155 LONG-DELAYED
It must be determined why the coupling of the rare-
earth ion to the energy sink is weak in the chloride
crystal; it must be decided whether this is caused by
the high symmetry of the crystal (resulting in fewer
lattice vibrations), the weak coupling of the ion to
the lattice vibrations, or other factors.
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New estimates of the lifetime of a positron in an electron gas are presented. The discussion is based on a
modified ladder-type approximation to the electron-positron Green’s function chosen so that the displaced-
charge sum rule is identically satisfied. This constitutes a refinement of the simple ladder sum used by
Kahana which leads to a large unphysical accumulation of charge about the positron. While this violation
of the displaced-charge sum rule is, to say the least, annoying, reasons are given why it may not be very
serious if one is concerned only with the computation of annihilation rates. We find, in fact, that the rates
obtained in the more consistent modified ladder scheme are not very different from those quoted by Kahana

although they represent a distinct improvement.

I. INTRODUCTION

HEN a positron enters an electron gas, it faces
the hazard of annihilation against one of the
electrons with subsequent emission of two gamma rays.
In this paper we present new estimates of the lifetime
of a positron immersed in an interacting system of con-
duction electrons. The calculations are based on the
Bethe-Goldstone approach first introduced by Kahana!
and a modification suggested by Bergersen.? If one con-
siders the problem of a low-energy (nonrelativistic)
electron-positron pair annihilating in free space from.a
scattering state, one finds that the annihilation cross
section is completely determined by solving the
Schrodinger equation for the wave function of the pair
coupled through their Coulomb field.? In fact, the annihi-
lation cross section depends only on the square of this
wave function at x,=x, where x.(x,) is the electron
(positron) coordinate—a result which is eminently
sensible.

In the present work we are of course concerned with
annihilation in the medium of all the other metallic
electrons which do not participate directly in the anni-
hilation process but are nevertheless around and capable
of influencing this process in a profound way. Even in
this case, however, one may well attempt as a first ap-
proximation to remain within the framework of writing
down a Schrédinger-type equation for the annihilating
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pair, trying at the same time to incorporate within this
framework as much of the presence of the other elec-
trons as is possible.

The first modification that seems essential is to change
the bare Coulomb force to a more appropriate screened
Coulomb force. This accounts for the polarization of the
surrounding medium by the annihilating pair. Further,
it is important to recognize that in an electron gas the
Pauli exclusion principle plays an essential role. Because
of the existence of an electron sea, all the plane-wave
states below the Fermi surface are occupied and there-
fore cannot be employed in building up the electron
part of the effective-pair wave function.

When these changes are made in the original Schro-
dinger equation it becomes a Bethe-Goldstone equation.
The solution of this latter equation using a suitable
effective force yields rates in fair agreement with experi-
ment for a large number of metals. This is a striking
improvement over the Sommerfeld model which fails
completely to account even qualitatively for the ob-
served rates.

The failure of the Sommerfeld model is easily under-
stood. If one goes back to quantum electrodynamics
and derives an expression for the total rate R for a many-
body system of low-energy electrons and a positron, one
finds that R is proportional to the electronic density at
the positron averaged over all positron positions.t This
result is general and includes interactions. But the
Sommerfeld model corresponds to ignoring all Coulomb
forces so that the electronic density at the positron
comes out to be the average density in the system. This

4R. A. Ferrell, Rev. Mod. Phys. 28, 308 (1956).
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is clearly a gross underestimate of the rates. After all,
the conduction electrons are rather free and are coupled
to the positron through an attractive Coulomb field.
Under such conditions the positron should be quite
effective at pulling in the electrons in its vicinity, thereby
increasing the total annihilation rate. The positron
Coulomb field is then an essential feature of the problem
which must be taken into account in order to get
reasonable results.

Intuitively one would expect the electronic density at
the positron to depend most strongly on the short-range
correlations between the aninhilating pair. At short
distances the Coulomb force is large, and treating it in
Born approximation is not adequate. To get sensible
rates one must certainly include, in the sense of pertur-
bation theory, the multiple scattering of the annihilating
electron off the positron. But this is precisely what the
Bethe-Goldstone equation is designed to do.

The arguments presented so far are of course purely
heuristic and do not represent a demonstration that the
Bethe-Goldstone equation is a reasonable way of calcu-
lating rates in metals. To investigate the range of
validity of this equation, it is necessary to turn to many-
body perturbation theory. As mentioned previously, R
depends only on the electronic density at the positron
which is given by the limiting value of the electron-posi-
tron pair distribution function ge,(X.—Xp) as X,— X —0.
This function is related trivially to a simple contraction
of the electron-positron Green’s function for which it is
not difficult. to generate a perturbation expansion. One
can then show! that the sum of all the ladder graphs in
this expansion leads directly to the Bethe-Goldstone
equation. There remains of course an infinite set of
Feynman diagrams unaccounted for, which represent
corrections to the Bethe-Goldstone theory.

1t is clearly impossible to analyze in detail all these
remaining graphs, although Carbotte and Kahana®
were able to show that, up to second order in the Coulomb
potential, such corrections are small. This was taken as
an indication that the ladder graphs represent the domi-
nant contribution to R. It also justifies, in some sense,
the rather simple-minded Bethe-Goldstone equation
approach, as an expedient way of estimating lifetimes.
Such a procedure, however, is to be treated with care
since in many ways its interpretation is deceivingly
simple. Many important questions of principle cannot be
treated within this framework, in particular, self-energy
effects. What we are trying to say is that while the cor-
rections to the ladder approximation are numerically
small up to second order they are very important in
getting a complete physical picture and a proper ap-
preciation of the precise status of the ladder approxi-
mation.’ We will not discuss these points further here;
instead, we wish to bring up a rather disturbing feature
of this approximation which was first noticed by
Bergersen.

