measurements are carried out, will it be decided which of the models is the best. However, with the present experimental data, it seems that only rarely do the FAM or the TFDM models yield the best results. On the other hand, it seems that frequently the FA and, especially for the heavier ions, the TFD values are nearest to experiment. It also occurs frequently that the experimental values fit better to the last but one occupied term in the ion.

An interesting feature of the theoretical results is the constancy of the level splitting within any term: For a given element and a given term, it has nearly the same value for all the ions and even for all the potentials. For the heavier ions (Z=13, 26), a more general feature is revealed: When we pass from a certain ion of an element to the following ion, all the levels are shifted practically by the same amount, which depends on the ion and slightly on the potential. This is consistent with a naive model of an ion consisting of classical electron shells, but it is also quite consistent with the usual shell model. Like the results for neutral atoms, the TF values are nearly always the lowest and the TFM or the TFD are usually the highest. The FAM and TFDM values are often very close, and for most ions and all shells, except the K shell, the FA values are also rather close to them. The TFD binding energies, although relatively good for the heavier ions (and very good for the K shell electrons in low-Z atoms¹), exhibit some irregularities for the $2s_{1/2}$ level in carbon and oxygen ions. This fact is not a major defect for a statistical model, yet it sheds some doubts on the reliability of this model when applied to ions with a very small number of electrons.

⁴ Ref. 3, p. 77 ff. ⁵ In Ref. 1, the definition of $\Phi(x)$ is misprinted. The equation following Eq. (A6) there should read $\Phi(x)=r[V_{\bullet}(r)+Z_{\bullet}/r$ $+e/32\pi^{2}a_{0}]/Z_{\bullet}$. The error does not appear in the corresponding computer program and does not affect the validity of the TFD or TFDM results in Table I of Ref. 1.

⁶ Atomic Energy Levels, edited by C. E. Moore, Natl. Bur. Std. (U. S.) Circ. No 467 (U. S. Government Printing and Publishing Office, Washington, D. C., 1949, 1952), Vols. 1 and 2.

TABLE II. Energy levels in eV for six statistical models.

