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Model for Low-Energy Meson-Baryon Scattering
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A model for low-energy meson-baryon scattering within the framework of U(6,6) symmetry is studied.
The eRective U(6,6)-symmetric terms are treated as background terms representing distant singularities.
These are supplemented by the appropriate one-particle exchange contributions. The model is used to
calculate the real parts of the S, P, and D partial-wave amplitudes in the low-energy region of ~N and KN
elastic scattering. It is found that the results are in reasonably good agreement with the experimental
information in T=-, and T=~2 7' and in T=1 KN scattering. However, the model predicts large S-wave
scattering in the T=0 KN channel.

I. INTRODUCTION
'

N dispersion theoretic treatments of scattering pro-
- ~ cesses, it has been customary to treat the long-
range forces (or, equivalently, singularities near the
physical region) by appropriate one-particle exchange
graphs. The short-range forces (or, equivalently, dis-
tant singularities) are approximated by low-order
polynomials in the usual Mandelstam variables s and t.
The resulting representation for the scattering ampli-
tude is known as the Cini-Fubini approximation and
has proved successful in semiphenomenological analyses
of m.E and KE elastic scattering in a restricted energy
region. ' '

The present paper is concerned with the investiga-
tion of a speci6c model for meson-baryon scattering,
which leads to Cini-Fubini —type amplitudes in a very
natural way. The model is based on a symmetry scheme
which is presently known as U(6,6) symmetry. ' '
The main ideas leading to the model were briefly dis-
cussed in I. As regards the development of U(6,6)
symmetry, its successes and failures, the interested
reader is referred to a number of recent review articles. '
What is relevant for our present purposes is the con-

* Associated Midwest Universities —Argonne National Labora-
tory Predoctoral Fellow.

t Work done under the auspices of the U. S. Atomic Energy
Commission.

~ M. Cini and S. Fubini, Ann. Phys. (N. Y.) 3, 352 (1960).
2 J.Bowcock, W. M. Cottingham, and D. Lurie, Nuovo Cimento

16, 918 (1960).' R. L. Warnock and G. Frye, Phys. Rev. 138, 8947 (1965).
4A. Salam, R. Delbourgo, and J. Strathdee, Proc. Roy. Soc.

(London) 284A, 146 (1965); A. Salam, R. Delbourgo, M. A.
Rashid, and J. Strathdee, ibid. 285A, 312 (1965).' M. A. B. Bing and A. Pais, Phys. Rev. Letters 14, 267 (1965).

6 B. Sakita and K. C. Wali, Phys. Rev. Letters 14, 404 (1965&;
Phys. Rev. 139, 81355 (1965l. The second paper will hereafter be
referred to as I.

'R. Delbourgo, M. A. Rashid, A. Salam, and J. Strathdee,
in Proceedings og the Seminar Conference on High-Energy Physics
and Elementary Particles, Trieste, 1965 (International Atomic
Energy Agency, Vienna, 1965); A. Pais, Rev. Mod. Phys. 38,
215 (1966); 8. Sakita, Advances in High-Energy Physics (to be
published).

155

sideration that U(6,6) symmetry provides a satisfactory
description of three-point functions. This implies in
particular that the trilinear meson-baryon coupling
constants, where the mesons and baryons belong re-
spectively to the 35-dimensional (octet of pseudoscalar
and nonet of vector mesons) and 56-dimensional
(octetofJ =-,'+anddecupletof/ =ss+baryons) repre-
sentations of SU(6), are determined in terms of the ~X
and p-mal- coupling constants. Thus, all the one-particle
exchange contributions involving these particles are
determined in terms of these two coupling constants.

In addition to the one-particle exchange contribu-
tions, there are "effective" U(6,6) symmetric terms
which are polynomials in the variables s and t.'"
These terms may be considered as arising from more
complicated diagrams. Taken by themselves as repre-
senting the full scattering amplitude, they lead to some
consequences which are in total disagreement with ex-
perimental results. '"Our viewpoint is to regard these
terms, supplemented by the one-particle exchange con-
tributions, as input Born terms for dynamical calcula-
tions based on dispersion theoretic methods. To see
whether such an approach is meaningful, we consider in
this paper pseudoscalar meson-baryon scattering in
partial wave amplitudes f~, where l=O, I, 2. As no
unitarity corrections are taken into account, the scat-
tering amplitudes are real and the model is applicable
only to small phase shifts in the low-energy region.

In Sec. II, we analyze the structure of the U(6,6)
symmetric terms. Section III is devoted to the dis-
cussion of free-particle propagators and the calculation
of one-particle exchange contributions. The general
features and the comparison of the numerical results

It should be noted that only the collinear subgroup of U(6,6),
SU(6)g is relevant for the three-point functions. H. J. Lipkin
and S. Meshkov, Phys. Rev. Letters 14, 670 (1965).

~R. Blankenbecler, M. L. Goldberger, K. Johnson, and S.
Trieman, Phys. Rev. Letters 14, 518 (1965).

