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Fei~rion Regge-Pole Model for the Structure of Pion-Nucleon
Elastic Scattering in the Backward Hemisphere*
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The I'=+1 fermion resonances that show up strongly in total-cross-section data are classified as Regge
recurrences on three straight-line trajectories (namely, 6&, N~, N ) in a Chew-Frautschi plot. From extra-
polations of the trajectories, resonance doublets are predicted in the vicinity of 2200 MeV (with J~= ~
and —,'+) and 2630 MeV (with J =11/2 and 13/2+), due to recurrences of the N~ and N trajectories at
similar mass values. A model is constructed for ~ p elastic scattering near the backward direction based on
interference of the direct-channel resonance amplitude (Aq, N~, N ) with the amplitude due to fermion Regge
exchange {6&) in the crossed channel. The predictions of the model compare favorably with existing data
on the energy dependence of the m p differential cross section at 180' center-of-mass scattering angle and
the general shape of the m p angular distributions near 180'. The results confirm the consistency of the
Regge-recurrence parity assignments with the scattering data. The resonance elasticities used in the calcu-
lations are roughly the same as the elasticities determined from total-cross-section data. The model is
extended to ~+p elastic scattering at backward angles. In the ~+p process, the direct-channel dq resonance
contribution alone saturates the experimental differential cross section in the backward cone at momenta
below 4 BeV/c. Comparison with the ~+P backward-scattering data gives additional confirmation for the
proposed 6& Regge-recurrence parity assignments. In addition, the model supports the existence of an
I=-,'s-wave resonance at 1690 MeV. Finally, the polarization is predicted for w+p elastic scattering in
the backward cone.

I. INTRODUCTION

A NUMBER of Y=+1 fermion resonance states
of mass greater than 2 BeV have been reported

from studies of sr+P total-cross-section data. ' s Because
of the large number of background partial waves that
are present at such energies, it is unlikely that tradi-
tional phase-shift analyses will be useful in determining
the spin-parity assignments of many of these high-mass
resonances. Therefore, it is necessary to develop alter-
native techniques in order to determine the quantum
numbers of these fermion resonance states.

Interference phenomena which arise from the inter-

play of a direct-channel fermion resonance amplitude
with a known background amplitude provide a possible
method for the study of resonances in the intermediate
energy range. Successful application of the interference
technique depends critically on a valid model for the
background amplitude. If a dynamical theory exits for
the background amplitude, then such a study can simul-

taneously provide a sensitive test of the dynamical
model and also determine quantum numbers of the re-

sonances. The interference effects in the differential
cross section will be most dramatic in a process for
which the background amplitude is of comparable size
to the resonance amplitude. Nevertheless, in processes
for which the direct and crossed amplitudes are not of
comparable size, the polarization still provides a measure
of the type of interference.

*Work supported in part by the University of Wisconsin Re-
search Committee, with funds granted by the Wisconsin Alumni
Research Foundation, and in part by the U. S. Atomic Energy
Commission under Contract AT(11-1)-881 No. COO-881-88.

' A. Citron et al. , Phys. Rev. 144, 1101 (1966).
2A. H. Rosenfeld et al. , Rev. Mod. Phys. 37, 633 (1965);

Lawrence Radiation Laboratory Report No. 8030, August 1966
(unpublished); A. H. Rosenfeld, in Lectures at Valta International
School op Symmetry of E&p~cntary Particles, 1966 {unpublished).
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The interference technique was suggested by Heinz
and Ross for backward sr+p elastic scattering using
nucleon exchange in Born approximation as the back-
ground amplitude. ' Recently, the technique has been
successfully applied in detailed comparisons with the
experimental data on (i) sr p ~ psr scattering at 180'
(using a Reggeized fermion-exchange background ampli-
tude)e and (ii) sr P~sron scattering amplitude at 0'
(using a Reggeized rho-meson-exchange background
amplitude). ' From these two applications, appreciable
information has already been obtained concerning dy-
namical exchange mechanisms and the properties of the
Y=+1 fermion resonances.

The present paper is devoted to an extensive treat-
ment of pion-nucleon elastic scattering in the backward
hemisphere within the framework of the interference
model. The underlying basis for all our calculations is
the premise that the sum of the direct-channel resonance
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Fzo. 1.Schematic illustration of the interference-model approxi-
mation for w p elastic scattering in the backward hemisphere. The
scattering amplitude is represented as a sum of the direct-channel
(b,q,g,g'~) resonance amplitude and the crossed-channel (A~)
fermion-exchange amplitude.

s R. Heinz and M. Ross, Phys. Rev. Letters 14, 1091 (1965).
4 V. Barger and D. Cline, Phys. Rev. Letters 16, 913 {1966).' V. Barger and M. Olsson, Phys. Rev. 151, 1123 (1966).
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amplitude and cross-channel exchange amplitude ade-
quately represents the true physical scattering ampli-
tude, as illustrated in Fig. 1 for s. p backward elastic
scattering. The approximate consistency of resonance
parameters determined from reactions with different
background amplitudes (i.e., s. p —+s'e at 0' ' and
s. p ~ ps. at 180' 4) suggests that this additive hypo-
thesis for direct- and cross-channel amplitudes is a
valid approximation.

In Sec. II, a Regge-recurrence classification scheme is
proposed for the I'=+1 fermion resonances. An inter-
ference model for the phenomenological. description of
backward pion-nucleon elastic scattering is developed
in Sec. III. In Sec. IV, the predictions of the model are
compared with the existing experimental scattering
data. Finally, a discussion of the validity of the theoreti-
cal model is presented in Sec. V. An extension of the
Regge-recurrence classification scheme for I'/1 fermion
resonances is briefly discussed. .

G. CHEW-FRAUTSCHI PLOT

dg Imn($)1 " dP Imn($) 1
n(~N) =— +-

(sr+@) $ QQ s e 7I (sr+s) $ QN s e

with cuts starting at thresholds +(M+@). Conse-

quently, until the spins and parities of the observed
resonances are experimentally determined, there exists
no definite guideline to follow in the classification of
the resonances as recurrences along Regge trajectories.
Recurrences along a trajectory should occur for
Ren(Mg) =J~ and n'(Mg)&0.

In order to construct a plausible empirical classifica-
tion scheme of the observed baryon resonances according
to the Regge-recurrence concept, we must at present
rely heavily on the low-mass resonances for which the
spin-parity (J~) assignments are already experimentally
established. Starting with the I=-, states, it is well

known that the 1236- and 1924-MeU resonances are 2+

The notation for labeling trajectories is from A. H. Rosenfeld,
in Proceedings of the 196Z Annual International Conference on
High-Energy Physics at CERX, edited by J. Prentki (CERN,
Geneva, 1962), p. 325. Symbols: h(F'=1, I=-',); $(F'=1, I=&).
Subscripts: n(P=+, r=+); P(P= —,v =+);o(P=+, ~= —);
v(P= —,.=—).

~V. N. Gribov, Zh. Kksperim. i Teor. Fiz. 43, 1529 (1962)
[English transl. :Soviet Phys. —JETP 16, 1080 (1963lg.