Z	Þ	level	TF	TFM	FA	FAM	TFD	TFDM	Experi- mental (Ref. 4)	Z	Þ	level	TF	TFM	FA	FAM	TFD	TFDM	Experi- mental (Ref. 4)
3	1	1s _{1/2}	44	85	78	75	73	78	76	26	1	3s1/2 3\$1/2	85 53	114 80	100 68	97 64	117 84	91 59	
Ŧ	2	$13_{1/2}$ $1s_{1/2}$	105	164	156	154	149	157	154		2	$\frac{1}{2} \frac{1}{5} \frac{1}{2} \frac{1}{5} \frac{1}{2} \frac{1}{5} \frac{1}$	6767	7200	6834 700	7162	7107	7131	
0	1	$\frac{1s_{1/2}}{2s_{1/2}}$	11	25	265	300 20	291 22	300 20				251/2 $2p_{1/2}$ $2p_{2/2}$	648 637	753 740	686 674	722	758 745	704 692	
	2	$\frac{1s_{1/2}}{2s_{1/2}}$	$\begin{array}{c} 244 \\ 24 \end{array}$	335 38	293 43	319 36	311 29	320 36	48			$\frac{-p_{3/2}}{3s_{1/2}}$ $3p_{1/2}$	94 63	123 90	112 80	108 75	129 96	103 70	
	3	1s _{1/2} 2s _{1/2}	270 41	361 58	$\begin{array}{c} 334\\ 64\end{array}$	349 57	341 27	350 57	64		3	$3p_{3/2}$	61 6779	88 7213	79 6852	74 7176	94 7122	69 7146	
8	1	$\begin{array}{c}1s_{1/2}\\2s_{1/2}\\2p_{1/2}\\2p_{3/2}\end{array}$	455 23 10 10	579 43 29 29	495 40 25 25	557 34 19 19	543 42 26 26	554 34 19 19	35		Ũ	$\begin{array}{c} 2s_{1/2} \\ 2p_{1/2} \\ 2p_{3/2} \\ 3s_{1/2} \end{array}$	777 661 650 106	867 765 752 135	815 703 691 127	840 736 724 123	881 774 761 143	825 720 707 118	
	2	$\frac{1s_{1/2}}{2s_{1/2}}$	468 36	593 56	518 57	573 50	560 56	571 50				$\begin{array}{c} 3p_{1/2} \\ 3d \end{array}$	75 25	102 47	95 43	90 36	110 53	85 33	31
	3	$2p_{1/2}$ $1s_{1/2}$ $2s_{1/2}$ $2p_{1/2}$	22 490 53 39	614 75 60	42 552 79 65	36 597 71 56	40 585 71 56	36 596 72 56	55		4	$\frac{1s_{1/2}}{2s_{1/2}}\\ \frac{2p_{1/2}}{2p_{3/2}}$	6795 792 677 665	7229 883 781 768	6873 835 722 710	7193 857 754 741	7141 899 792 779	7165 843 738 725	
	4	$\frac{1s_{1/2}}{2s_{1/2}}$	521 76	646 99	596 106	631 97	619 83	631 97	114			$\frac{3s_{1/2}}{3p_{1/2}}$	121 90 88	150 117 115	145 113	139 105	160 127 126	135 102 101	
	5	$\frac{1s_{1/2}}{2s_{1/2}}$	564 103	689 128	658 138	677 127	665 83	679 127	138		5	$3d_{3/2}$	40	61	56	52 7212	7162	49	
10	1	$\frac{1s_{1/2}}{2s_{1/2}}\\2p$	$770 \\ 45 \\ 23$	929 72 51	813 63 41	903 60 37	$884 \\ 71 \\ 48$	897 59 36	41		5	$\frac{1S_{1/2}}{2s_{1/2}}$ $2p_{1/2}$ $2p_{3/2}$	811 696 684	902 800 787	857 745 733	7213 877 774 761	920 813 800	864 759 747	
	2	$\frac{1s_{1/2}}{2s_{1/2}}\ 2p$	783 57 35	941 84 63	834 80 58	918 75 53	900 86 63	913 74 52	64			${3s_{1/2}\over 3p_{1/2}\over 3d_{3/2}}$	139 107 56	168 135 79	165 133 79	159 126 71	180 147 88	155 122 68	
	3	$\frac{1s_{1/2}}{2s_{1/2}}$ 2p	802 74 52	960 102 79	863 102 80	939 95 71	922 104 81	935 95 71	97		6	$\frac{1s_{1/2}}{2s_{1/2}}$ $\frac{2p_{1/2}}{2p_{1/2}}$	6836 833 718 707	7271 924 822 810	6926 883 771 759	7237 901 798 785	7187 945 838 825	7211 889 784 772	
	4	$ \begin{array}{r} 1s_{1/2} \\ 2s_{1/2} \\ 2p_{1/2} \\ 1 \\ \end{array} $	828 96 74	986 125 103	900 128 107	967 120 97	951 126 103	965 120 97	126			$\begin{array}{c} 2p_{3/2} \\ 3s_{1/2} \\ 3p_{1/2} \\ 3p_{3/2} \end{array}$	159 127 126	189 155 154	187 155 153	181 148 146	202 168 166	178 144 143	
	5	$\frac{131/2}{2s_{1/2}}$ $2p_{1/2}$	124 101	153 133	160 139	1004 150 129	989 147 128	150 129	158		7	$\frac{3d_{3/2}}{1s_{1/2}}$	6862 6850	99 7297	6958 012	92 7263	7216	91 7240	
13	1	$\frac{1s_{1/2}}{2s_{1/2}}$ 2p	1416 101 64	1626 140 104	1463 122 85	1597 123 86	1570 139 102	1585 120 82		÷		$\begin{array}{c} 2s_{1/2} \\ 2p_{1/2} \\ 2p_{3/2} \\ 3s_{1/2} \end{array}$	744 732 182	848 835 212	800 789 212	824 812 205	866 853 225	812 800 202	
	2	$\frac{1s_{1/2}}{2s_{1/2}}$ 2ϕ	1428 112 75	1637 151 115	1482 136 101	1610 136 100	1584 153 116	1600 134 97			Q	$3p_{1/2} \\ 3d_{3/2} \\ 1 \\ \dots$	150 96	178 123 7326	179 124	172 116 7204	191 131 7248	109 114 7272	151
	3	$\frac{1s_{1/2}}{2s_{1/2}}\\2p$	1444 128 91	1652 167 132	1507 158 122	1628 155 118	1604 171 135	1620 153 116	120		0	$\begin{array}{c} 131/2 \\ 2s_{1/2} \\ 2p_{1/2} \\ 2p_{3/2} \end{array}$	888 773 761	978 877 864	945 834 822	958 855 842	1004 897 884	948 844 831	
	4	$\frac{1s_{1/2}}{2s_{1/2}}$ 2p	1466 149 111	1675 188 153	1538 183 147	1652 178 141	1629 194 158	1644 176 140	154			$3s_{1/2} \ 3p_{1/2} \ 3p_{3/2}$	207 174 173	237 203 202	239 206 204	231 198 196	250 216 214	229 195 194	235
	5	$\frac{1s_{1/2}}{2s_{1/2}}$ $\frac{2p}{2p}$	1494 174 137	1704 213 179	1576 213 177	1681 206 170	1660 221 185	1676 205 169	190		9	$\frac{1s_{1/2}}{2s_{1/2}}\\ 2p_{1/2}$	6926 920 805	7360 1011 910	7034 981 871	7329 992 888	7284 1038 932	7308 983 879	
	6	$\frac{1s_{1/2}}{2s_{1/2}}$ $\frac{2p}{2p}$	1530 204 168	1739 244 211	1622 248 213	1718 239 203	1698 251 216	1714 238 203	242			$2p_{3/2}$ $3s_{1/2}$ $3p_{1/2}$ $3p_{2/2}$	794 234 201 200	897 265 231 229	859 268 235 233	876 260 226 224	919 276 242 240	866 258 224 223	262
	7	$\begin{array}{c}1s_{1/2}\\2s_{1/2}\\2p_{1/2}\end{array}$	1573 240 204	$1783 \\ 281 \\ 249$	1679 288 252	1764 277 243	1745 286 251	1762 276 243	285		10	$1s_{1/2}$ $2s_{1/2}$	6963 956 842	7398 1047 046	7079 1022	7367 1029	7324 1077	7348 1022 018	
26	1	$\begin{array}{c} 1_{s_{1/2}} \\ 2_{s_{1/2}} \\ 2p_{1/2} \\ 2p_{3/2} \end{array}$	6757 755 639 628	7191 845 743 731	6819 786 673 661	7151 814 711 698	7095 854 746 733	7119 798 693 680				$\begin{array}{c} 2p_{1/2} \\ 2p_{3/2} \\ 3s_{1/2} \\ 3p_{1/2} \\ 3p_{3/2} \end{array}$	830 264 230 228	934 295 261 259	900 300 266 264	914 291 256 255	957 304 269 267	905 289 255 253	290