' J. M. Cornwall, P. G. O. Freund, and K. T. Mahanthappa,
Phys. Rev. Letters 14, 515 (1965).
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of the model in the case of low-energy zX and KX scat-
tering are presented in Sec. IV. The Gnal section con-
tains the summary and the discussion of the results.

II. U(6,6)-SYMMETRIC FOUR-POINT FUNCTIONS

In the U(6,6) symmetry scheme, one can construct
effective interaction terms that are formally U(6,6)
invariant. However, the kinetic terms or the free
Lagrangian parts break this symmetry. This was the
main reason that led Beg and Pais" to suggest that
such invariant terms represent effective S-matrix
elements. As remarked in the Introduction, we inter-
pret the four-point interaction terms only as approxima-
tions to distant singularities in two-body scattering.

For meson-baryon scattering there are four inde-
pendent U(6,6) symmetric amplitudes and, in momen-
tum space, the effective scattering matrix element is
given by

~B=~+""(p')+ABC(p)@E ( k')CD—(k)
+P+ABc(p')+ABD(p) ~E ( k') ~"—(k)
+P+ABc(P )+ABD@ED(k)@cE( k )
+V+ABC(p')+ADE(p)@B'( k')@'c'(k—), (2 1)

where 0»& and 4» are, respectively, the totally
symmetric third-rank and mixed second-rank tensors of
U(6,6). As in the case of three-point functions in I, we
calculate Mg by using free-Geld solutions of Bargmann-
Wigner equations for 0 and Duffin-Kemmer equations
for C. Here a, P, P, v are functions of s, t, and I subject
to the restrictions due to crossing symmetry:

/
a(S,t,u) =n(ii, t,S); p(S, t,u) =p(u, t,S);,

( )
V(s, t,g) =V(N, t,s).

3I8 is then given by

~$ ciJcj D +PJDj~c +VJ JABc ~ (2 5)

As we are interested in pseudoscalar-meson scattering
from the octet of baryons, we consider only the pseudo-
scalar-meson and baryon parts of C and 0' in the cur-
rents. From I, we have"

ik j
C .P(k): V5 1—P.P

SSO

Lt X..+sJ'Ic, crPq ~ ~ij k, rjrPq 3g~ijlc, a &SPY

+XjkiP58,va+Xkijy58aP, ]v

where

x' k, -'=2[V5~(1+5P/~-')]jkN'(p)~-'.

By using these free-Geld solutions, we compute the cur-
rents (2.3) and (2.4) and hence 3IIB. The results are
sununarized in the Appendix (A6) in terms of the con-
ventional invariant amplitudes A(s, t) and B(s,j)."

Although 3fg has been calculated in this fashion, it is
instructive and convenient for the purposes of the next
section to decompose the currents j& and Jz&~ in a
manner similar to that for Jc in I [Eqs. (5.6, 5.7)].

(pp) =j",'(pp) = 'L(1)"j'(p-p)
+(V.).J'.(PP)+(-,.);J;.(PP)

+(V.V5)"j ".(PP)+(V5)"j '(PP)],',
where

k' k
B(PP) =4 1— (PP+PP).

SSp

In the present investigation, we make the simplest
choice for these arbitrary functions, namely, we regard
them as constants. The restrictions in (2.2) then imply
that P=P, and hence we have effectively three free
parameters.

To obtain MB, it is convenient to define the "currents"

Jv„(PP)= (k„+k„')(PP—PP), —

Z

(PP) = ( ~
" (PP) (PP))

4mo

j (pp)=j (pp)=0,

(2.7)

where q„=k„' k„, and P and—P are SU(3) matrices for
incoming and outgoing pseudoscalar mesons.

From JABC(BP), we can project the parts J ABc
and JBABc that have the SU(3) transformation property
of the decuplet and the octet and expand them as
follows:

JABC c'A (k)+BCD(p) v

JABC @ABD(p&)cv C( k&)
(2.4)

j cD= C'ED( k') C'CE(k)+ C'ED—(k) 4'CE( k'), —
(2.3)'= ""p'

J ABC(&P) =J ijk, apy(J3P)=2[(VIC')jkJ i,i+2(&yvc)jkJ gvi]apyv,
ABC(+P) J ijk, apy(J3P) 5[J ijk, a &bp7+ J jki, p 557a+J kij, y 58ap] v

J';,k,.'= 2[J'r, k+J",,(V,V5~)9k+ J~;(V5C)jk] ' (2.8)

"M. A. B. Beg and A. Pais, Phys. Rev. 137, B)514 (1965).
"Because of the specific way in which mass splittings were introduced in I, m&=m, and M ' corresponds to the physical mass of

the baryon 8 '.
"In the absence of mass splittings these results contain the results of Cornwall et al. (Ref. 10) as special cases.
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Then,
—1 ik p k 2ip), ik 2ik),J ~,.p, = 1—2— v~+ 2 ———— u(p) 2
54 m p 3IIm p 3II iV m p I'(~»)

