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Binding energies of electrons in several positive ions of some light elements and of iron are calculated for
six statistical models. The models discussed are the Thomas-Fermi, Fermi-Amaldi, and Thomas-Fermi-
Dirac models and three other modified models, in which the self-interaction of the electrons is explicitly

treated.

INTRODUCTION

N a recent work,! energy levels of electrons in several
neutral atoms have been computed for six statistical
models. These models were the Thomas-Fermi (TF),
Fermi-Amaldi (FA), and Thomas-Fermi-Dirac (TFD)
models and three modifications which were denoted by
TFM, FAM, and TFDM. In the modified models,
special attention was paid to the self-interaction of each
individual electron. The agreement of the calculated
energies with the experimental values was found to be
reasonably good for not too heavy elements (especially
for the FAM and the TFD models).

In the present paper, similar calculations are repeated
for some positive ions in their ground state: some light
elements (from Z=3 to Z=13) in several degrees of
ionization and several iron ions. Unfortunately, hardly
any measurement is available for these binding energies,
and direct comparison with experimental results is
practically impossible. This is due to difficulties of
experimenting with highly-ionized atoms in terrestrial
laboratories. However, these ions may exist as free
long-lived ions in stellar atomspheres or the solar corona.
Although we should assume high temperatures for a
rigorous treatment of these astrophysical ions, it is hoped
that the zero-temperature binding energies, as calculated
in the present work, may be regarded as a plausible
approximation to the actual values.

EVALUATION OF THE POTENTIALS

The potentials ¥V, or Vgmea acting on an electron
within an ion are, according to the various models!?

Vq= VTF= V.;—I—Ze/r
=Vea=[(N—1)V,/N]+Ze/r
=Vrrp=V+Ze/r+2X.p'"/e.

Vmoa=Vet+Ze/r— Ve
=Vrrm=Vaor— Ve
=Veam=(NVra—2Ze/r)/(N—1)— Vet
=Vrrom=Vrrp—2Xep'/e—Viers. (1)

€Y

1D. Shalitin, Phys. Rev. 140, A1857 (1965).

2 The potentials V, are not necessarily purely electrostatical.
Specifically, Vrrp contains a term 2X,p'3/e, which is Slater’s
average exchange potential within the ion. See, e.g., J. C. Slater,
Phys. Rev. 81, 385 (1951), Eq. (13).
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Here V., is the electrostatic potential produced by a/l
the electrons of the ion and acting on a test charge;
Vselt is the electrostatic potential produced by the elec-
tron whose level is calculated; p is the electron density;
Z is the atomic number of the ion; V is the number of
electrons in the ion; and X,=3(3/7)/3¢2.

The differential equation for the potentials Vrg
and Vga of a free ion is®

P/ drr=32/ 31 @)

with the boundary conditions
CI)(O)= 1 ) ‘I’(xo)=0;

% (x)=—q/Z, (3)

where
®(x)=r(V,—eq/r0)/ Ze,
x=f/p,,
= = 1/3
p=po=(97%/128Z)"a, for TF,
g=Z—N

and
u=uo(N/N—1)8
g=Z—N-+1

for FA.

The solutions of this differential equation form a family
of functions whose only parameter Z/q is always positive
for positive ions. Equations (2) and (3) are singular at
the origin, and hence it is more convenient to solve them
inwardly. For this purpose we transform them by
x=1x¢, ®=q¥/Z to the equations

B/ =32/ 112 (2"
with the boundary conditions
v0)=Z/q, ¥(1)=0, ¥(1)=-1. 3"

The only parameter for these equations is a= (gx,*/Z)*/2,
and its functional dependence on Z/q is just like the
dependence of « on Z in Table III of Ref. 1 This table
may be used for interpolation, also for the solutions of
Egs. (2’) and (3).

3P. Gombas, Die Statistische Theorie Des Atoms und Ihre
Anwendungen (Julius Springer-Verlag, Vienna, 1949), p. 30 ff.
and p. 65 fi.
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TaBLE 1. « versus Z and p for the TFD potential.
\< 4 6 10 13 26 50 82 100

?
1 0.281478 " 0.375851 0.495636 0.556705 0.713889 0.853790 0.952765 0.990649
2 0.104286 0.180824 0.283047 0.336668 0.477995 0.606761 0.699120 0.734701
3 0.089580 0.175634 0.221941 0.347916 0.465489 0.550977 0.584121
4 0.040616 0.112045 0.152563 0.265254 0.372988 0.452351 0.483304
5 0.071667 0.106973 0.208267 0.307492 0.381511 0.410544
6 0.044653 0.075393 0.166821 0.258656 0.328005 0.355352
7 0.052737 0.135510 0.220870 0.286108 0.311967
8 0.036100 0.111176 0.190807 0.252397 0.276931
9 0.091843 0.166363 0.224687 0.248034