In Reggeization of the pion-nucleon scattering ampli-
tude, separate analytic continuations to complex J
are required for partial-wave amplitudes of even- and
odd-signature r= (—)~ '" due to the existence of ex-

change forces. Thereby the physical resonance states
associated with the trajectory of a given Regge pole
are spaced by two units of total angular momentum J
(but have the same parity I', isotopic spin I, etc.)'.
A Priori, the behavior of the trajectory n(QN) as a
function of energy QN is unknown, other than the ex-
pectation that n(QN) satisfy a dispersion relations

and ~7+, respectively. ' We accept these resonances as
the first two members of a 6& trajectory, and explore
possible recurrence assignments for the I=-,' resonances

2450) 2840) and 3220 MeV The most economical
scheme is to place these three higher-mass resonances
on the Aq trajectory, as indicated in the Chew-Frautschi
plot' of Fig. 2(a). From the experimental masses of the
resonances, the resulting form for Ren(gu) is found to
be very well approximated by a straight line in the
variable u.

Such an inductive procedure is also followed in
assigning the negative parity I=—,

' resonances to the N~
trajectory, as in Fig. 2 (b). Here the 1512-and 2210-Me V
resonances' are known to be —,

' and —,', respectively. ' "
A straight line with roughly the same slope as the h~

trajectory passes smoothly through the 2210, 2640, and
3020 I=2 resonances, ' but slightly deviates from the
position of the 1512-MeV resonance.

The only known resonances remaining for a positive-
parity I=-,' trajectory N are the nucleon at 938 MeV
with J =—', + and the 1688-MeV resonance with J = ~+.
A straight line through these two states extrapolates
through as+ at 2220 MeV and (13/2)+ at 2610 MeV,
as shown in Fig. 2(b). On the basis of the extrapolation,
the resonance doublets (X~(2210, —,

'—); E (2220, -',+)j
and (%~$2640, (11/2) ];X,L2610, (13/2)+]) are pre-
dicted to occur as recurrences of the N~, N trajectories
at such similar mass values. The N~ member of a reso-
nance doublet has orbital momentum one unit lower
than the E member. Thus, the N~ member would be
expected to have a larger elastic width than the N
member of the doublet because of centrifugal-barrier
factors" (provided that the radii of interaction and
reduced widths are comparable). In such a circumstance,
the contribution of the negative-parity E~ resonance
should dominate the contribution of the positive parity

In total-cross-section data, the parity doublet
would eAectively show up as a single bump. The parity
doublet in the vicinity of 2200 MeV can presumably be
disentangled by a careful phase-shift analysis. Discovery
of the missing N recurrences would provide a striking
verification of the Regge-recurrence assignments based
on the straight-line approximation to the real part of
the trajectory function.

The classification of resonances as Regge recurrences
in Fig 2 is at present necessarily limited to those states
that show up strongly in total-cross-section data.
Nonetheless, these same resonances are also expected to

'The quoted values for the masses of the Ap resonances are
based on the analysis of Ref. 5. The quoted values for the 9f and
i7~ masses are best determinations from the present analysis or
from Refs. 1, 2, or 5. Similar remarks apply to the resonance
widths. It must be realized that the masses and widths of the
resonances are not very precisely determined at present.

'G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394
(1961).

'0 A. Yokosawa et al. , Phys. Rev. Letters 16, 714 (1966).
» See, for example, J.M. Blatt, and V. F. Weisskopf, Theoretical

2VNclear Physics (John Wiley R Sons, Inc. , New York, 1952),
p. 361.
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FzG. 2, Chew-Frautschi plot of the 7=+1 fermion Regge recurrences: (a}I=-', resonances; (b) I=-', resonances. Notation: parity I';
signature &= (—)J 'f'. All the resonances which show up strongly in total-cross-section data have been classified as recurrences.

play the dominant role in dynamical calculations. In
this spirit, interference models based on the recurrences
shown in Fig. 2 are constructed in Secs. III and IV for
frump elastic scattering near the backward direction

III. STATEMENT OF INTERFERENCE MODEL

The pion-nucleon scattering amplitude can be ex-
pressed in a two-component form as

f(Qs, u)+f'rs 8 sinHg(gs, u) . (1)

The variables gs and H are the center-of-mass energy
and scattering angle; I is the square of the four-
momentum transfer between pion and proton. The unit
vector 8 is de6ned by n= (kgXk;)/I krXk;I, where kf
and k; are the final- and initial-pion momenta, re-
spectively. In terms of the amplitudes f and g, the
diGerential cross section and polarization are given by

(&~/d") (»H) =
I fI'+»n'H

I g I'

2 sinH Im(fg*)
P„(H)=

I
fI'+sin'HIgI'

resonances on the 6&, X, X~ trajectories, and (ii) the
crossed I-channel contributions from the A~, X, 1V~
Regge poles (see Fig. 1). Thus, in Eqs. (1) and (2), we

Res Regge (4)

g
—gRes+gRegge

The explicit forms for the resonance amplitudes
(fR-, gR-) and the Regge-exchange amplitudes
(f"««, gR «e) are discussed below.

A. Resonance Amylitude

The amplitude resulting from a Regge recurrence in
the s-channel reduces to a Breit-Wigner resonance form
for gs in the vicinity of the mass of the physical reso-
nance. We represent the total amplitude due to the
successive recurrences as a sum of Breit-Wigner ampli-
tudes for the known resonances. The contribution of a
single direct-channel resonance of isotopic spin I to the
isotopic-spin amplitudes fr and gr can be written as

1 xr(J+-', )
f'(gs, u) = Pl(cosH)-,

k ~—i
Our subsequent calculations are based on the assump-
tion that the pion-nucleon scattering amplitude near
180' is well represented by the sum of amplitudes"
arising from (i) the direct s-channel contributions of the where

1 g ( )J—l+f/2

g (V's u) = P,'(cosH),

» A similar approximation for dynamical. calculations in a strip
model has been suggested by N. F. Bali, G. F. Chew, and S. Chu,
Lawrence Radiation Laboratory Report No. UCRL-16961
(unpublished).

Pl (COSH) = Pl(COSH) r
d cos0

with J and l as the total and orbital angular momenta
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of the resonance, respectively. Here, k is the c.m.
momentum and I'I, is the Legendre function. In Eq.
(5), xr represents the elasticity parameter of the
resonance and c= (M~' —s)/M/ti', where Mz and I' are
the mass and full width of the resonance. '3 Little is
known regarding the proper momentum dependence of
the elasticity or total width for a very inelastic reso-
nance. Consequently, we make the simplest possible
choice—constant x and I'—as is done in the analyses of
resonances from total-cross-section data. ' This choice
is dictated by the necessity of using resonance param-
eters determined from total-cross-section analyses.
Thus, we implicity assume that the resonance form in
Eq. (5) remains approximately valid away from the
resonance position. The s-channel resonance contribu-
tions to the s.X elastic and charge-exchange (c.e.)
scattering amplitudes are obtained from Eq. (5) by the
isotopic-spin relations

fw yt (f-3/2+2ft/2)

71 y j3/2
)

fa.e. 1+2 (fs/2 fl 2)/

and the corresponding relations for the g amplitudes.