—1 k p ik pp, p,y„2J,.-t)v= 1+ &"—2i 1+—— — — + (k.p kp.—) u(p) 2 ~~-Bo'P7'~
~mp mo ~ ~ ~mp &(»)

Jg) {) ~ JD 7D

1 ik pk ik pk
J& '=- — 3—5—2 y~u(p)(P:B, ' ', 0.' —Tr—PB) —+— y u(p)(B-'P, ' ——'5 ' TrBP)

18 mp 3fmp mp Mmp

(2 9)

1 p k ) 5ip), ik
J&„,~'= — 2 1+ ~y),

— 1 ——you(p)(P B.' ;'8 ' T—r-BP)
18 35m pl M mp

p k ip), ik
+ (&+—v~ —

&
—v;a(p)(B:P.' ', l.' Trat)—

3fmp ~ m,

and
J'=75J~+V,V5J"~. (2.10)

The decompositions (2.7), (2.9), and (2.10) show more
clearly the structure of the U(6, 6) symmetric terms
(J j J jv J&~J&~, etc.). They also isolate the
parts of the current that would couple to the vector-
meson, baryon, and decuplet.

III. PROPAGATORS FOR 4 AND %';
ONE-PARTICLE EXCHANGES

There are two procedures that one can adopt in com-
puting the one-particle exchange contributions. The
first procedure is to regard U(6,6) symmetry for the
three-point functions (such as Tr@'+4', Tr444)) as the
syrrnnetry that relates only the coupling constants and
not the vertex functions. It is then a straightforward
rnatter to use the conventional propagators for the
physical particles that 4 and C describe and compute
the Born terms. Such a procedure [SU(6))r approachj
has been the basis of several bootstrap models. '4 An
alternative approach which is more consistent with the
original formulation" of U(6, 6) symmetry is to com-
pute the Born terms from the trilinear interaction
terms and the propagators for C and 0' derived from a
Lagrangian.

Several authors" have discussed the Lagrangian
formulation within the framework of U(6,6) sym-
metry. In the present investigation, we follow Salam,
Delbourgo, and Strathdee4 with the appropriate modi-
Qcations necessary to include the mass splittings. The
essential difference between different approaches is in
the contact terms (or nonpole terms) that invariably

"R. Gatto and G. Veneziano, Phys. Letters 19, 512 (1965);
R. H. Capps, Phys. Rev. Letters 16, 1066 (1966)."C. S. Guralnik and T. W. B. Kibble, Phys. Rev. .139, B712
(1965); S. Kamefuchi and Y. Takahashi, Xuovo Cimento 44, Ai
(1966); A. Salam et al. (Ref. 4).

appear in the propagators. The contact terms are
unique in the case of the field C because of the fact
that C obeys the Dugan-Kemmer equations which can be
derived from a Lagrangian. In the case of the 4 field,
the total symmetry of +»z requires the presence of
auxiliary variables in the Lagrangian. Different pro-
cedures lead to different contact terms, although the
residues of the poles are the same in all cases. A pre-
scription is therefore necessary to determine the con-
tact terms. We obtain the required prescription by
examining the meson-exchange contributions.

If we ignore the mass splittings, the propagator for
C is given by

(4'~~ 4'cn)+ =
1 ( iq+m—)&D(iq+m) cs

=— 4 &c+
2 m'+q'

It is easy to verify that

-', L(iq+m) ~"8 '+(—.iq+m) '8&"j

(3.1)

X$ ),"=—8 "8„,', (3.2)
m

where C satisfies the Duffin-Kemmer equation

-', L(iq+m)p8 '+(—iq+m) "8&"$4„"=0, (3.3)

and where, for convenience, we have suppressed the
SU(3) variables. Now to obtain the one-meson ex-
change contribution to meson-baryon scattering we take
the time-ordered product of the trilinear U(6,6)-
invariant terms iG4' "4is);~4)~~ and (igj4mo) 4)cn
)(CD~CO, and contract once on the meson fields. The
result in terms of (2.3), (2.4), and (3.1) is

gG
Ja"%~a jD'.

4mp
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It is clear that the terms in /Ac proportional to
BAB8c will produce a U(6,6) invariant contribution to
the one-meson exchange (obtained by letting q„=0)
which is proportional to the P term of Eq. (2.5). The
parts of the propagator containing iq's will break the
U(6,6) symmetry. Therefore, it is natural to redefine
the propagator so that the resulting "one-particle
exchange" is a pure symmetry-breaking amplitude.
This is accomplished by adding the contact term
—hABbc to the original propagator (3.1) to obtain
the symmetry-breaking propagator

(~",~")+

and (2.10) for the currents, we obtain

for vector-meso' exchange:

3Gg 1 3
-(q~q, —~,),q')&",j'i

16 mi'+q'-2
2iJ—'u (m~' kq')—q.j. ,

8$0

for buryorl, exchange:

lqq ) 3EB iq —iqy
O' J&+- 1'„~ 1& x'z)—

Mf l3fB2+q2 3f

(3.7)

m'+q'

1 (—iq+m)AB(iq+m) cB=- —&A &C +—
2-

(3.4)