10 0.076216 0.146135 0.201516 0.223791

The equation for the TFD potential in a free ion is*®
@0/ dx?=x[ (B/x)2+Bo 2, 4)
with the boundary conditions
®0)=1, ®(x)=Bo*%0, xP (Xo)—®(x0)=—p/Z. (5)
Here

=1V +Ze/r— pe/rote/32n%a0)/ Ze; Bo=(3/32n222)13;

x=7/uo; ro=po%o, the finite radius of the ion; and
p=Z—N, the degree of ionization. The solutions of
Egs. (4) and (5) form a two-parameter family. A con-
venient way to solve them is by the transformation
x=1mx0¢, P=b¥ (where b is yet unknown). The new
equations are

P*V/dE=at (¥/£) P4+ ], #)

with the boundary conditions

¥(0)=1/0, ¥()=77*, ¥ (1)=¥(1)—p/Zb, (5)

where
a=(280)12, = (xo/b)'2 Bo= (9x3/1024mB3Z4)1/6,

With ¥(1)=1 (and y=4) and some chosen «, Zb is
specified [Zb= (3a/327%%)'/2]. Thus, with «, ¥(1),
and ¥’ (1) specified, Egs. (4’) and (5’) may be integrated
up to a small ¢ and then interpolated for ¢=0. With the

value 1/6=¥(0), ¥ and Vrrp may be calculated. It is -

found that for a fixed p, a is nearly linear with In(Z— ).
In Table I some values of o with the corresponding Z
and p are listed.

RESULTS AND DISCUSSION

The binding energies have been calculated as eigen-
values of the Dirac equation with the six potentials and
are presented in Table IT. The method of calculation is

4Ref. 3, p. 77 ff.

5 In Ref. 1, the definition of ®(x) is misprinted. The equation
following Eq. (A6) there should read ®(x)=r[V,.(r)+Ze/r
~+e/32x2a0]/Ze. The error does not appear in the corresponding
computer program and does not affect the validity of the TFD
or TFDM results in Table I of Ref. 1.

described in Ref. 1. All but some of the most loosely
bound levels were computed. Because the only experi-
mental binding energies known to the author are for the
external electrons® (‘ionization potential’) the com-
parison between theory and experiment is necessarily
sporadic. The six sets of results should therefore be
regarded as six sets of predictions, none of which may as
yet be preferred to the others. Only in the future, when
more measurements are carried out, will it be decided
which of the models is the best. However, with the
present experimental data, it seems that only rarely do
the FAM or the TFDM models yield the best results.
On the other hand, it seems that frequently the FA and,
especially for the heavier ions, the TFD values are
nearest to experiment. It also occurs frequently that
the experimental values fit better to the last but one
occupied term in the ion.

An interesting feature of the theoretical results is the
constancy of the level splitting within any term: For
a given element and a given term, it has nearly the same
value for all the ions and even for all the potentials.

- For the heavier ions (Z=13, 26), a more general feature

is revealed : When we pass from a certain ion of an ele-

. ment to the following ion, all the levels are shifted

practically by the same amount, which depends on the
ion and slightly on the potential. This is consistent with
a naive model of an ion consisting of classical electron
shells, but it is also quite consistent with the usual shell
model. Like the results for neutral atoms, the TF values
are nearly always the lowest and the TFM or the TFD

- are usually the highest. The FAM and TFDM values are

often very close, and for most ions and all shells, except
the K shell, the FA values are also rather close to them.
The TFD binding energies, although relatively good for
the heavier ions (and very good for the K shell electrons
in low-Z atoms'), exhibit some irregularities for the
2512 level in carbon and oxygen ions. This fact is not a
major defect for a statistical model, yet it sheds some
doubts on the reliability of this model when applied to
ions with a very small number of electrons.

8 Atomic Energy Levels, edited by C. E. Moore, Natl. Bur. Std.
(U. S.) Circ. No 467 (U. S. Government Printing and Publishing
Office, Washington, D. C., 1949, 1952), Vols. 1 and 2.
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Tasre II. Energy levels in eV for six statistical models.