5 J. P. Carbotte and S. Kahana, Phys. Rev. 139, A213 (1965).
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In what follows it will again be important to keep in
mind that only the value of gep(X.—X;) for Xe—x,— 0
enters in R. On the other hand, from a knowledge of the
electron-positron pair distribution function for all values
of the relative coordinate x,—x,, one can compute the
total displaced charge about the positron. To have a
consistent theory one must insist that this be exactly
one unit. Bergersen pointed out that in the ladder ap-
proximation, the total displaced charge can actually be
considerably greater than one. For sodium it is estimated
to be more than 259, greater. On this basis he argued
that Kahana’s rates should be reduced by a correspond-
ing amount. We believe that this deduction is not
necessarily correct. In fact the reason why the ladder
approximation suggests itself at all as useful in calculat-
ing rates is precisely because this quantity depends only
on the value of the pair distribution function for x,
—X,=0. For finite values of x,—x, it cannot be expected
to be as good; yet values of this function over a sig-
nificant distance must certainly enter in the displaced
charge calculation. In particular, Friedel oscillations
occur. Thus, it would seem more likely that serious
errors in g.»(x,—X,) for finite X,— X, are responsible for
most of the unphysical accumulation of charge about the
positron.

We are not suggesting here that Bergersen’s criticism
is invalid and can be ignored. On the contrary, we
believe that it is important to find an approximation
scheme in which the displaced charge is exactly 1,
although we do not think that this will change by large
amounts the rates computed in Refs. 1. Bergersen
actually indicated how this might be achieved simply
by including, besides the ladder graphs, another infinite
set of diagrams starting in third order in the expansion
of the electron-positron Green’s function. It is the aim
of this paper to make a careful estimate of lifetimes
within this more consistent scheme. Only a very crude
estimate was attempted in Ref. 2.

The need to refine the ladder approximation is also
indicated on experimental grounds. New measurements
of the lifetime in aluminum by Weisberg® show that the
rate given in the second of Ref. 1 is considerably too
large. Calculations of core annihilation in sodium
by Carbotte” and more recently by Carbotte and
Salvadori,® also lead to the same conclusion, i.e., when
the core electron contribution to R is added to the con-
duction contribution given by Kahana one again gets
too large a result as compared to Weisberg’s. We might
make one more point. Recently it has been found by
Stewart and co-workers® that there is definite evidence
for a velocity-dependent annihilation rate in sodium,

6 J. H. Terrell, H. L. Weisberg, and S. Berko, in Proceedings of
the Positron Annihilation Conference, Wayne State University,
1965 (to be published).

7J. P. Carbotte, in Proceedings of the Positron Annihilation
Conference, Wayne State University, 1965 (to be published).

8 J. P. Carbotte and A. Salvadori (to be published).

9J. J. Donaghy and A. T. Stewart, American Physical
Society meeting held in Philadelphia, 1964 (unpublished).
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although that given in Ref. 1 seemed too weak. The
present calculation gives a stronger momentum
dependence.

In Sec. II the electron-positron pair distribution
function is defined and related to the Green’s function.
The displaced charge about the positron is then studied
in Born approximation and compared with the results
of Langer and Vosko!? for a heavy impurity. In Sec. ITT
the theory is extended to include the higher-order
ladders. Further, the set of Feynman graphs which in
our formalism corresponds to making Bergersen’s so-
called v3 correction js specified. This equivalence is
demonstrated by proving explicitly that the specified
set indeed adds up with the ladder terms to give a
total displaced charge of exactly one unit. In Sec. IV,
an expression for the total annihilation rate R is derived
in this “modified ladder approximation.” The resulting
formula agrees with that of Ref. 2. Section V is con-
cerned mainly with the algebraic manipulations neces-
sary to reduce the expression for R to a form that can
be evaluated numerically. The numerical work is also
discussed briefly. Finally, in Sec. VI we draw conclu-
sions and compare our results with experiment.

II. DISPLACED CHARGE IN BORN
APPROXIMATION

The electron-positron pair distribution function is
defined as

gen(Xe—Xp) = YT (X)Y (X)) (X)) D(x51) ) (2.1)

where y1(x.,t) is the second-quantized field operator in
the Heisenberg picture creating electrons while ¢t(x,,t)
creates positrons. The expectation value in (2.1) is to
be taken in the ground state of the N electron plus
positron system.!! This function gives the electronic
density at the position x, given that there is a positron
at x,. The right-hand side of (2.1) is easily related to a
contraction of the electron-positron Green’s function
GCP(xlyx?; xll;x2/),

geP(Xe— XP)= (—i)2GeZ’(Xetnyt; XJ"',XP#) ) (22)
where by definition
Gep(xl,x% xy %)
= (=9 TW(x)p(xa)pt (w2 Wi(x1)). (2.3)

The operator 7" in (2.3) is the Wick time-ordering oper-
ator, which orders the field operators in the expectation
value according to increasing time. Notice also that the
time dependence on the right-hand side in both (2.1)
and (2.2) is only apparent and drops out because of
translational invariance in time.