Wz —iq i—Jt' Jt'+ (Jtq„J~„J~„q„J—t) . (3.8)
3f~

for decgplet exchange:

Similar considerations lead us to deGne the propagator
corresponding to the 4 Geld as 62 JD J
(+ABC + )

Z
12 &(~&~) ~

( iq+3f) A—n( iq+M) B—B( iq+AI) c—B

3E(q'+3&)

(M—3iq) AnbBB8 C—
(3.5)

G2jABC(+ABC+DBB)ABBE (3.6)

Finally when we use the decompositions (2.7), (2.9),

Note that both propagators [(3.4) and (3.5)j vanish
when the 4-momentum of the exchanged particle goes
to zero. From (3.4) and (3.5), the propagators for differ-
ent components of C and 4 [compare Delbourgo et at. ,
Zqs. (4.29) and (4.30), Ref. 7] can be obtained by
multiplying with appropriate combinations of p matrices
and the antisymmetric charge-conjugation matrix C.
The inclusion of the mass splittings, based on the work
in I, essentially amounts to introducing physical masses
in the projected propagators. If we combine the
syrmnetry-breaking propagators (3.4) and (3.5) with
the vertex functions, we can write somewhat sym-
bolically the effective meson-exchange and baryon-
exchange matrix elements in momentum space as

4Gg+A" (P')+»—n(p)(@'c'~B')+

x[c "(&)~"(-&')+~"(-&')+"(&)j
and

G%" "'(p )c'A ( &')(+ABC+ ) C—'B (&)pn»(p) ~

or in terms of the currents (2.3) and (2.4),

—-'GgJ& (Cc O'B )+jr
and

q„q& 3I& Afar —iq iq,

-Vz—2iq iq
~.+2J" ~" . (39)

HIE

In (3.7), (3.8), and (3.9), a summation over SU(3)
variables is implied. The initial, final, and exchange
masses M;, 3ff, and M~, m„' can be identiGed easily by
the SU(3) variables. The invariant amplitudes A an.d 8
obtained from these expressions are summarized in the
Appendix [(A7), (A8), and (A9)j. It is to be noted that
because of the contact terms in the propagators, the
terms that we characterize as "one-particle exchanges"
contain, in addition to the conventional exchange terms,
some extra nonpole contributions. A characteristic
feature of these symmetry-breaking "one-particle
exchange" amplitudes is that they vanish at threshold
in elastic scattering.

IV. NUMERICAL RESULTS

Before proceeding, certain limitations of the model
should be considered. The "one-particle exchanges"
that have been included represent only the nearest
singularities to the elastic threshold of meson-baryon
scattering in the sense that they contain the lowest-
lying SU(6) multiplets as intermediate states. Further-
more, these "exchange" terms are real functions of s
and t that contain divergent contact parts. The U(6,6)-
symmetric terms are polynomials in s and t that also
diverge for high energies, and if cx, P, and y are chosen
to be real constants, the corresponding amplitudes will
be real. Hence, without modifications to account for
elastic unitarity and higher resonance states, we ex-
pect our model to apply only in the low-energy region
of the physical cut, where the amplitudes are neces-
sarily small and real. This rules out the ES system,
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TABLE I. Experimental and theoretical values (using a = —p= —0.0957) of the S-wave (a2r) and P-wave (a2p, ~g) scattering
lengths for mE and XE elastic scattering.

Scattering
length

a1

a31

a33
all

a13

a2
a0

a23
a01
a03

Experimental
values

—0.114&0.003—0.088&0.004—0.096
0.205
0.171&0.005
0.157—0.042~0.004—0.038~0.005—0.034
0.215&0.005—0.101~0.007—0.039—0.029~0.005—0.030—0.205+0.005
0.03 +0.03

Ref.

20
16
17
20
16
17
20
16
17
16
16
17
16
17
18
19

Calculated
values

—0.080

0.160

—0.071

0.194—0.089

—0.047

—0.194
0.709—0.034—0.002
0.020—0.026

~&»+ma&»=0. (4.2)

It was previously noted that the "one-particle ex-
changes" also vanish at threshold. Consequently, in
elastic scattering at threshold and hence for s-wave
scattering lengths, it is only the a and P terms that
contribute. It is apparent from (A6) that the n term
has the SU(3) and charge-conjugation structure of a
singlet scalar meson exchange in the t channel (without
a pole). The P term is a combination of two terms, one
of which has the structure of an exchange in the t
channel of an octet of scalar mesons and the other, an
octet of vector mesons. These properties of the n and p
terms ~il,l be exploited later.

which is known to be absorptive near threshold, and
leaves xE and EX elastic scattering as the most
likely candidates for consideration. Since experimental
data for these reactions are parameterized as partial-
wave amplitudes and scattering lengths, we will com-
pute these from our model. We take the low-energy
regions to be P~,b=0—300 MeV/c and P~,b ——0—400
MeV/c for ~E and EAT, respectively, slightly above the
inelastic regions for both (P~,b is the laboratory mo-
mentum of the incident meson).