ACKNOWLEDGMENT

I would like to express my gratitude to Dr. A. Ron for his very helpful collaboration in all coding and programming problems.

APPENDIX A: ORTHOGONALITY OF THE WAVE FUNCTIONS

In all our modified models (TFM, FAM, and TFDM), the differential equations, which yield the binding energies as eigenvalues, may be written symbolically

$$H\Psi_i = \epsilon_i \Psi_i, \tag{A1}$$

where

$$H = H^0 + eV_i.$$

 H^0 is an Hermitian operator and V_i is the self-potential corresponding to the state *i*. The operator *H* itself is, of course, not Hermitian, nor even linear, and its eigenfunctions are not necessarily orthogonal. The deviation from orthogonality may be estimated as follows: Let Ψ_1 and Ψ_2 be two eigenfunctions having the same angular momentum (otherwise orthogonality is automatically satisfied), but belonging to different principal quantum numbers n_1 and n_2 , and let $n_1 < n_2$. Now

$$(\Psi_1, H^0 \Psi_2) = (\Psi_1, H\Psi_2) - (\Psi_1, eV_2 \Psi_2) = \epsilon_2 (\Psi_1, \Psi_2) - (\Psi_1, eV_2 \Psi_2), \quad (A2)$$

and similarly

$$(\Psi_1, H^0 \Psi_2) = \epsilon_1(\Psi_1, \Psi_2) - (\Psi_1, eV_1 \Psi_2).$$
 (A2')