Experi- Experi-
mental mental
Z p levl TF TFM FA FAMTFD TFDM (Ref.4) | Z p levl TF TFM FA FAM TFD TFDM (Ref.4)
3 1 1, 4 8 78 75 73 718 16 |2 1 35, 85 114 100 97 117 91
4 1 12 85 143 120 130 126 131 32 53 80 68 64 84 59
2 1, 105 164 156 154 149 157 154 2 1siys 6767 7200 6834 7162 7107 7131
6 11 228 319 265 300 291 300 2512 764 854 799 826 866 810
a1 25 26 0 2 20 2 648 753 686 722 758 704
- 2py, 637 740 674 711 745 692
sis 244 335 203 319 311 320
352 94 123 112 108 129 103
251/2 24 38 43 36 29 36 48 3?1/2 63 90 80 75 926 70
3 1sys 270 361 334 349 341 350 3psy, 61 88 79 74 94 69
2, 41 58 64 ST 27 ST 64 3 s 6779 7213 6852 7176 7122 7146
8 1 1sip 455 579 495 557 543 554 251, 777 867 815 840 881 825
295, 23 43 40 34 42 34 21 661 765 703 736 774 720
2, 10 29 25 19 26 19 25 650 752 691 724 761 707
2, 10 20 25 19 26 19 35 352 106 135 127 123 143 118
R EE LR go B2 R B moE
S1/2 3 6 5 0
2012 22 42 42 36 40 36 55 4 1si 6795 7229 6873 7193 7141 7165
3 1siy 490 614 552 597 585 596 2512 792 883 835 857 899 843
22 53 75 19 71 T4 72 2p1, 677 781 722 754 792 738
2, 39 60 65 56 56 56 77 2pspe ?gi» ng Zlg igl Zgg 722
4 1, 521 646 596 631 619 631 35172 50 145 139 13
3 %6 09 100 o7 ‘8 o7 114 3pie 90 117 113 105 127 102
S 3ps, 88 115 111 105 126 101
5 15y, 564 689 658 677 665 679 3ds, 40 61 56 52 70 49
Zsip 103128 138 127 83 127 138 5 15 6814 7248 6898 7213 7162 7186
10 1 1sis 770 929 813 903 884 897 25, 811 902 857 877 920 864
29 45 72 63 60 71 59 21, 696 800 745 774 813 759
2p 23 51 41 37 48 36 41 2pss 684 787 732 761 800 745%
2 3s 139 168 165 159 180 1
%f.ig 7§§ 9§i 85;’3 9;2 9§2 9;?1 3pie 107 135 133 126 147 122
2p 35 63 58 53 63 52 64 3ds/e 56 79 79 71 88 68
3 1si, 802 960 863 939 922 935 6 1si2 6836 7271 6926 7237 7187 7211
2152 74 102 102 95 104 95 2512 833 924 883 901 945 889
2p 52 79 8 71 8 71 97 gm ;18 822 7;1 ;gg sgg ;%L
4 1s;, 828 98 900 967 951 965 pse 707 810 759 8
312 159 189 187 181 202 178
5 1si, 862 1021 948 1004 989 1003 3ds, 75 99 100 92 109 91
Zap 124 153 160 150 147 150 7 s, 6862 7207 6958 7263 7216 7240
2p1, 101 133 139 129 128 120 158 O ot %013 ‘ovs o1 ‘et
13 1 1syyp 1416 1626 1463 1597 1570 1585 2171//2 744 848 800 824 866 812
212 101 140 122 123 139 120 2psm 732 835 789 812 853 800
2p 64 104 8 86 102 8 3512 182 212 212 205 225 202
2 lsip 1428 1637 1482 1610 1584 1600 3pir 150 178 179 172 191 169
2, 112 151 136 136 153 134 3dsp 96 123 124 116 131 114 151
2 75 115101 100 116 97 8 lsia 6892 7326 6994 7204 7248 7272
3 1sip 1444 1652 1507 1628 1604 1620 251, 888 978 945 958 1004 948
22 128 167 158 155 171 153 212 713 877 834 855 897 844
2p 91 132 122 118 135 116 120 %173/2 gg; gg‘% ggg gg ggg g%
S
4 15y, 1466 1675 1538 1652 1620 1644 S T4 205 26 198 216 103
25, 149 188 183 178 194 176 3 173 202 204 196 214 108 235
2 111 153 147 141 158 140 154 D32 s
5 1 1494 1704 1576 1681 1660 16 9 1s;p 6926 7360 7034 7329 7284 7308
Zorw 174 213 213 206 900 2(7,2 25, 920 1011 981 992 1038 983
2 137 179 177 170 185 169 1 2p1e 805 910 871 883 932 879
4 o 1% 2 794 897 859 876 919 866
6 1s;2 1530 1739 1622 1718 1698 1714 3?13//: 234 265 268 260 276 258
2512 204 244 248 239 251 238 3pi 201 231 235 226 242 224
, 2p 168 211 213 203 216 203 242 3ps 200 229 233 224 240 223 262
Isip 1573 1783 1679 1764 1745 1762
2 om0 281 o8 277 288 e 10 1s12 6963 7398 7079 7367 7324 7348
2512 956 1047 1022 1029 1077 1022
2?1 /2 204 249 252 243 251 243 285 2171/2 842 946 912 927 971 918
26 1 lsip 6757 7191 6819 7151 7095 7119 2ps, 830 934 900 914 957 905
252 755 845 786 814 854 798 32 264 295 300 291 304 289
2p1, 639 743 673 711 746 693 3pis 230 261 266 256 269 255
252 628 731 661 698 733 680 3psn 228 250 264 255 267 253 290
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APPENDIX A: ORTHOGONALITY OF THE
WAVE FUNCTIONS