The "U(6,6)-symmetric" eRective matrix elements, as
can be seen from (A4) and (A6), contribute to t= 0, 1, 2
partial waves. In the case of elastic scattering (M;
=Mr=M, m, =mt=m),

C(s, t)+D(s, t)+D(u, t) =0 (4.1)

and the contribution from the y term can be written as

A &»(s, t) = (q/36) L(3n—e)D(s, t)+ (38—e)D(u, t)],
B&(s,t) = ay(8 —X))by(t).

It can be verified that at threshold, viz. t=0 and
s= (M+m)', u= (M—m)',

The "one-particle exchanges, " in general, contribute
to all partial waves. When the nonpole parts are ig-
nored, the "one-particle exchanges" are just the stand-
ard vector-meson exchange, baryon exchange, and
decuplet exchange. The parameters G and g and hence
all the required coupling constants, as discussed in I,
are determined from the m-E and p-mx' coupling con-
stants:

50 m ' )( 2M~)'
111+-

81 4M~'j E m, ]
8

g2 g
2

81

(4.3)

m, 1m2
g-»= —-I 3+~3~ M~ 4MN'

G 4( 5M~ 3 m~)
g'.»=—-I 1+

v2 9~ m, 4M~)

(4 4)

G4 3M~ 9 m)
g capp 3+

v2 9 m, 4MN)
t'

gyps =g ps' =0, mp=m„.

The Yukawa-type meson-baryon coupling constants
and the trilinear decuplet-baryon-meson coupling con-
stant are tabulated in I.

Now we calculate the S-wave scattering lengths for
all isospin states of vrlV and EE(an+). Since a2s only
depends on the threshold values of the a and P ampli-
tudes, we have

m') 2m1+,I(&+p)+ p, ---
M~+m mo') 3 mp

—8M~ ( m' 4m
—

I
1+ (+p)—

M~+ m k mo' 3 esp
(4.5)

( mx') 4 ma
I 1+-; l(a+ap)+ p, -

Mx+mtr E mo'2 3 mo

—8M~ ( ma'
Qp=

I
1+-

M~+mrc k mo'

(Note that u and p have dimensions of inverse mass. )
If we eliminate the parameters and put in the numerical

From g», ~o'/4n. =15 and g, '/4~= —'„we have G'/4s.
= 2.05 and g'/4x =0.0494. The vector-meson couplings
needed in xX and EE scattering are given by the fol-
lowing relations:

g.-=2g.xx= (9/2~~) g,

G2( 1m, 5 m, '~

v2 3k 3 M~ 12 M~'j
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FIG. 1. sinbz ~ cosh& J for ~$ elastic scattering. The solid curves are our calculated results. The dashed curves are the fits of Roper
et al. {Ref. 17). The broken dashed curves are from the effective range approximation of Hamilton and %oolcock {Ref. 16). The data
points are from the work of Sarnes et al. {Ref.20).
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I xG. 2. sinBz JL' cosh' q~ for T=1, EN elastic scattering. The solid curves are our calculated results.
The data points are from the vrork of Goldhaber et al. (Ref. 18).

values of the masses, we obtain the relations

ag ———0.468ai+1.497ag,

Co= 3 3038&—2 27383.
(4.6)

' J. Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35, 737
(1963).

L. D. Roper, R. M. Wright, and B.T. Feld, Phys. Rev. 138,
B190 (1965).

"S.Goldhaber et al. , Phys. Rev. Letters 9, 135 (1962).
'9 V. J. Stenger, W. E. Slater, D. H. Stork, H. K. Ticho, G.

Goldhaber, and S. Goldhaber, Phys. Rev. 134, 31111(1964).

The scattering lengths determined from experimental
data by several authors have been listed in Table I.
If we use the Hamilton and Woolcock" values for mE
S waves, we obtain aq ———0.212&0.008 and ao= +0.765
~0.025. Using the Roper, Wright, and Feld'~values
gives a~———0.217, ao=+0.737. In both cases, the a~

values are close to the result of Goldhaber et al."
The ao, however, is very large and far from the extrap-
olation of Stenger et aL,"whose co is consistent with
zero. This serious disagreement for the T= 0 s wave at
zero energy will persist away from the threshold and is
the major fault of the model. We will defer further dis-
cussion of the T=O, E;N system to the concluding sec-
tion, and discuss only T= —,', —,

' for xE and T=1 for EE.
Because the scattering lengths in Table I are extra-

polated from the lowest-energy experimental data, there
is a rather wide variation of values from one set to
another. Therefore, it is reasonable to determine our

parameters n, P, y not from the scattering lengths, but
by requiring a 6t to the S-wave data at the lowest
measured energies. One salient feature of the xE S-
wave scattering lengths should first be noted: For all
three values listed, a~~—2a3. This is often taken to be
evidence for the dominance of vector-meson exchange
near threshold. We can simulate this behavior and
eliminate one parameter by requiring P= —n. For wS
this has the effect of canceling that part of the P term
which has the SU(3) structure of a scalar octet ex-
change, leaving the part that has the structure of vector
exchange. For ES this cancellation does not occur, and
in fact for T=0 it is only the e term that contributes.
To 6x the remaining parameters, 0. and 7, unambigu-
ously we require the T=-,'and T=1 S waves to pass
through the lowest experimentally determined points.
With the definition IQT, Q J—sin8r j cos8rJ —fr+
(where I.=S, I', D, etc.), we require