B. Fermion Regge-Exchange Amplitude

The amplitudes f and g of Eq. (1) can be expressed
in terms of a single s-channel amplitude ft(gs, u) as

f(gs, u) = ft(Qs, u) coseft(—gs, u)—,
g(gs, u) = f, ( gs,—u). —

The crossing-symmetry relation which connects the
s-channel amplitude ft(gs, u) with the corresponding
u-channel amplitude ft(Qu, s) is

E,+M ft(~u, s)
ft(~s, u) = (~u—ps+2M)

2/s E„+M

ft(—gu, s)-
+ (gu+ gs —2M)

E„—M

where E.= (s+M' —u')/(2+s) is the c.m. energy of the
nucleon"; a corresponding definition holds for E„.

The procedure of performing a Sommerfeld-Watson
transformation on the I-channel partial-wave expansion
of ft (gu, s) and obtaining the contribution of a fermion
Regge pole to vrE elastic scattering has been discussed in
detail by Singh. "The contribution of a fermion Regge

"A number of different forms for the Breit-Wigner resonance
amplitude have been suggested in the literature. For references,
see S. R. Deans and W. G. Holladay, Vanderbilt University
Report, 1966, (unpublished). We adopt the form discussed by W.
Layson LNnovo Cimento 27, 724 (1963)j and J. D. Jackson [ibid
34, 1644 (1964)j.

'4 Unless speci6ed otherwise, M denotes the nucleon mass and
p the pion mass.

"V. Singh, Phys. Rev. 129, 1889 (1963). Other sources on the
theoretical treatment of fermion Regge poles can be found in
Ref. 4.

cotta.
(I a+1/2(s) Q —(a+1/2) —1(s) ~

For scattered particles of equal mass (i.e., M=u), the
I-channel scattering angle s would grow with s for fixed
small I as

Then, for moderate values of s, the Legendre function
would be well approximated by its leading term:

21'(o,+1)
(P ~yt/s(s)~ (2s)~

P(l)1 (-+!)
(12)

We assume that the Regge-type behavior in Eqs. (11)
and (12) also holds for unequal masses (MNp), despite
the apparent kinematic limitation near e=0.' Rigorous
justification for Regge behavior in the unequal-mass
case of the form s 'f' has recently been presented. "
In the interests of constructing a tractable phenomeno-
logical model, we shall retain only the leading term
(s) '" from Eq. (9). Inserting Eqs. (11) and (12) into
Eq. (9) yields the following result for the Regge-pole

"S. Mandelstam, Ann. Phys. (N. Y.) 19, 254 (1962); M. Gell-
Mann ef, al. , Phys. Rev. 133, B159 (1964).' D. A. Atkinson and V. Barger, Nuovo Cimento 38, 634 (1965)."D. Z. Freedman and J. Wang, Phys. Rev. Letters 17, 569
(1966); M. L. Goldberger and C. E. Jones, ibid. 17, 105 (1966).

pole with signature r= (—)~ '/s and parity P= (—)'+t
to the amplitude ft(Qu, s) is given by

E&„+M /3(aalu) // q'
ft(gu, s) =

gu cossa(aalu) & ss

X [8 a(+v'm)+1/&( s)+rP e(yvru)+& /s(s))

E„M—P (wg'u) q')

gu coss n(WQu) ss/

X Ltp a(p~m) —1/2( s) &(P a(p~u) —1/2(s) j I (9)

where the upper signs in the arguments of n and P
obtain for rP= —1 and the lower signs for rP=+1.
The quantity P(gu) is essentially (up to a constant
multiplicative factor) the residue of the Regge pole" at
complex J=o/(gu) The .trajectory n(gu) is defined
such that Rett(gu) will intersect the spin of a known
resonance in Fig. 2 at positive gu=M&. In Eq. (9),
q and s are the I-channel c.m. momentum and cosine
of the scattering angle, respectively.

q'= {u—2M' —2p'+ (M' —u')'/u)/4

s = —(s—M' —u'+u/2 —(M' u')'/—2u}/(2q') .

The functions 6"~~t/s(s) are defined in terms of the
Legendre function of the second kind as"
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contribution to the amplitude:

E„+M 2F(a+1) 1+ier '
Q,S

Qu F(s)I'(n+ s) cosmo.

~2 +2 0.—112

x . (»)
sp

'Fhe factor F(n+1) in Eq. (13) gives unphysical poles
at &= —1, —2, , which must be cancelled by zeros
of the residue function P. The factor 1/F (n+ s) produces
zeros at 0.= —2, —„~~ . Since our subsequent analysis
involves only small negative o., we retain only the zeros
at n= —

2 and o.= ——,'. Introducing an effective residue
function

We also assume that the effective residues y(QN)
have no zeros for these values of u. The scaling factor
sp ln Eq. (15) is chosen for each Regge pole in the spirit
of reducing the functional dependence of the correspond-
ing residue y(gu) on. gm. In the actual data analysis
in Sec. IV, we treat the effective residues as constant.
However, this approximation is only expected to be
valid for the limited range of I values near N=O."
With these approximations (namely, constant y and
a= a+bu), we obtain from Eqs. (7), (8), and (15) the
contribution of a fermion Regge pole to the f and g
amplitudes

f= (1/gs)L(E, +M) —cose(E.—M) jE(u,s), (17)
g= —(1/gs) (E,—M)R(N, s),

1+Be '
(s

—M' —
p')&(~,r) = (~+s)(~+5)V

cosxo; spthe Anal form of the Regge-pole amplitude becomes

2F (o.(aalu)+ 1)
v(~v'~) =P(~v'I) (14) where

F(-)F(&(~v I)+-')

(s 3t' y')— —
xi (15)

sp

E„+M 1+ice'
ft(V'~, r) = (~+s)(~+Eh

cosx'0!

The isotopic spin relations

f'"= '(f'+2f-)
fc.e. t~g(fa fN)

(18)

where the functional dependence of n and y is on (+QN)
for vP = —1 and on (—ge) for vP= +1, as in Eq. (9).
Note that J&(QN, s) in Eq. (15) goes through zero as
o. —+ —

~ for v =+ or as n —+ ——,
' for ~= —."We now

make some simplifying assumptions regarding the be-
havior of the trajectory and residue functions.

The Chew-Frautschi plot in Sec. II suggests that
trajectories of the form

Ren(gu) = a+bu (16)

adequately interpolate through the masses of the known
resonances. For the purposes of estimating n(QN) in

Eq. (15), we make the simplest possible assumption
that this form for c(gu) remains approximately valid
in the scattering region under consideration. [Note
that this assumes n(QN) to be real for u( (M+p)s.$""

~' C. Chiu and J.Stack (private communication) have considered
the consequences of the zero at = —-', for the N„-exchange
amplitude. in 7F+p scattering at high energy.