When interactions are neglected Gep(x1,22;x1,%2")
factors into the simple product of the free electron and

(1;’5%) S. Langer and S. H. Vosko, J. Phys. Chem. Solids 12, 196
n T}:'Le positron is assumed to be thermalized on annihilation.
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positron propagators which are denoted respectively
by G.°(x1; 21') and Gp(x2; x5") with

Go(x; x) 1
< >= — 3 gl =2
G(x;4")) V x

dw G(k,w)
X ——e‘i"’(“")< ), (24)
2 G (k,w)

where V is the volume. The ground state of the system is
specified by taking!?
0(k—ps) | 0(ps—F)

Geo(k; CO) = L
k2—w—i0t k*—w4i0*

(2.52)

and

o(k) 60(—Fk)

Gk w)=
'k ) B——i0t  —wti0F

, (2.5b)

where 0(k— p;,) is a step function equal to 1 for & greater
than the Fermi momentum p;, and zero otherwise. The
positron theta function 6(—%)=0 for k>0 and =1 for
k=0, In this approximation g.,(x.— X,) reduces trivially
to

gen(Xe—Xp)=(1/V)ne, (2.6)

where 7, is the average electronic density in the system
and the factor 1/V represents the positron density which
we will denote by #,. It is clear that even in the general
case g., will be proportional to #,.

The higher-order terms in the perturbation expansion
for Gep(x1,29; 21,%2") give the displaced charge about
the positron. In particular the contribution to g., from
the first-order ladder graph of Fig. 1 is

£ep 0 (xe—x5) = (—1)(—1) f Q2 (e )G 0xds 2)

X G (%pt; 2')G (35 X V)G (&5 Xptt) . (2.7)

In (2.7), u(z; 3’) is the dynamic effective potential in
the random-phase approximation defined by the sum
of the polarization bubbles. Introducing Fourier trans-
forms for the various quantities on the right-hand side
of (2.7) and carrying out the various integrations pos-

]

FiG. 1. The heavy solid lines represent free
electron propagators, while the double light
lines stand for positron propagators. The
interaction line is the screened dynamic
effective potential in the random-phase A
approximation.

Bp=2m=1.



200 J.

sible, one obtains

. ) IZ dedv (q; v)[er xo—xp)

@ (Xo—Xp)=— ; )[efa xe—xp

8ep ?, P (21r)2u q;v)[e ]
XQ(q;0)G(p; G (p+q; etv), (2.8)

where the polarization part Q(q;v) is given by

7 dow
Q(‘l;”):"‘z/"*Ge°(k+q;w)Ge°(k;w—v). (2.9)
Vel (2r)
In Eq. (2.8), u(q; ) is the space-time transform of the
dynamic potential and is related to the polarization
part Q(q;v) by u(q;2)=2(q)/(1+2v(q)Q(q;2)) with
2(q) being the Fourier transform of the Coulomb po-

tential. Making use of Eq. (2.5b), the e integration in
(2.8) can be done by contour integration. Thus

o . 1 dv .
e Y / (85900005 60

1
X e’:(I‘ (Xe—Xp)[ "
¢?—ov—i0t  ¢®4v—i0F

]. (2.10)

Integrating (2.10) with respect to the relative coordinate

0.5
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F16. 2. Displaced electron density Azn® (r) (in units of ;%) about
an impurity as a function of the distance 7(in units of 1/p;) from
the impurity site. The calculation is based on the first-order ladder
graph and was carried out for an electron gas-density corre-
sponding to a=0.2 where a=r,/(1.9192%) .The dashed curve is
for the case of a heavy impurity while the solid curve is for a
positron.
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TaBrLe I. Shifted electron density An® (r)=g,W(r)/n, (in
units of ,%) as a function of the distance 7 (in units of 1/p7) away
from the impurity. The calculation is based on the first-order

ladder graph of Fig. 1 and was carried out for a=0.2 where
a=7,/(1.9197%). Results are presented both for the case of a

positron and a heavy impurity.

Displacement

r Positron An® (r) Heavy-impurity Az® (r)
0.1 0.68380>10! 0.13909
0:4 0.51134X1071 0.10328
0.7 0.37286X 101 0.73505 1071
1.0 0.26478 %1071 0.49726X1071
1.3 0.1831310! 0.31615X 101
1.6 0.12338X 1071 0.18533 1071
1.9 0.81068X 102 0.96660X 1072
2.2 0.52106X 102 0.41321X102
2.5 0.32948X 1072 0.10653< 102
2.8 0.20700X 102 —0.31698 X102
3.1 0.13103X 102 —0.67027X1078
3.4 0.84930 103 —0.49999X107%
3.7 0.570541073 —0.15776X1073
4.0 0.397501073 0.14567X1073
4.3 0.28346 X103 0.31521X10°3
4.6 0.20240X10-3 0.33916X1073
4.9 0.141241073 0.25552X1072
5.2 0.94536 X104 0.12189X1073
5.5 0.59630< 10—+ —0.75616 1075
5.8 0.35212X10¢ —0.95991X10~*
6.1 0.19727X10™* 0.12889X1073
6.4 0.11185X10™* —0.11177X1073
6.7 0.73546X10~5 —0.63146X10~*
7.0 0.61254 X105 —0.60043 X105
7.3 0.58304X1078 0.39885X10™¢
7.6 0.54192 1078 0.62844 X104
7.9 0.44602X 105 0.60796X 10
8.2 0.30022X 1075 0.39721x 10
8.5 0.13655X 1078 0.10148X10™*
8.8 —0.68460X 107 —0.16931X10
9.1 —0.10179X 1075 —0.33457x10*
9.4 —0.13798X 1075 —0.36177X10
9.7 —0.12306X 1075 —0.26730X10™*

10.0 —0.76902X 108 —0.10259 X 10~

10.3 —0.23418X10-¢ +0.67833% 105

X,— X, in order to get the total displaced charge about
the positron amounts to projecting out the =0
Fourier component on the right-hand side of (2.10).
This leads to a displaced charge of one unit.!?