Sii(Ei.b=100 MeV/c) =+0.100,'0

S21(Ei,b = 140 MeV/c) = —0.123 '8

This fixes the parameters (in units of inverse pion
masses),

~= —P= —0.0957,
y=3.00,

"S.W. Barnes, B. Rose, G. Giacomelli, J. Ring, K. Miyake,
and K. Kinsey, Phys. Rev. 117, 226 (1960); S. W. Barnes, H.
Winick, K. Miyake, and K. Kinsey, ibid. 117, 238 (1960).
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and allows the calculation of all partial waves that con-
tribute to low-energy ~X and EE elastic scattering. The
results for the scattering lengths are listed in Table I.

In Figs. 1 and 2, the resulting S, P, and D waves are
given as functions of laboratory momentum for
~X(T=—',, 2) and ES(T=1).For comparison, some of
the experimentally determined amplitudes are also
given. Note that the xE data of Barnes et al."come from
fitting differential and total cross sections below E = 170
MeV (laboratory kinetic energy), whereas the curves
of Roper et al."were determined by including polariza-
tion data up to E =350 MeV. Because the latter fit
includes higher-energy data than Barnes et al. , the de-
tails of the two fits differ in the region of the E*,where
data are less certain, particularly in the P» and P».
The Hamilton and Woolcock" curves for 7fE S waves
are taken from their effective-range fit to data below
E =45 MeV. The EX data of Goldhaber et al. '
come from their experiments on E+p elastic scattering,
from Pr, 140—62——4 MeV/c.

In general, our results are in reasonably good agree-
ment with the data. All of the ~E partial waves have
the same sign and qualitative behavior as the data of
Roper et al. The agreement is particularly good below
P~,b=200 MeV/c, where E* no longer dominates the
differential and total cross sections. Except for the
small negative P~~, the EE, T=1 partial waves are
consistent with the dominance of S-wave scattering
reported by Goldhaber et al. These results emphasize
the importance of the background terms, particularly
in the S waves, where the n and P amplitudes domi-
nate, and in the Pi~ partial wave where the large y
term counterbalances the large negative nucleon pole
contribution (Table II).

V. DISCUSSION AND SUMMARY

The physical motivation for our model is provided by
the fact that tensors of U(6,6) subjected to Bargmann-
Wigner equations lead to a supermultiplet structure
which corresponds exactly to that of SU(6) symmetry.
As emphasized by Salam et al. , this is entirely equival-
ent to assuming that the known particles at rest cor-
respond to the representations of a compact U(6) 8 U(6)
group. Given the possibility of such an assumption,
one can write down tensor combinations of three-,
four-, and higher-point functions which are formally
invariant under U(6,6). In the lowest-order perturba-
tion theory, they can be evaluated by substituting the
free-field solution for the tensors. Such a procedure has
considerable support from experimental observations in
the case of three-point functions constructed from +~~q
and Cz~ which describe the presently known low-lying
baryonic and mesonic states. When applied to four-
point functions, however, it leads to contradictions and
conQict with the basic principle of unitarity. Even
in the case of three-point functions, as pointed out in I,

TABLE II. Calculated values of ~N partial-wave amplitudes
(sinb~g~ cosh'~~) with one-particle exchanges and background
terms separately tabulated to illustrate their relative importance.

&lab
(MeV/. )

Sl1
60

100
140
200
240
300

S31
60

100
140
200
240
300

~11
60

100
140
200
240
300

~31
60

100
140
200
240
300

~13
60

100
140
200
240
300

~33
60

100
140
200
240

Sum of all
one-particle
exchanges

—0.0010
—0.0044
—0.0114
—0.0227
—0.0369
—0.0618

0.0022
0.0103
0.0266
0.0544
0.0838
0.1359

—0.0125
—0.0508
—0.1206
—0.2840
—0.4310
—0.7094

—0.0022
—0.0083
—0.0185
—0.0386
—0.0536
—0.0769

—0.0020-
—0.0077
—0.0164
—0.0323
—0.0427
—0.0558

0.0070
0.0305
0.0813
0.2679
0.6190

Sum of all
background

terms

0.0616
0.1051
0.1512
0.2246
0.2762
0.3601

—0.0340
—0.0679
—0.1136
—0.2049
—0.2793
—0.4070

0.0086
0.0380
0.0991
0.2650
0.4316
0.7718

—0.0013
—0.0064
—0.0117
—0.0477
—0.0795
—0.1462

—0.0002
—0.0009
—0.0016
—0.0015
+0.0007
+0.0088

0.0030
0.0131
0.0330
0.0850
0.1347

Total partial-
wave amplitude

0.0606
0.1007
0.1398
0.2019
0.2393
0.2983

—0.0318
—0.0576
—0.0870
—0.1505
—0.1955
—0.2711

—0.0039
—0.0128
—0.0215
—0.0190
+0.0006
+0.0624

—0.0035
—0.0147
—0.0302
—0.0863
—0.1331
—0.2231

—0.0022
—0.0086
—0.0180
—0.0338
—0.0420
—0.0470

0.0100
0.0436
0.1143
0.3529
0.7537

there is .no theoretical justification for the procedure
except as a working hypothesis.