~ This form is only meant as a crude approximation to o(QN),
adequate to Gt present data. The actual power series expansion
of n(gu) around m= 0 has, in general, odd terms in v'u, and does
not converge beyond the branch points at QN =a (3f+y). If odd
terms in gu were also present, then n(QN) would also have an
imaginary part for N(0.

'«From the McDowell symmetry relation, a Regge pole. at
J=o.(QN) with residue P(gu) and quantum numbers r, P must
be accompanied by a Regge pole at J=n( —QN) with residue
—P(—ge) and quantum numbers ~, P(Ref. 15). Formally—,
trajectories of the form in Kq. (16) seem to imply the existence of
additional resonance states (with the same J but opposite parity)
at the positions of the kriown resonances. However, such specula-
tion depends on the detailed behavior of the residue function
at large values of +QN, which is beyond the scope of the present
analysis of the scattering data near u=0. The possible existence

are to be used in adding up the A(I= s) and iV(I= s)
fermion Regge-exchange contributions to the f and g
amplitudes for m.Ã elastic and charge-exchange
scattering.

IV. COMPARISON WITH EXPERIMENT

A. m P Elastic ScatteriaN, at 180'

The basic motivation for the interference model
originated with a recent experiment at the zero-
gradient syncrotron in which the diQerential cross sec-
tion. for m p elastic scattering was measured at a fixed
angle of 180' over the laboratory momentum range
1.6—5.3 BeV/c." The 180' differential cross section
showed con'siderable structure as a function of labora-
tory momentum. The theoretical model of Secs. II
and III provides a natural explanation of this structure
as the interference of direct-channel Regge recurrences

of such resonance states has been discussed by I. A. Sakmar
t Phys. Rev. IBS, B249 (1964)], C. Chiu and J. Stack (private
communication), and B.Desai )Phys. Rev. Letters 17, 498 (1966)j."In particular, the magnitude of y(0) is not necessarily expected
to be the same as y(Sf'). For the hg Regge pole, the relation
between y(Mg) and the width of the (3,3) resonance is

gs 3Eg 7'~'=
16 Z.+~,—;

where
du(ga)

dV I v'm-u's

For the N~ Regge pole, the corresponding relation is 7(M~)= —3eNg'/32, where g2/4m 15.
3 S. %.Kormanyos, A. D. Krisch, J.R. O'Fallon, K. Ruddick,

and L. G. Ratner, Phys. Rev. Letters 16, 709 (1966).
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TABLE I. Experimental parameters for 7=+1 fermion resonance states. The predicted values of spin-parity J for the Regge recur-
rences are based on straight-line extrapolations in a Chew-I'rautschi plot. The elasticity parameters xz are based on the proposed J
assignments. The unclassified states are the resonance candidates reported in recent phase-shift analyses (Ref. 24).

Resonance
(mass in MeV)

Spin-parityb
(~~)

Width'
(BeV)

Elasticity (x~) determinations
~—p~ p~~ ~ p ~He~ Total cross

at 180' at 0' sections'
Phase
shifts'

Dy(1236)
Ag(1924)
a (245o)
a (2840)
Ag(3220)
N, (1512)
N, (2210)
N, (2640)
N, (3o2o)
N, (335O) ~

N (938)
N (1688)
N (2220)P
N (2610)?
N. (2970) ~

(3/2)+ est.
(7/2)+ est.

(11/2)+
(15/2)+
(19/2)+
(3/2) est.
(7/2) est.

(11/2)
(15/2)
(19/2)
(1/2)+ est.
(5/2)+ est.
(9/2)'

(13/2)+
(17/2)+

Regge

0.12
0.17
0.28
0.40
0.44
0.12
0.24
0.40
0.40
0.10

~ ~ ~

0.10
0.20
0.30

recurrences

1.0
0.35-0.50g

0.12
0.05
0.02
0.60
0.20
0.05
0.015

0.003—0.01
~ ~ ~

0.60
0.05
0.025

1.0
0.49
0.12
0.03
0.003
0.77
0.25
0.08
0.011
0.003

~ ~ ~

1.04

1.0
0.33—0.41

0.11
0.03
0.006
0.76

0.15—0.25
0.07
0.007

0.80

1.0
0.50

~ ~ ~

0.50—0.71

0.66

N.{-1470)
Np(~1560)
N, (-165O)
a&( 169o)
Np(~1715)?

(1/2)+(2'U)
(1/2) (~ )
(5/2) (»~)
(1/2) —(S»)
(1/2) (5'~ )

~ ~ ~

0.20
0.30

Unclassified states

0.2
0.28
0.13

0.15-0.23

0.60-0.70
0.40

0.20-0.40
0.25-0.44

0.90

a References 1, 2, and 8.
b "Est."means "established. "
e Present analysis. Also, see Ref. 4.
d Reference 5.

References 1, 2. Additional sources given in Ref. 4.
& Reference 24.
tt Elasticity of 0.35 used in 7r p analysis; elasticity of 0.50 used in 2t+p analysis.

with a fermion-exchange background. 4 Since the u
channel is in a pure I=-,' state for the ~ p reaction, the
6& is the only known trajectory in Fig. 2 that contributes
to the exchange amplitude. In. the straight-line approxi-
mation to the 6& trajectory, a least-squares fit to the
masses of the h~ resonances in the Chew-Frautschi plot
of Fig. 2(a) gives

Ren(gu) =0.15+0.9u.

~e use this form for e(gu) in calculating the t)q

exchange amplitude from Eq. (17).The &s residue func-
tion y is taken to be constant and of the same sign as
the residue at the position of the (3,3) resonance. "The
scaling factor se is fixed at se——0.4 (Bev)' for the
analysis. In the constant-residue approximation, this
choice of so is dictated by the slope

(d day
(

—ln—
i

&du dpi. ,
at the highest momentum for which data are available
(8 BeU/c); here, the direct-channel contributions are
expected to be small.

The direct-channel amplitude for m p scattering
receives contributions from the resonances on the
(A&,iU,S„)trajectories. At 180', the amplitude due to
the successive recurrences Lsee Eqs. (5) and (6)j
reduces to

( )'(~+a)&3~2f"'(180')=- s Z
k &a

a ( ) '(~+ 2)&i(2
(20)

where e= (Mz' s)/QfzI') Th—e sums in Eq. (20) refer
« the (t4,$,X,) resonance states listed in Table I.
The factor of (—)' in Eq. (20) determines whether a
particular resonance interferes constructively or de-
structively with the 6&-exchange amplitude of Eq. (17).
Thus, the observed interference pattern in the energy
dependence of the 180' differential cross section pro-
vides a sensitive test of the proposed parity assignmeuts
of the resonances based on the Regge-recurrence
classification scheme of Fig. 2. The resonance param-
eters (I',Ma) used in Eq. (20) are taken from Table I.'
For starting values of the elasticity parameters (xz),
we used, representative results from previous deter-
minations, ' ' ' """as listed in the anal three columns
of Table I. Only the product (J+-', )xr is determined by