For arbitrary values of the electron-positron co-
ordinate x,—Xx,=r, the expression (2.10) for g.,™(r)
can be reduced analytically to a double integral which
must be evaluated on a computer. The numerical work
is discussed in the Appendix. The computations were
carried out only for a=0.2 which corresponds roughly
to sodium. The parameter a=7,/(1.9197% where 7,
has its usual meaning. It is the radius of a sphere in
atomic units which on the average contains one con-
duction electron. The results for g.,™(r) are shown in

1B A factor of 2 must be introduced for spin degeneracy. This

result is independent of the use of the dynamic potential or static
limit in the electron-positron interaction line of Fig. 1.
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Fig. 2 for #/p; in the range (0,3). For comparison, we
have also plotted in this figure the results for a heavy
impurity. The entire range (0,11) is covered in Table I.

It is clear from the figure that the electron-positron
pair distribution function remains substantial over
fairly large distances. Notice that the Friedel oscil-
lations are less pronounced about the positron than
about the heavy impurity and set in only further out
from the impurity site. Also, the accumulated charge
at the impurity is only about half as much for the
positron as for the heavy charge, although it drops to
zero less rapidly as we move out from the positron. In
this sense, the positron does not have quite as strong an
influence on the surrounding electron gas as a heavy
impurity has, a result which might have been expected.

We turn now to a discussion of the second- and higher-
order ladder graphs. These are known to make impor-
tant contributions to the electronic density at the
positron.ts Including only such graphs, however, in the
calculation of the pair distribution function g,,(r) leads
to a violation of the displaced charge sum rule. We will
show in the next section how this difficulty can be
resolved in a simple and unambiguous way.

Before leaving this section we would like to point out
that the theory developed so far would for the most part
apply equally well in the case of a heavy impurity center
rather than a positron. The only modification necessary
is to change the positron propagator G,(k; w) given by
(2.5b) to an impurity propagator Gimy(k;w) given by

6(k) 0(—%)

Gim (k'w)= 3
T a0t — w0t

(2.11)

where we have taken the impurity mass as infinite.
Making this change in (2.10), it would be replaced in an
obvious notation by

1 dv
o (Ko Xim) = — iy S f 2 a5 90(a; )
V q 27

1 1
X et (Xe~ximp)|:_.____+ +] . (212)

—v—10T 9—40

The v integration in (2.12) is trivial since the principal
value integral drops out and we are left only with the
delta function part. Hence,

ge,imp(l)(xe—' Ximp)

1
= Mim 2 e eximey (q;0)Q(q; 0). (2.13)

q

Passing from a summation over q to an integral in (2.13)
and introducing a factor of 2 for spin degeneracy, we
recover the result of Langer and Vosko for a heavy
impurity. Note that only the zero frequency component
of the effective potential appears in (2.13). This reflects
the fact that while the heavy impurity center can ab-
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sorb any amount of momentum, it cannot transfer
energy to the electron system.

III. EXTENSION TO HIGHER-ORDER
LADDER GRAPHS

We mentioned previously that the calculation of the
annihilation rate R reduces to evaluating the electron-
positron pair distribution function g.,(r) in the limit
r— 0. In fact

R=M(r)/r=0, (3.1)

where #(r) is defined by g.,(r) =#,n(r). The proportion-
ality constant A is equal to No/7o where 4 \qis the annihi-
lation rate in singlet positronium while #, is the elec-
tron density at the positron in this system. It was also
pointed out that to make a reliable estimate of the short-
range behavior of g.,(r) it is necessary to include in the
calculation at least all the ladder graphs in the complete
perturbation expansion for this function. These dia-
grams describe the repeated scatterings between the
annihilating electron and the positron.

Itis not easy to sum this restricted subset of diagrams
if one insists on retaining the full dynamic effective
potential #(q; v) in each ladder step. To make the calcu-
lation tractable, we will ignore the frequency de-
pendence of #(q;v) and replace it by the static limit
#(q; 0), a procedure which was examined in some detail
and to a large extent justified in Ref. 5. Once this is
done, the ladders lead directly to a Bethe-Goldstone
equation. While this computational scheme is intui-
tively very attractive as well as simple, it does not
represent a completely consistent approximation. It
leads to an overaccumulation of charge about the posi-
tron which is unacceptable. The reason why this arises
is simply that the first-order ladder alone exhausts the
sum rule while including second- and higher-order
ladders just displaces more charge.

We would like to take the point of view here, however,
that this defect in the ladder approximation may not be
as serious as it appears since much of the unphysical
accumulation of charge about the positron is probably
due to large errors in g.,(r) for finite values of r rather
than for r— 0. This idea is certainly supported by the
work of Sec. II. In any case, it is still important to find
a modification of the ladder approximation which does
not suffer from this limitation.

. This can be achieved simply by including in the
calculation of ge,(r) besides the ladder graphs, another
closely related infinite set of Feynman diagrams starting
in third order. Before specifying these further, we would
like to recall that the ladder series is summed by the
integral equation,

Gl (1,295 %1 ,02") = G (w1; 21")G 0 (2; 25")

—-i/d‘*zd“z’u(z; 2 )GI(x1; 2)G (223 27)

XGep(z,8; 01, 22) . (3.2)
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Fic. 3. Infinite set of Feynman graphs which must be included
along with the second- and higher-order ladders so as to ensure
that the displaced charge sum rule is satisfied. The instantaneous
dashed interaction lines are to be interpreted as representing
the static limit of the effective potential in the random-phase
approximation.