Since, in general-, perturbation theory in strong inter-
actions is questionable, we adopt the alternative ap-
proach based on dispersion relations. In several calcula-
tions'" based on the latter approach, it has been found
that it is necessary to introduce background terms which
approximate distant singularities in addition to one-
particle exchange contributions. It is interesting to in-
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vestigate whether such background terms possess higher
symmetries. Within the framework of U(6,6) sym-
metry, the contact terms (four-point functions evalu-
ated in the lowest-order perturbation theory) provide a
representation of such background terms. 7 If these are
supplemented by symmetry-breaking one-particle ex-
change contributions, one has a starting point to relate
a large number of scattering processes. With this point
of view, we have investigated only a limited version of
the model as applied to pseudoscalar meson-baryon
scattering, confining our attention only to the states
that form the 35-dimensional and 56-dimensional repre-
sentation of SU(6) (we could also consider associated
production, vector-meson production, and baryonic reso-
nance production in the same context). Further, the
model is incomplete for the following reasons. First of
all, we have made no attempt to calculate unitarity
corrections. Secondly, for simplicity, we have chosen
a, P, P, y to be real constants. It is more na, tural to
choose functional forms with appropriate cutoff pro-
perties in them so that they define a range over which
the U(6,6)-symmetric terms dominate. This would
enable one to use the 31'/D procedures to obtain uni-

tary scattering amplitudes, thus greatly extending the
predictive power of the model. The model then could
be tested for higher-energy behavior and polarization
predictions.

In spite of these shortcomings, it is encouraging from
the results in the previous section that we obtain reason-
ably good agreement with the presently available
experimental information in mE and E1V (T=1 state
only) scattering. There is a serious disagreement in
EE (T=O state) in that the model predicts large
S-wave scattering in contradiction with the results of
Stenger et al."Their results, however, are extrapolated
from E+d scattering at comparatively higher energies

(P~,b ——350—812 MeV/c). If further experiments (pre-
ferably E20P) con6rm the results of Stenger et at. , then
our model in its present form is untenable. In the work
of %arnock and Frye' oui the EE system, in which the
Stenger results are used, there is an indication of
signidcant contributions from higher resonances. One
may then be led to include higher SU(6) multiplets in
the scheme considered here. This and other possible
modifications discussed above need further investigation.
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APPENDIX

The purpose of this Appendix is to collect together
the results for the invariant amplitudes A(s, t,u) and

B(s,t,u) from various terms in the model. To this end,

we note that A and 8 are defined by"

e'+eT= A—(s,t,u)+i B(s,t,u), (A1)

where @=cosg, 0 being the scattering angle in the c.m.
system. The partial-wave scattering amplitude, f~+,
for a state with total angular momentum J= l~~ and
parity (—1)'+' are given in terms of A~ and B~ by the
following equation:

M;+Mrna
X A(+i W— iBi

2 i

+ (L'; 3f;)"'(Fr M—f)"'—
8mB'

M;+Mr)'
X —A iver+ W+- iB(p, , (A3)

2 i

where 5' is the c.m. energy and

F. r+M t=((W+M f)' mg ')/—2W.

U(6,6)-Symmetric Contributions

We would like to emphasize that the term "U(6,6)
symmetric" is used for convenience in the sense that
the relevant contributions can be derived from an effec-
tive Lagrangian which is U(6,6) invariant when ex-
pressed in terms of the 6elds 4' and C. The use of the
Bargmann-Wigner equations violates this invariance.
In addition, it should be noted that we include SU(3)
mass splittings.

To list the invariant amplitudes from different terms

2'A. W. Martin and K. C. Wali, Nuovo Cimento 31, f324
(j.964).

where T is the T matrix for pseudoscalar meson-
baryon scattering, and q; and qf are, respectively, the
4-momenta of the initial and final meson. The cor-
responding 4-momenta of the baryons will be denoted
by p; and pr. Let m;, mt, and M;, Mr denote the masses
of the initial and final meson and baryon masses, re-
spectively. Then, s, t, and I are the Mandelstam varia-
bles, s= —(p~+q~)', t= —(q,—qr)', u= —(p;—qr)', and
s+t+u M' +Mf'+vs +mr'. When necessary, we
denote the mass of the exchanged meson (baryon) by
m, (Mz). The partial-wave projections of A and B
are given by

1 1

A ~(s) =— AP~(x)dx, B~(s)=- BP~(x)dx, (A2)
2 —1 —I
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in (2.4), we define the following functions of s, t, snd u:
(BB)p B——B B—B (BB)n=BBjBB -,'—TiBB-;

(BB)s= TrBB

1
—2

2 (u s—) ((M;+Mf)' t)—
av(s, t) =

3 mp' 2M;BID 6=Tr( BBP—P BBP—P+BPBP
+BPBP)+Tr(BB)Tr(PP),

n= Tr( BPP—B)+Tr(BP) Tr(BP),
8=Tr(—BPPB)+Tr(BP) Tr(BP) .