"C.Lovelace, in Proceedings of the Ihirteenth International
Conference on High-Energy Physics, Berkeley, 1966 (unpub-
lished); P. Bareyre et al. , Phys. Letters 18, 342 (1965); A. Don-
nachie et al. , iNd. 19, 146 (1965);B.H. Bransden et al. , ibid. 19,
420 (1966); R. J. Cence, ibid. 20, 306 (1966); L; D. Roper et al. ,
Phys. Rev. 138, 3190 (1965).

s' Sources of elasticity determinations from total-cross-section
data are given in Ref. 4.
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most analyses. Values of the elasticity parameters in
Table I are based on the Regge-recurrence J assign-
ments. The elasticity determinations from m p —+~'n
at 0' were determined from a simultaneous analysis of
[0~(m. p) —0g(~ p)] and the forward charge-exchange
differential cross section using a Regge p-meson ex-
change amplitude. ' The elasticities obtained from total
cross sections were determined without the use of a
theoretical model by assuming smooth background
amplitudes. ' ' '" The phase-shift analyses" ' exist only
for resonances of mass below 2.2 BeV. Only a phase-
shift analysis can disentangle two resonances with
diferent quantum numbers at the same mass position.
For such cases of two resonances with the same mass,
only a mean resonance height is determined from
either the vr p-+ n'e anslysis at 0' or the total-cross-
section analysis. [For example, the fact that the ef-
fective elasticity parameter of X (1688) is greater than
1 0 from the m p-+ n'e analysis at 0' (see Table I)'
presumably reflects the presence of resonating a~5, S3~,
and 5» partial waves in the vicinity of 1688 MeV. '4]
A similar complication will arise at the positions of the
predicted resonance doublets {E~(2210),—,

' ), X (2220,
~+)} and. {AT~[2640, (11/2) ], Ar [2610, (13/2)+]).

In addition to the resonances that can be assigned to
the (Aq, 1V,X~) trajectories, other resonances suggested

by recent phase-shift analyses"4 are listed in Table I
as unclassified states. The exact values of resonant
energies and widths of these states are not known; in
fact, some phase-shift solutions do not exhibit all of
these resonances. For the most part, the direct-channel
contributions of these unclassified resonances are domi-
nated by the contributions of the (hq, lV, 1V~) recur-
rences. Of these unclassified resonances, we include only
the 1Vs( 1650) in Eq. (20). Arguments based on ex-

pected trajectory intercepts at I=0 on a Chew-Fraut-
schi plot also indicate that these unclassified states
should not contribute appreciably to the exchange
amplitude of Eq. (17).

As a first approach in investigating the validity of
the interference model, 4 we calculated the 180' vr p
differential cross section using n(gu) from Eq. (19)
and the previously reported resonance parameters
(Ms, l',xr) for the krone resonances on the (hq, S,X~)
trajectories. The residue p was essentially the only free
parameter in this calculation. The high-energy data
severely restricts the choice of 7. No appreciable varia-
tion of the xg from their experimental values was al-
lowed. This calculation produced reasonable qualitative
agreement with the data, particularly in light of un-
certainties in the elasticity parameters, masses, and
widths of the resonances. Next, the predicted resonances
Ar (2220, ~~+), E [2610, (13/2)+] were also included in

the direct-channel amplitude. In addition, we have
included $„(3350), for which there is some evidence
from total cross sections '2' The elasticity parameters

"G. Hphler et a/. , Phys. Letters 21, 223 (1966).

of all the resonances were then slightly adjusted to yield
quantitative agreement with the vr p 180' differential-
cross-section data. The final values for the elasticities
are given in Table I. The theoretical m p differential
cross section for y=0.20 BeV ' is shown in Fig. 3(a)
along with the 180 experimental data. The calcu-
lation is in apparent good agreement with experiment
over the entire momentum range, 1.6—8.0 BeV/c. It
should be emphasized that the theoretical curve in Fig.
3(a) represents the absolute differential cross section
and does not involve an arbitrary normalization. The
resonance contribution alone to the differential cross
section is shown by the dotted curve in Fig. 3(a). It is
apparent that the amplitude due to the direct-channel
resonances cannot, by itself, accommodate the principle
features of the experimental data.

In order to test the Regge-recurrence parity assign-
ments, the calculation has been repeated with opposite
parity assignments to that given in Table I for individual
ones of the higher mass resonances. Typical results are
shown in Fig. 3(b), where I'= —for Ar(2210)P' in Fig.
3(c), where I' = —for 6(2450), and in Fig. 3(d) where
E=+ for 1V(2640). It is apparent that changes in the
parities yield qualitative disagreement with the experi-
mental trend of da/dQ. Thus, we conclude that there
is strong evidence for the parity assignments given
in Table I according to the Regge-recurrence hypoth-
esis.

In order to elucidate the interference between f"'~g'
and fR-, the real and imaginary parts of the amplitudes
are presented in Fig. 4 as a function of laboratory mo-
mentum. The two-decade valley in da/dQ near p~,b ——2.1
BeV/c results from almost complete cancellation off"'" and fa", as shown in Fig. 4(a). In view of the
fact that the relative size (and also sign) of the real and
imaginary parts of fa'«' is tied to its energy dependence
through n(QN) [see Eq. (17)], it is rather remarkable
that this amplitude allows just the proper interference
to yield the results in Fig. 3(a). In addition, f"'~g'
has roughly the proper magnitude to explain the 8-BeV
point where resonance contributions are negligible [see
Fig. 4(a)]. In Figs. 4(b) and Fig. 4(c), the real and
imaginary amplitudes at 180' are shown for low labora-
tory momenta. It is clear that the direct-channel
amplitude dominates the exchange amplitube in the
low-momentum region. This is fortunate, inasmuch as
we have no basis for the approximate form of the
Regge amplitude at very low momenta.

To summarize, the proposed model represents an
internally consistent picture for both the F=+1
fermion Regge recurrences and the experimental data
on the 180' 7r p differential cross section. In the next
section, the predictions of the model are compared with

~'%. R. Frisken et al. , Phys. Rev. Letters 15, 313 (1965); also
revised data, 1966 (unpublished}.

"The phase-shift analysis in Ref. 10 confirmed that the dom-
inant resonating I=$ state in this vicinity was q . A similar con-
clusion was inferred in Ref. 23.
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3. ~ P Angular Distributions Near 180'

6 R
In the preceding analysis of th 180' t

q Regge-exchange amplitude of E
s o e scatterin tg, the

i e o q. (17) was speci6ed

by the following parameters:

(21)
residue=7=0. 20 BeV '

scalmg factor= so=0.4 (BeV)',
traj ec tory =n(ge) =0 15+09u. .

In the constant-residu
~ ~

sidue approxunation employed here
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these parameters also determine the Regge amplitude
of Eq. (17) for rear back-ward scattering. Similarly, the
direct-channel resonance amplitude of Eq. (5) is com-
pletely specided for near-backward scattering by the
elasticities xg of the 180' analysis and the Regge recur-
rence (J,/) assignments. Therefore, within the frame-
work of this model, the rr p angular distributions near
180' can now be predicted with no arbitrary parameters
involved.