The zeroth-order term in (3.2) and the first iterate were
the subject of Sec. II. Denote by G.,%? the second- and
higher-order iterates of (3.2) with the added provision
that the static limit of the effective potential is to be
used in calculating G.p™%. Closely related to the set of
graphs for G,.p’? is the infinite set of Fig. 3. If we denote
the sum of these diagrams by G.,“¢ we can write
Gep ¢ in terms of G.,2 namely,

GepC (21,225 21" ,202") = (— 1)1 | d%2d%3' G ep™2(2,%2; 2,%2")
) ) bl

Xu(z;2)GL(x1;2)GL(E 5 21).  (3.3)
Our task now is to demonstrate that when the graphs
represented by (3.3) are included in the calculation of
gen(r) along with those of Eq. (3.2) the displaced charge
sum rule is automatically satisfied. To show this we
need only convince ourselves that G.,2?+Gep=C gives
a net displaced charge of zero. This can be proved as
follows.

Denote the contribution of G¢p 2+ Ge=C to the elec-
tron-positron pair distribution function by g.,® and
write

1
gep(2)(r)=_1; 2 g, P(q). (34)

q

All we need to show is that g.,®(q) —0 as q—0.
Using definition (2.2), the contribution to g.,®(r)
coming from G.,%? alone is

Gen™2(Xo—Xp) = (—1)Gep™(Xel, Xpt; Xel T, XptF) . (3.5)
The right-hand side of (3.5) can of course depend only

on the space variable x,— X, and is independent of time.
Hence it can be written in the form,

dw
ges (@)= (1) f G aie).  (36)

Further, we have from (2.2) and (3.3), after Fourier-
transforming,

dw
ger"(q) = / 60200, G1)

where use was made of formula (2.9) and a factor of 2
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was introduced to account for spin degeneracy. In
(3.7) gep™©(q) is of course the space Fourier transform
of g.p¢(r). Now as q— 0, u(q; w)2Q(q; w) — 1since
u(q; w)=2(q)/(1+2v()Q(q; w)). Hence, as q— 0

dw
gen™%(q) — / E‘Gepm(q; w)=—g"(q),
T

which shows that

gepP(Q) =g (@) +ger"%(@) >0 as q—0.

IV. TOTAL RATE IN THE MODIFIED
LADDER APPROXIMATION

The aim of this section is to derive an expression for
the contribution to the total annihilation rate R coming
from the sum of g.,%%(r) and g.,%°(r). The Fourier
transform of these two quantities is given respectively
by (3.6) and (3.7). From Eq. (3.1) and the relationship
between g.»(r) and the displaced electron density, we
get

R®=)3 £,®(q)
q

dw
By LA
q m
X[1-2Q(q; w)u(q; w)],

where a factor of ¢%+ was introduced in the second term
of (4.1) for convenience later on in the calculation; at
present it plays no role. Writing out the effective po-
tential #(q;w) in (4.1) explicitly in terms of the bare
Coulomb potential »(q) and the R.P.A. polarization
part O(q; w), we find that

(4.1)

dw
R(2) =—2\ Z / __euuo-i-G epL2(q; w)
q 2w

X (W;)—) . (42)

To recover Bergersen’s prescription for R®, we must
neglect the frequency dependence in the term (14-22(q)
X Q(q; w)). This simplifies the calculation considerably
and is in the same spirit as using the static limit for
u(q; ) in second- and higher-order ladders, a procedure
which is of course not rigorous but which we believe
justified to a good approximation. Making this simpli-
fication yields

dw
RO=2E 10 [ ComiGoie), 63)
q g

with

L(q)=1/[1+2v(q)Q(q; 0)]. (4.4)

Equation (4.3) can be reduced further using a technique
very similar to that used in the derivation of a theory of
positron annihilation in real metals by the present
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author.! It does not seem worth while to repeat the
details here. We will confine ourselves to the main
points. First, instead of calculating

dw
/,_eiw0+GepL2(q;w)
2w

directly, it is more convenient to include the first two
terms in the ladder sum as well and to calculate

do
/ —e“"Gop (q; 0)=1"(q).
2r

The extra terms will be excluded later.
To evaluated 7%(q), we introduce as in Ref. 14 an
intermediate amplitude Q% according to the prescription,

Gep™(Xel Xyl 5 Xt X 1) = / d%2d3 QL(X 1, X4t 5 2,2)

XGO(z; Xt V)G (&5 xpt1) . (4.5)

This definition is clearly consistent with the structure of
the integral equation (3.2) for Gep(x1,%2; #1,x5"). We
now rewrite IZ(q) in terms of QF, whence

S L@@ =—— ¥ I ')fdww
=2 QI (q)= > m—m 21re

X [iQm,n; m’ ,n'L(w) (Pm',n’+(w)+Pm’,n’-(w):l ) (46)

where

_O_(m_pf)e(”)
m?~+n2—w—i0t ’
—0(ps—m)6(—n)

mi— w30+

pmat (@)=
4.7
P (W)=

and where Qmn; wo?(w) is the space-time Fourier
transform of the amplitude Q%(x,x’; z,2") which by its
definition (4.5) is needed only for ¢,=¢,, and {,=¢, thus
can depend only on (¢,~—¢,).