Hence,

$$\delta = |(\Psi_1, \Psi_2)| = |(\Psi_1, e(V_1 - V_2)\Psi_2)| / |\epsilon_1 - \epsilon_2|.$$
(A3)

Since $n_1 < n_2$, it follows that $\epsilon_1 < \epsilon_2 < 0$, and we may assume that $|V_1(r) - V_2(r)|$ is a monotonic decreasing function (i.e., in any sphere around the nucleus there is more charge due to state 1 than due to state 2). Therefore, we have

$$| (\Psi_1, (V_1 - V_2)\Psi_2) | < | V_1(0) - V_2(0) | (|\Psi_1|, |\Psi_2|).$$
 (A4)

By Schwartz's inequality we have $(|\Psi_1|, |\Psi_2|) < 1$, and therefore

$$\delta < e |V_1(0) - V_2(0)| / |\epsilon_1 - \epsilon_2|. \tag{A5}$$

An upper bound for V_i is assumed to be the quantity $Ze/(a_0n_i^2)$; therefore, a very pessimistic estimate may be

$$\delta < (Ze^2/a_0 | \epsilon_1 - \epsilon_2 |) (1/n_1^2 - 1/n_2^2).$$
 (A6)

Since $(\epsilon_1 - \epsilon_2)$ is proportional to Z^2 , δ is proportional to 1/Z. In fact, the upper bound for δ is too high and may be easily reduced by a factor of 2 because of the different number of modes of the two functions. A calculation shows that δ is even much smaller. For example: For the $1s_{1/2}$ and $2s_{1/2}$ levels of an Al II ion, $\delta \approx 0.18$ according to Eq. (A5), whereas an exact calculation yields $\delta = 0.017$. Similar calculations show that in fact δ is always less than 1/2Z.

APPENDIX B: REARRANGEMENT ENERGY

The eigenvalues calculated in the present paper are assumed to be the exact binding energies of the electrons according to the model. This is true only if the charge distribution of all electrons except the one considered is the same before and after removing the electron. This is not rigorously fulfilled and the charge distribution of the remaining N-1 electrons does certainly change. We may estimate the effect of rearrangement on the binding energies for the modified models.

Let ϵ_i^0 and Ψ_i^0 be the eigenvalue and the eigenfunction of the *i*th electron with the potential $V_e + Ze/r$; let ϵ_i be the eigenvalue of this electron with the potential $V_e + Ze/r - V_i^0$ (where V_i^0 is the potential associated with the function Ψ_i^0). We may write

$$\epsilon_i = \epsilon_i^0 + \Delta \epsilon_i + \delta \epsilon_i, \tag{B1}$$

where $\Delta \epsilon_i = (\Psi_i^0, V_i^0 \Psi_i^0)$ is the first-order correction to the eigenvalue according to perturbation theory. $\Delta \epsilon_i$ is obviously the correction to the binding energy, assuming that the wave functions of all electrons (including the *i*th) remain unchanged, whereas $\delta \epsilon_i$ is due to change of the wave function of the *i*th electron itself. Now, it is found by calculation that $\delta \epsilon_i$ is, except for the K shell, of the order of a few tenths of an eV. $\delta \epsilon_i$ may be regarded as the change of energy due to 'rearrangement' of the ith electron charge. The rearrangement energy of electrons belonging to the same shell may be assumed to be of the order of $\delta \epsilon_i$, whereas the rearrangement effects of the other electrons are probably much less: The inner electrons suffer but a very slight change in the electrostatic field exerted on them, and their rearrangement effects may be neglected; the outer electrons would also suffer a change which is on the average much less than the change of the field in the shell of the *i*th electron. Therefore, the order of magnitude of the rearrangement energy may be estimated by 0.2N eV, and is negligible in most cases.