A limited amount of experimental data on z P angular
distributions exists at ten different laboratory momenta
ranging from 1.7 to 8.0 BeV/c """This data is shown
in Fig. 5, along with the predictions of the model (solid
curves). The contribution of the As Regge-exchange
amplitude alone (no resonance amplitude) is indicated
by the dashed curves in Fig. 5. This exchange amplitude
provides the dominant contribution, to do/dQ at 8.0
BeV/c; the angular distribution at this momentum was
used in the selection of so as given, in Eq. (21). The ex-
perimental angular distributions in Fig. 5 exhibit either
a sharp turn over or a rapid fall-oG near j.80'. This
characteristic behavior alternates as a function of mo-
mentum. The model fairly well reproduces this eBect
as a result of interference between the resonances and
the Regge background. The predicted angular distribu-
tions are not in detailed quantitative agreement at
every momentum. In particular, there seems to be an
appreciable deviation from the experimental points at
2.5 BeV/c. However, it should be noted that the
theoretical curves were not fitted to the data. Moreover,
the present data have large errors. As might be expected,
the agreement with the data becomes less favorable
away from backward angles. A number of complications
which might arise in the extension of the model away
from the backward direction are: (i) Tails of meson-

exchange amplitudes from the t channel may become
more important at smaller angles; (ii) resonances in

lower partial waves could make relatively larger con-
tributions at certain angles (since the contributions of
the dominant resonances have minima, due to the
structure in Legendre polynomials of large j); (iii) the
linear form for the Regge trajectory n may break down

at negative values of u. Nevertheless, within the frame-

work of this admittedly crude model, the agreement
with the experimental data seems to be reasonable.

In the analysis of z. P —& z'ts at 0' in terms of Regge
p-meson-exchange and direct-channel resonances, the
theoretical model turned out to be approximately
valid' down to 700 MeV/c. A similar feature seems to

~'%. Busza, D. G. Davis, B. G. Du8, F. F. Heymann, C. C.
Nimmon, D. T. Walton, E. H. Bellamy, T. F. Buckley, P. V.
March, A. Stefanini, and J. A. Strong, in Proceedings of the
Oxford International Conference on Elementary Particles, 1965
(Rutherford High-Energy Laboratory, Harwell, England, 1966);
p. A34; D. E. Damouth et al. , Phys. Rev. Letters 11, 287 (1963);
C. T. CoSn et al. , ibid. 15, 838 (1965); W. Baker et al. (unpub-
lished); H. Brody et al. , Phys. Rev. Letters 16, 828 (1966); 16,
968(E) (1966).

hold true in the backward rr P —+ Prr analysis. In Fig. 6,
the theoretical model is compared with the available
data in the momentum range 600—1900 MeV/c. "" In
this momentum range, the resonances provide the
dominant contributions to do/dQ )see Figs. 4(b), 4(c)].
Nevertheless, the over-all consistency of the model with
experiment indicates that the Regge form of Eq. (17)
does not produce disagreement with the data at very
low momenta.

C. ~ P Polarization Near 180

The polarization of the recoil nucleon can be readily
predicted as a function of momentum and angle from
Kqs. (3), (5), and (17), using the Regge parameters of
Eq. (21) and the resonance parameters of Table I. In
the model, the Regge-exchange amplitude of Kq. (17)
is a function of (QN)' near the backward direction, and,
hence, no contributions to the polarization arise from
interference of the n(QN) trajectory with the McDowell-
reflected n( —QN) trajectory. "Therefore, this Regge-
exchange amplitude, by itself, leads to zero polarization.
The predicted polarization is shown by the solid curve
in Fig. 7(a) as a function of laboratory momentum at a
Gxed angle of cose= —0.96. The polarization oscillates
in the momentum range 2 to 5 BeV/c and becomes
relatively large, negative, and nonoscillatory at higher
momenta. Since the resonance tails become dominantly
real away from the resonance positions [see Eq. (5) or
Fig. 4), the contribution of the resonances alone to the
polarization is relatively small above 5 BeV/c, as indi-
cated by the dashed curve of Fig. 7(a). Thus, at high
momenta, the polarization comes almost entirely from
the cross product of the Regge and resonance ampli-
tudes. This characteristic is a distinguishing feature of
this type of model. Finally, for comparison, the dash-
dot curve of Fig. 7 (a) indicates the amount of polariza-
tion which results when the high-mass resonances
hs (2850), As (3220), X~(3020), and Er (3350) are
omitted from the direct-channel amplitude. This curve
illustrates that, in this model, the tails of the lower-mass
resonances still play an important role in polarization
at high laboratory momenta. However, this prediction
may be somewhat modified if energy-dependent reso-
nance widths turn out to be necessary. The changes
in the angular dependence of the predicted polarization
as a function of laboratory momentum are shown in
Fig. 7(b). At all momenta, the polarization rises to a
maximum at cos0~ —0.98. The predicted variation of
the polarization with energy and angle provides a sensi-
tive method for study of the detailed formulation of the
interference model.

"H. H. Atkinson et al. , Proc. Roy. Soc. (London) A289, 449
(1966).

» If the fermion trajectory n(ge) contains a linear term in ge,
then the Regge amplitude by i:tself 'can lead to a nonzero polariza-
tion. See, for example, J. D. Stack, Phys. Rev. Letters 16, 286
(1966).
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FIG. 5. Theoretical curves for the angular distributions in ~ p elastic scattering in the backward hemisphere. The solid curves are
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bution of the exchange amplitude alone (FE) to the differential cross sections. The comparison with experiment is made at ten laboratory
momenta ranging from 1.7 to 8.0 BeV/c. Experimental data are taken from Refs. 23, 27, and 29.

D. m+P Elastic Scattering Near 180'

Additional con6rmation for the A~ Regge-recurrence
parity assignments can be obtained from an analysis
of backward rr+p elastic scattering. In the rr+p process,
only I=-,' resonances contribute to the direct-channel
amplitude, whereas (Ac,X,Xr) are all allowed as Regge
exchanges. With the single exception of a suggested 53~
resonance at 1690 MeV (see Table I), all the known
I=-,' resonances can be assigned to the 6& trajectory, as
shown in the Chew-Frautschi plot in Fig. 2(a). In this
recurrence classification scheme, all the h~ resonances
have the same parity, and thus contribute with the same

sign to the direct-channel rr+p backward amplitude Lsee

Kq. (5)j. Also, an additional factor of 3 for the rr+p

direct-channel amplitude over the rr p amplitude is

acquired from the Aq isotopic-spin Clebsch-Gordan
coef6cient. The net result of this circumstance is a large
direct-channel contribution that appears to saturate
the backward rr+p elastic-scattering differential cross
section below 4 BeV/c. Significant contributions from
the possible Aq, E, or E~ Regge exchanges do not seem
to be required to explain the gross features of the ~+p
backward elastic-scattering data in the momentum
range 0.4 to 4 BeV/c. This situation is markedly differ-
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ent from the m. p reaction, where appreciable cancella-
tions occurred between the overlapping hg and S~
resonances resulting in a direct-channel contribution

l see Fig. 3(a)j that was inadequate to explain the
180' vr p experimental data above 2 BeV/c.