At this point we refer the reader to the Appendix of
Ref. 14 where it is shown how the w integration in (4.6)
can be performed, with the result that

3 L@@ =—" % Lm-m)

m’'n’
X Z iﬂm,n; p.OO(p2)Qm,'n’; p.OO*(P2)

Iplp<z>f
1
=5 % 0% Lm—m)
(Zn: Qm.u; n.OO(Pz))(Z, Qm'.n’,p,OO(PZ))*- (4-8)

%]J. P. Carbotte, Phys. Rev. 144, 309 (1966). The manipu-
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The amplitude Qn n; w0 (E) satisfies the equation
Qm.ﬂ: m’ ,D'O(E) = 6m,m' 6n,n’

1
+Pm,n+(E)_I; :; ”(‘15 O)Qm—q.nﬂ; w,o®(E). (4.9)

From the structure of Eq. (4.9) we conclude that
m-n=m’+n’. Incorporating this symmetry into (4.8)
gives

1
7 Xq: 6(ps—p) 2, L(m—m)

Xﬂm,p—m; p,OO(Pz)Qm’,p—m'; p,OO*(Pz)- (4-10)

Now recall that R® is determined by G,,Z? rather
than G.,’. Hence dropping the zeroth- and first-order
contributions in (4.10), we find from (4.3) that

A
RO=— 3 00~ )L, Lim—p)%,® (m)

+ L(p—m')X,®(m)
+ 3 Xpm)L(m—m)x,m)], (4.11)

where the amplitude X ,(m) satisfies the equation

0(m—p;) 1
o (i (p_my_pzl:—u(m—p, 0)

Xp(m)= -

1
T Um0 |, @12)

and X,®m stands for the second- and higher-order parts
of the solution of (4.12). Equation (4.11) agrees with
the prescription given by Bergersen which he derived
using quite a different formalism. Equation (4.12) is the
Bethe-Goldstone equation of Ref. 1. We now want to
evaluate (4.11) numerically. This is discussed in Sec. V.

V. ALGEBRAIC REDUCTION AND NUMERICAL
EVALUATION OF R®

To evaluate (4.11) numerically, it is first necessary to
reduce it to a more convenient form. First taking the
limit of infinite volume expression, (4.11) and Eq. (4.12)
can be replaced by

2
R®O=)\——

7 2 P

+ / dsmdsm'xp(mn(m—m'>xp<m'>] (5.0)

lations described particularly in the Appendix of this paper are
actually more complicated than is necessary here because they
include the added complication of a crystal potential.
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and

o U s 1)

mi+(p—m)2—p?L (2r)?

d’q
+ f W(m—q,om(q)]. (5.2)

Note that in (5.1) we have introduced a factor of 2 to
account for spin degeneracy. Next, measuring all
momenta in units of the Fermi momentum p; and intro-
ducing the parameter a=r,/(1.91972) as well as the
Sommerfeld rate

2 4r
R'= )\———):; ?kla3§12.0/1’53x 10° sec™! leads to

3
2) — RO 3 3, — - (2)
R® 47rR /|p|<p,dpl:2/d mC(m—p)x,®(m)
+ / dmdm',(m) S (m—m '>xp(m'>] (5.3)
where
—2
£<q>=q2/{ 2+az7r[1——<1——q2>1n<z+ 2) ]] (5:4)
and
xp(m>=~—~—1—-—-——[v<m—p>
m*+ (p—m)*—p*
+ f d3qU(m—q>s<p<q>] for m>1
=0 for m<1l (5.5)
with

U(Q)=a/[g*+aQ%(9)],

(9= 2“[1“<1"q2”“(il§) It

Our first task is to evaluate the amplitude X ,(m). We
first notice that for p=0, i.e., for an electron at the
center of the Fermi sea, xo(m) can depend only on the
modules of m. The equation is then one dimensional and
can be solved numerically with relative ease. For finite
values of p, the situation is not as simple; however,
following Kahana we will in this case average both sides
of (5.5) over the angles of p, a procedure which yields a
tractable integral equation, namely, (m>1)

Ulp)
gt 19— 2mp

T ln(m2+ (m~+p)*— P2>
2mip \mi-(m—p)i—p?

00 m+q
X / 9dqR»(9) f
1 |m—aq|

m+p

pdp
Xp(m) =

Ulp)pdp. (5.6)
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Equation (5.6) was solved using a 41-point grid in the
interval (1 to 37) which is substantially finer than that
used in Ref. 1. This leads to a set of inhomogeneous
linear equations which were solved by successive elimi-
nation. The computations were carried out for electron-
gas densities corresponding to aluminum (a=0.109)
as well as a=0.15 and a«=0.25. In each case, (5.6) was
evaluated for five values of p, namely, =0.1, 0.3,
0.5, 0.7, 0.9.