In all our modified models (TFM, FAM, and TFDM),
the differential equations, which yield the binding
energies as eigenvalues, may be written symbolically

HV.=¢¥;, (A1)
where
H=H}-¢V;.

H° is an Hermitian operator and V; is the self-potential
corresponding to the state 7. The operator H itself is,
of course, not Hermitian, nor even linear, and its eigen-
functions are not necessarily orthogonal. The devia-
tion from orthogonality may be estimated as follows:
Let ¥, and ¥, be two eigenfunctions having the same
angular momentum (otherwise orthogonality is auto-
matically satisfied), but belonging to different principal
quantum numbers #; and %, and let #3<ns. Now

(‘I’l,H(}\Ilz) = (‘I’l,H\I’z)— (‘I’1,6V2‘I’2) = Ez(‘I’]_,‘I’g)

— (T,eV¥,), (A2)
and similarly
(U1, H 5) = €1(V1,%5) — (V1,eV 1) (A2)
Hence,
0= (L1, 2)| = | (Tr,e(Vi—V)¥9)|/|ea—e| . (A3)

Since n1<mq, it follows that e3<e;<0, and we may
assume that | V1(r)— V()] is a monotonic decreasing
function (i.e., in any sphere around the nucleus there is
more charge due to state 1 than due to state 2). There-
fore, we have

| (U, (V1= Vo)¥9) | < | V1(0)—V2(0) | (| ¥1],|¥2|). (A4)

By Schwartz’s inequality we have (|¥1,|¥,])<1, and
therefore

8<e| V1(0)—V3(0)| /| e1—ea] . (AS)

An upper bound for V; is assumed to be the quantity
Ze/ (agn:?) ; therefore, a very pessimistic estimate may be

6< (262/(10! €1— 62!)(1/1’1/12'—‘ 1/%22). (A6)
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Since (e;— e2) is proportional to Z2, § is proportional to
1/Z. In fact, the upper bound for § is too high and may
be easily reduced by a factor of 2 because of the dif-
ferent number of modes of the two functions. A calcula-
tion shows that & is even much smaller. For example:
For the 1sy/2 and 2s1/2 levels of an Al 1 ion, §=0.18
according to Eq. (AS), whereas an exact calculation
yields §=0.017. Similar calculations show that in fact
8 is always less than 1/2Z.

APPENDIX B: REARRANGEMENT ENERGY

The eigenvalues calculated in the present paper are
assumed to be the exact binding energies of the elec-
trons according to the model. This is true only if the
charge distribution of all electrons except the one con-
sidered is the same before and after removing the elec-
tron. This is not rigorously fulfilled and the charge dis-
tribution of the remaining N—1 electrons does cer-
tainly change. We may estimate the effect of rearrange-
ment on the binding energies for the modified models.

Let € and ¥.° be the eigenvalue and the eigenfunc-
tion of the ith electron with the potential V.4Ze/7;
let e; be the eigenvalue of this electron with the potential
Vo+Ze/r—V® (where V. is the potential associated
with the function ¥,%). We may write

;= €%+ Ae;+0e;, (B1)

where Ae;= (¥,0,V, 0,9 is the first-order correction to
the eigenvalue according to perturbation theory. Ae;
is obviously the correction to the binding energy,
assuming that the wave functions of all electrons
(including the 4th) remain unchanged, whereas &e;
is due to change of the wave function of the sth electron
itself. Now, it is found by calculation that de; is, except
for the K shell, of the order of a few tenths of an eV.
de; may be regarded as the change of energy due to
‘rearrangement’ of the sth electron charge. The re-
arrangement energy of electrons belonging to the same
shell may be assumed to be of the order of d¢;, whereas
the rearrangement effects of the other electrons are
probably much less: The inner electrons suffer but a
very slight change in the electrostatic field exerted on
them, and their rearrangement effects may be neglected;
the outer electrons would also suffer a change which is
on the average much less than the change of the field
in the shell of the ith electron. Therefore, the order of
magnitude of the rearrangement energy may be esti-
mated by 0.2N eV, and is negligible in most cases.