The contributions of the D~ resonances to the back-
ward m+p differential cross section can be irrnnediately
calculated from the resonance parameters of Table I
obtained from the analysis of backward s p scattering.
The results of such a calculation are compared with the
available data" in Fig. 8(a) in the momentum range
1'.5 to 8 BeU/c, „,Since only a meager amount of data
exists for backward s.+p elastic scattering, it is not pos-
sible to compare the model and experimental data at
cose= —1, as in the w p case; instead, the comparison
can be made in the angular region of cosg= —0.94 to
cos8= —1. The dq resonance contribution is in reason-
able accord with the experimental near-backward dif-
ferential cross section up to 4 BeV/c Additiona. l As

"A. I. Alikhanov et al. , Phys. Letters 19, 345 (1965); A. S.
Vovenkov et al. , JETP Pis'ma v Redaktsiya 2, 409 (1965) t English
transl. : JETP Letters 2, 255 (1965)7; P. M. Ogden et al. , Phys.
Rev; 137, 31115 (1965); H. H. Atkinson et al. , Proc. Roy. Soc.
(London) A289, 449 (1966);J. A. Helland et al. , Phys. Rev. 134,
B1062 (1964); F. E. James et al. , Phys. Letters 19, 72 (1965);
W. F. Frisken et al;, Phys. Rev. Letters 15, 313 (1965); C. T.
CofBn, ibid. 17, 458 (1966);T. Dobrowolski et al. , in Proceedings
of the Thirteenth international Conference on High-Energy
Physics, Berkeley, 1966 (unpublished). For a report of work done
by W. Baker et al. , see C. T. Coffin et al. (Ref. 29).

400 600 800 l000 l 200 l 400 I600
PL (MeY / c)

FIG. 6. Comparison of the prediction of the interference model
for the backward z p diGerential cross sections with the available
experimental data at low momenta (600—1900 MeV/c). Experi-
mental data are taken from Refs. 23 and 30. The data points fall
in the angular range —1.0&cos8& —0.94.

resonances of higher mass may well account for the
discrepancy above 4 BeV/c Lconjectured Aq resonances
of high mass are indicated in Fig. 2(a)j.Alternatively,
an exchange amplitude may play some role in the de-
scription of ~+p backward elastic scattering. "Inclusion
of the hq-exchange contribution in the ~+p amplitude,
with magnitude as determined from the 180' ~ p
analysis, produces no appreciable perturbation on the
hq direct-channel contribution. Nevertheless, the E
and E~ trajectories may also contribute to the exchange
amplitude, However, to make an appreciable contribu-
tion to do/dQ, the residue of an E trajectory would have
to be relatively much larger than the 6& residue. The
comparative size of the vr p and m.+p differential cross
sections is not an indicatioo of the relative magnitude of
the 6 and E residues, inasmuch as resonance eRects
mask the exchange contributions.

In order to test the Regge-recurrence parity assign-
ments of the 3 q resonances for this model of backward
s.+p elastic scattering, the calculation of the direct-
channel amplitude has been repeated with opposite
parity assignments for iedkidnal higher-mass reso-
nances. The results are shown in Fig. 8(b), with P=-
for A(2450), and in Fig. 8(c), with P= —for 6(2850).
Reversal of the parity of either the 6(2450) or the
A(2850) from its recurrence assignment produces
destructive interference with the other direct-channel 6
resonances, and destroys the agreement with the experi-
mental data. Thus, this direct-channel resonance model
for n.+p scattering near 180' provides independent con-
Qrmation for the suggested Regge-recurrence parity
assignments for the I=

~ resonances. "
Next, the model was extended to the low-momentum

range 400 MeV/c to 1.5 BeV/c. In this range, good agree-
ment with the data could be achieved only by an increase
in the elasticity of the hq(1924) resonance (i.e., with
@=0.5, as compared with x=0.35 in the m p analysis)'4
and inclusion of the hp(1690) resonance, which has been
suggested by recent phase-shift analyses. '4 This calcu-
lation is compared with the experimental data" in Fig. 9.
Since this model is in qualitative agreement with the
data, it supports the existence of the S3~ resonance at
]690 Me'|i/'

The predicted angular distributions are compared
with the limited amount of experimental data" below
4 BeV/c in Fig. 10. Again, the agreement is reasonable,
except at 3 BeV/c. It is quite possible that a fit to the
data, in which resonance parameters are allowed to vary,
would produce better agreement. More data will be
required before definite conclusions can be reached
about the origin of the discrepancy. The predicted
angular distributions show considerable shrinkage as a
function of laboratory momentum, due to the fact that
the recurrence spin assignments increase with the mass

~ V. Bafger and D. Cline, Phys. Letters 22, 666 (1966).
'4At present, it is not known what the precise value of the

elasticity of the A&(1924) is. As noted in Table I, any value of x
between 0.35 and 0.5 is allowed.
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of the resonances (the Legendre functions of higher I
fall off more rapidly with angle near cosII= —1). The
qualitative success of this model in explaining the
present backward rr+p elastic-scattering data suggests
that accurate experimental angular distributions might
be extremely useful in proving tue Regge-recurrence
spin assignments for the 6& resonances. Finally, a further
test of the model is provided by the polarization predic-
tion, which is shown in Fig. 11(a), as a function of
momentum. The momeritum dependence of the polari-
zation is a sensitive measure of the presence of fermion
exchange in the u channel. For example, although the
Ds exchange produced negligible effects in do/dQ for
z.+p scattering, it causes significant structure in the
polarization prediction, as shown in Fig. 11(b),
Polarization studies will undoubtedly prove to be a
very fruitful means of exploring the validity of various
models for pion-nucleon backward scattering.

V. DISCUSSION

The twofold intent of this paper was the presentation
of plausible Regge-recurrence classi6cations of the
known mE resonances and the construction of a
theoretical model for backward mX elastic scattering
compatible with these recurrence spin-parity assign-
ments. The comparisons of the model with experiment
in Sec. IV are rather favorable and lend. considerable
support to the validity of the parity assignments for the
resonances and some support to the Regge theory for
the fermion-exchange amplitude. Further. tests of the
model can be made as soon as polarization, . measure-

ments and more detailed angular distributions become
available.