In the approximation when ¥,(m) is replaced by the
spherical average & ,(m), Eq. (5.3) reduces to

1
RO=3R0 / Pdp €9(p), (5.7)
0

where e®(p) is called the enhancement factor (in
second and higher order) and is given by

° 1 ™2pdp  p?
D(p)=8r / mdm £, (m)— —_——
1 p/mop 2 p*+aQ%(p)

+ 167 / mdm §2,,(m) m'dm’ £ p(m')

1

m+m’ d 2
/ g (5.8)
|m—m’| 2 P2+O‘Q0(P)

For a given electron gas density and a particular p, the
numerical solution for £,(m) and £,%(m) were read
into the computer for all values of 7 which then pro-
ceeded to evaluate the necessary double and triple inte-
gralin (5.8). We might point out in passing that £,® ()
is, of course, £ () minus the first term on the right-hand
side of (5.6) which was also calculated in the course of
the solution of this equation. In this way, we arrived at
the second order enhancement factors given in Table II.
From these enhancement factors, it is a simple matter to
evaluate R® according to (5.7). To get a final result
we must, of course, add on to R® the contribution to the
total annihilation rate from the Sommerfeld term and
the first-order ladder. These corrections can be handled
by simply adding on to e®(p) before carrying out the
p integration indicated in (5.7), 1 for the Sommerfeld
term and e®(p) for the first-order ladder, where, at

TasLE II. Values of the enhancement factor e® (p) as a function
of momentum p for three values of q, i.e., electron-gas densities.
The enhancement factor ¢® (p) i isa measure of the contribution
to the total annihilation rate coming from the second- and higher-
order ladders as well as the infinite set of diagrams given in Fig. 3.
This latter set must be included so as to ensure that the displaced
charge sum rule is not violated.

a=  p=01  p=03  p=05  p=0.7  p=09
0.109  1.1456  1.1819 12615 14065  1.7031
0.15 24650 25400 27075 3.0128  3.6483
025  12.1067 123619  13.5802  15.5417  20.0650
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Tasie III. Values of the total enhancement factor (in the

modified ladder approximation) e(p) as a function of momentum
p for various values of a.
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Tasre IV. Annihilation rates in units of R0=212.0/r3X10°
sec~1 obtained from the momentum-dependent enhancement factor

e(p) =a+-bp?tcpt.

a= p=01  p=03 =05  p=07  p=09
0.109 3.2040 3.2549 3.3653 3.5627 3.9541
0.15 4.8402 4.9321 5.1321 5.4934 6.2301
0.25 15.1791 15.6527 16.7084 18.7315 23.3660
least in the static approximation,

- "o pdp  Ulp)

pdp P
e(l)(p)=/ mdm 41r/ —_— . (59
1 m—p ? m2+p2—-— ?2

When this is done we get a composite result for e(p)
=14+ eD(p)+e®(p), as tabulated in Table III. Finally
the total annihilation rate in the modified ladder ap-
proximation is related to e(p) by

1
R=3R° f p2dp (p).
0

This last integral could be done numerically. Instead we
preferred to follow Kahana and write e(p) in the form
a+bp>+cpt. The parameters a, b, ¢ can be determined
from the data of Table IIT and are given in Table IV.
The final p integration is now trivial. The total anni-

hilation rate R as a function of electron gas density is
plotted in Fig. 4.

VI. DISCUSSION AND CONCLUSION

We have studied in some detail the displaced electron
density about a positron in the high-density limit which

R in units
= a b c of RO
0.109 3.1983 0.56537 0.41049 3.713
0.15 4.8303 0.97833 0.91520 5.810
0.25 15.1326 4.5793 6.8955 20.835

is obtained when only the first-order ladder graph is
included in the calculation. The displaced charge sum
rule is automatically satisfied in this approximation.
This sum rule incorporates the consistency requirement
that the positron charge be neutralized by the shift of
exactly one unit of electronic charge.

It is found that the displaced electron density is not
as peaked about the positron as in the case of a heavy
charge impurity. Also the Friedel oscillations are some-
what weaker and set in only at larger distances from
the impurity site. Thus, the positron does not have as
profound an influence on its surroundings as a heavy
impurity: a result which is not unexpected. More im-
portant to the present discussion is the fact that the
electron positron pair distribution function remains
significant over quite large distances. Thus, values of
this function away from the impurity center, as well
as close in, are important in a computation of the total
displaced charge.

When one accounts for the higher-order ladder graphs
(as is necessary to extend the theory to lower electron
gas densities), the displaced charge sum rule is no
longer satisfied. It is, in fact, violated quite severely and
hence the calculation is left open to serious criticism,

x EXPERIMENT (WEISBERG)
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? =-0mmenee KAHANA
1
- \ —e—— THIS WORK
1 '
S 50 ARy
» \
\
QQ “‘
Fic. 4. The total annihilation -
rate as a function of electron gas 40 -
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even though the rates obtained in this way are in good
agreement with experiment. On the other hand, one is
somewhat reassured when it is realized that the ladder
approximation to gep(X,—xp) is best for x,—x,— 0
which determines R while the displaced charge sum rule
is dependent on g.p(x.—X;) for all values of the relative
coordinate. Thus, Bergersen’s criticism is, to our mind,
not as serious as he thought. In any case, it is possible
to fix up the ladder approximation simply by including
in the calculation of g.,(x.—Xj,) the further infinite
subset of Feynman graphs in the expansion of the elec-
tron positron Green’s function shown in Fig. 3. This
Jeads to a modified ladder approximation for which the
displaced charge is exactly one.

The main object of this paper was to make a compu-
tation of lifetimes for various electron gas densities, in
this more consistent framework. We might point out
that this involves rather lengthy calculations, although
it is still a very much easier task than computing the
displaced charge about the positron for the entire range
(0 to ). Such a calculation would, of course, be inter-
esting from a theoretical viewpoint, but it seems to us
unjustified at present since this function is not measured
directly in lifetime experiments which depend only on
g¢»(0). It seems to us, however, that a similar calculation
in the case of a heavy impurity is important. The usual
theory of the displaced charge about a fixed impurity
center, as given for instance in Ref. 10, is really a high-
density theory. The modified ladder approximation
appears to be a convenient way of extending these
results to lower densities. It would certainly give
important corrections for values of 7, found in real
metals. A paper on this subject will follow.

The total annihilation rate R as a function of electron
gas density obtained in this work is plotted in Fig. 4.
Our suspicion that the violation of the displaced charge
sum rule in the ladder approximation is not terribly
important for the calculation of R is more or less born
out, although there are important differences between
the results of the ladder and modified ladder schemes.
The rate in aluminum in particular is substantially re-
duced over that quoted by Kahana. In general, the agree-
ment with experiment is improved. In this regard the
following point is worth making.

As can be seen from Table IV the total enhancement
factor for a=0.25 comes out to be about 21 which means
that the electron density at the positron is in this case
21 times larger than the average electronic density in
the system. Considering that to get R one must further
multiply this factor by R® (the Sommerfeld rate) which
varies like 1/7,3, it is remarkable that our curve tends
so well towards A5 as #; becomes large.

The theoretical curve does not pass through the ex-
perimental points of Weisberg which are also plotted in
Fig. 4. This is to be expected since lattice effects in the
conduction electron gas must certainly have an influence
on the rates. That such corrections can be important is
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clear from the angular correlation experiments on
lithium and in particular beryllium'® where distinct
anisotropies are observed in the two photon counting
rate. Further, some core annihilation must certainly
occur as can be seen from the results in sodium. Besides
the inverted parabola type distribution with cutoff at
the Fermi momentum p expected from the conduction
electrons, one finds broad and rather long tails extending
well beyond p; which to a large extent must come from
core annihilation. Thus one should at least add on to
our electron gas results (which treat only the conduction
electrons) a core contribution.

It is interesting in this respect that the experimental
points generally fall above the theoretical curve of Fig.
4. This observation, however, should not be given too
much weight since metals with large cores are also those
where the Bloch states for the conduction electrons
deviate seriously from plane waves. Using a plane wave
theory for the conduction electrons is suspect in this
case. Lattice corrections to our electron gas theory may
well have the opposite effect to core annihilation, i.e.,
reducing the rates quoted here for the conduction elec-
trons. This question is as yet unsettled. One would think,
however, that the situation in sodium should be clear
cut. An electron gas theory is certainly respectable for
sodium. Also, there now exists a reasonably reliable
estimate of core annihilation? for this metal.

If one assigns all the discrepancy between theory and
experiment indicated in Fig. 4 to core annihilation, one
concludes that this contribution should be about 0.64
X10° sec™! or about 3.3R°. The calculations of Ref. 8
give 3.5R°. This agreement is certainly very good. We
need to point out, however, that if a comparison is made
with the more detailed information available from
angular-correlation data there still remains some disa-
greement with experiment. In particular, the experi-
ments seem to pick up less events in the “tails” than the
present theory predicts.

In conclusion, the “modified ladder approximation”
gives better agreement with experiment than the theory
of Ref. 1, although the much simpler ladder approxi-
mation used there certainly picks up the dominant con-
tributions to R. Thus this simpler approximation should
be adequate in generalizing the present theory to include
lattice effects as was done in Ref. 14. The further refine-
ments discussed here should represent only minor
corrections.
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APPENDIX

In this Appendix we want to reduce and evaluate
numerically the electron-positron pair distribution func-
tion g.,V(r) as given by Eq. (2.10). It is convenient to
first go to the limit of infinite volume so that momentum
sums go into integrals. Introducing a factor of 2 for
spin degeneracy gives

2 dv
(1) = — 3 — .
An®(r) i(zyr)a / d%q / 27ru(q,v)

XQ(q; v)e“"*"[qz_v———z-_———w], (A1)

where we have defined Az®(r)=g.,V(r)/n, and used
the fact that Q(—q; —v)=0Q(q; v), a property which is
easily verified from Eq. (2.9). Further, since the effective
potential #(q;») and the polarization part Q(q;v)
depend only on the magnitude of the vector q, the angu-
lar part of the q integration in (A1) can be done easily
by choosing the z axis of integration along the direction
of r. This yields

© A4 sin(gr)
anow==i— [ g
T, 4 qr
a0 . (A2)
X —u(q; 2)Q(q; v)———.
—o 2m q*—v—i0t

Next we change the v integration in (A2) from the real
to the imaginary axis. Since all the singularities of the
integrand in (A2) as a function of a complex variable v
are either in the second or fourth quadrants,'® this

16 For a detail discussion of the singularities of #(¢;v) and Q(g;?)
see D. F. Dubois, Ann. Phys. (N. Y.) 1, 174 (1959).
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switch can be effected without any corrections being
necessary. We get

2 ©  sin(gr) © dy
An &) (7’) = / qd(i 4:41 -_—
@2m)¢ ), r o 2w
. 4
Xu(q; w)Q(q; zv)q4+vz, (A3)

where we have further restricted the v integration to the
interval (0,%). Finally, making the transformation
g— gpy and v — vgp,? leads to

() = py3 © g_gfd_q sin(gr)
0 w8 7
®  duw N ;
X / W)
0 §*tw? ¢?Xal(g; w)
with
0(g; 0)=2 [1 L (1-0.25X [f—a]1 (“’2+(q‘2)2)
g;w)=2r{1——(1-0. ¢*—w*))in| ——
2q w4 (g+2)%

Lo 2] s

The parameter a=r,/(1.9197%). Integral (A4) was
evaluated numerically only for a=0.2. The w integration
was done first using Simpson’s rule with a 121-point
mesh. This yields a function of ¢. This second integration
was then carried out using a 401-point mesh with Filon’s
method.