One of the more interesting aspects emerging from
the calculations concerns the nature of the contributions
of the resonances to the direct-channel amplitude. The
resonance width in the laboratory frame Ft b (Ma/M)
I', increases because of the mass factor (MII/M)
and the experimental increase in F. (see Table I).
Consequently, the contributions of a high-mass reso-
nance extend over a broad range of laboratory mo-
momenta. An illustration of thi's feature is shown in
Fig. 12, where the arrow tips denote the values &=&2
for resonance forms proportional to 1/(e i) At- .

l el =2, the imaginary part 1/(c'+1) has decreased to
—', of its maximum value, but the tail due to the real
part e/(e'+1) continues to make sizeable contributions
for lel)2. Since the resonance tails are certainly
important, at least to I el 2, the contributions of the
individual resonances to the direct-channel amplitude
overlap considerably at any given laboratory mo-
mentum, as indicated in Fig. 12. As a result, the situa-
tion becomes markedly diRerent from customary con-
siderations for an isolated r'esonance. The extent to
which the Sr it-Wigner resonance form remains an
adequate approximation at some distance from the
resonance position takes on a somewhat greater im-

portance, particularly for the real part of the resonance
amplitude which dies oG rather slowly. If centrifugal
barrier factors" " of the form (qR)"+'/DI(qR) Lwhere

D&(qR) —+ (qR)" for very large qE] are incorporated

"R.D. Tripp, CERN Report No. 65-7 (Rev. ), 1965 (unpub-
lished), p. 11.
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differential cross section as a function of laboratory momentum in
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direct-channel (Aq) resonance amplitude. The arrows indicate the
positions of the b, q recurrences. The experimental data are taken
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dependence. (b) Theoretical curves obtained with a negative-
parity assignment for 6(2450), using the same resonance param-
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with a negative-parity assignment for h(2840), using the same
resonance parameters as for the curves of Fig. 8(a).
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into the expressions for the total and elastic widths,
then I'

q and resonances tend to make even larger
contributions far above the resonance position. On
the other hand, at energies above the resonance mass,
further inelastic channels become kinematically acces-
sible to the resonance, which probably results in the
elasticity parameter being driven down as a function

of increasing energy. In the present analysis we have
not attempted to explore such behavior for the widths
in the Breit-signer resonance amplitudes in detail,
because the resonance parameters from previous
analyses were not determined in such a fashion.

The schematic diagram in Fig. 12 reveals that reso-
nance effects are also present at relatively high mo-
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menta (note that the laboratory-momentum position
of a high-mass resonance is Pl b—Mgs/2Msr). The
kmome resonances can give non-negligible contributions
to the direct-channel amplitude even at 5 BeV/c, a
fact that is not normally realized in phenomenological
calculations. [The polarization predictions at high
momenta are particularly sensitive to the direct-
channel resonances (see Sec. IV).j As a further compli-

l.o I k I I I I-I.O —.95 —.90 —.85 —.80 —.75 —.70 —.65

Cos 8

FIG. 10. Predicted angular distribution for backward m+P
elastic scattering from the direct-channel bII resonance model.
The experimental data are taken from Ref. 32.

cation, it seems quite conceivable that resonances of
even higher mass will eventually be discovered.

It is an interesting empirical fact that the elastic
widths decrease rapidly with increasing resonance mass
(see Table I). This may be interpreted as due in part to
centrifugal barrier suppression, since the angular mo-
menta of the resonances increase quadratically with
mass in the Regge-recurrence model. However, a de-
tailed calculation of barrier factors requires knowledge
of the radii of interaction. In Fig. 13 the decrease of the
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elastic widths for the h~ resonances is illustrated. The
fall-off may be exponential in, / (equivalently M') or
even more rapid. Using this empirical relationship, it
should be possible to estimate the elastic widths of the
con3ectured higher-mass resonances in Fig. 2. If reso-

Fj:G. 13.Elastic widths of the 6& resonance versus orbital angular
momentum L. The / values are deduced from the Regge-recurrence
J~ assignments. The arrow tips denote reasonable uncertainties
in the determinations of the elastic widths.

nances with such elastic widths can be excluded experi-
mentally, this might serve as an indication that tra-
jectories do not indefinitely remain linear.

An interference model of the type proposed here for
backward mX scattering has certain limitations. Even
if this model is valid at 180', it is expected to break
down as cos8 increases from —1.0. In the first place,
the tail of the forward diffraction peak extends to
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relatively large angles at low-laboratory momenta
Lsee Figs. 5(a), 5(b), 5(c)].Secondly, resonances which
provide the dominant contribution to the amplitude at
coso= —1 will not necessarily continue to dominate at
other angles. In particular, since the number of oscilla-
tions of Legendre functions increases with t [for il-
lustration see Figs. 14(a) and 14(b)], the model may
only be valid in a narrower angular cone as the mo-
mentum increases. Thus, if lower spin resonances exist,
they would probably be of much greater importance
away from cosa= —1.0. Deviations of the types sug-
gested above presumably account for the qualitative
discrepancies away from cos8= —1.0 in Fig. 5.

Recently, the interference model has been applied to
(i) the differential cross section of the m. p —+~'e
reaction at t= —0.09 (BeV/c)' (using Regge p-meson

exchange)" and (ii) the polarization in m~p elastic
scattering near the forward direction (using P, I",
p-meson exchanges). "When compared with the experi-
mental data, the results of these calculations lend addi-

3' J. Baacke and M. Yvert, in Proceedings of the Thirteenth
International Conference on High-Energy Physics, Berkeley,
1966 (unpublished).

37 P. D. Grannis, H. M. Steiner, and I . Valentin, in Proceedings
of the Thirteenth International Conference on High-Energy
Physics, Berkeley, 1966 (unpublished).

tional support to the interference model and to the
Regge-recurrence assignments. A convincing argument
in support of the interference model is the fact that
consistent results are obtained for reactions with
exchange amplitudes of quite diferent phase. For ex-
ample, with p-meson exchange in s. p —+ x'n at 0', the
phase is roughly e' ", whereas with d, ~ exchange in
~ p ~ pn. at 180', the phase is roughly e" ".

We anticipate that the methods developed in this
paper will also be useful in the classi6cation of F&1
fermion states and the description of processes involving
the exchange of these systems. An extended Regge-
recurrence classification scheme including the F= 1, 0,—1, —2 resonances' is shown in Fig. 15, where the
fermion states are grouped in terms of singlet, octet,
and decuplet representations of SU(3). This classifica-
tion scheme is attractive, in that it incorporates onLy

one-, eight-, and ten-dimensional SU(3) representations
with the Regge-recurrence hypothesis, but is obviously
not known to be a unique classification. "Nevertheless,
certain general features of this classi6cation will un-
doubtedly survive in the ultimate assignments of these
resonances. Namely, since the extrapolated intercepts

s8In addition to the resonances shown in Fig. 15, there are
some known 7=1 (see Table I) and F=0 (see Ref. 2) resonances
which as yet are not classified in the Regge-recurrence scheme.
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at N=O of the 7&1 trajectories fall considerably lower
than the intercepts of the Y=1 trajectories, the back-
ward differential cross sections for reactions dominated

by the exchange of the 7&1 fermion systems should
decrease more rapidly with energy in the Regge model
than the corresponding situations with 7=+1 ex-
change. Further detailed investigations along these lines
should prove to be of great interest. "

39We are presently extending the interference model to the
reactions Ep —+ pX, Kp ~ K, and ~p —+ XE for backward
scattering.
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