1 (M,+Mr+2m, )
ay(s, t) =

9 mp

(M,+My) (u —s) —(m, 2—mf') (M;—Mg)
X

V;3Ifm p Then,

2 & '(s, t) = —4Q.F(t) Tr(BB) Tr(PP),2 (2m, +M,+M f) ((M,+Mf) '-t)—
by(t) =———

9 3f;3fgrnp'

—2
C(s, t) =— (m, (M, ItIf)'(m, +—M,+Mf)

3f;Jjt/Iym p'

(A4) B(,)( t) P

& «&(s, t) =P P (BB)w$ —;awF(t) (PP+—PP)

(A5)

+(M;+Mr) (m;2Mg+mr'SI;)

t(M;+m—~) (Mr+ m p) st—
—(Mr'+ mf' —s) (M,2+m;2 —s)j,

D (x,t) = 2 1— 1+
235;Mf 282 p

x—M, '—m, '-y x M m—&'~—

2M,m, 2M,m,

where x=N, s.
To denote the SU(3) dependences, we need the fol-

lowing definitions: (BB)w (where W=F, D, or S),

(away(s—,t)+cway(s, t))(PP PP)j, —

B&»(s, t) = Pg(B—B)w(3aw+cw) b„(t)(PP PP), (—A6)

A &&'(s,t) =—LCC(s, t)+3K)D(s, t)+3hD(u, t)g,
36

"One-Particle-Exchange" Contributions

In pseudoscalar-meson —baryon scattering, we have
contributions due to vector meson, baryon, and decuplet
exchange. We denote the corresponding invariant
amplitudes by A (~', A ' ), A &D', etc.

Vector-Meso' Exchange

3Gg 3m. y' P(M;+M, )'—tg(M, —M,) (m, '—m, 2) ~
A "'(s,t) = — P Tr((BB)w(PP PP) j aw — ——av —ay+

W' 5$y —t M;JtIsmp(my' t)—
t' 3m v' (t—4mv') E(3II~+Mf) (u s) (M;—Mf) (mP——m—f') j)

+cw~ -- av —av+ (A7)
&my' —t 9m pM;3f I ms' —t

3Gg 38$y 2 (t 4my') $(3E,+—Ms)' t$-
B&v&(s,t) = — Q(BB)w(PP PP)(3aw+cw) —— -bv(t) —bv(t)+

my —( 3 m, p.M;SIf my' —t

Conventional vector exchange is obtained by taking only the pole terms.
In the case of baryon and decuplet exchanges, it is sufficient to compute the invariant amplitudes A& ) and

B& ) due to the direct exchanges in the s channel. The corresponding I-channel pole contributions can be obtained
by the substitutions s ~ u, m, ++mt, P ~-P, and B(s,t) = —B(u,t).

Baryon, Exchange

A g(s)G' Ai(s)
f & ~(s,t) =—Mv f,(s)ft(s) [f;(s)+fz(s) 1jA ~—(s) —. —

8i 3/IE' —s 3I/p

&((25 TrBPPB+5 TrBPBP+5 TrBPBP+TrBBPP),
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G' Bg(' B()
B~ '(s, t) =—Mef, (s)ff(s) — —Pf,(s)+ff(s) 1—]B2(s)—

81 rV I„,
"—s M~

where

2M;,gMp+3X;, rs m;, r'+s-
f', f($)=

235; gM@

X (25 TrBPPB+5 TrBPBP+5 Tr BPBP+TrBBPP),

and

cV;+ Ve .Vg+ME M;+Mr
-~ (&=-(i+

'
~+ Mz —— —(4m, +M~+Mr+ 2M s) (s—Me')/2m p',

SE' p 52 p 2

( 2Me' M, 2 M—&2 s——Me')
A, (s) = —

~
1+——

ANDS p m, ' )'
3E;+35

)(
if~+A

)
s —M '

( 2 M;+Ms
Bg(s) =

~

—+
km, m 2

A 3($)=A&($)—MEA$($) q Ba($)=Bl($) MEB$($) ~

DecNP/et Exchum ge

(AS)

The results in Eqs. (A7) and (AS) follow from Eqs. (3.7) and (3.S).As explained in Sec. III, these contributions
include (i) parts due to the conventional vector or baryon exchanges calculated using the coupling-constant rela-
tions implied by U(6,6) or SU(6) &r synunetry LI, Appendix Eqs. (A2), (A3), (A11)]; (ii) parts that arise because
of contact terms in the propagators. In the decuplet case, for the sake of conciseness, we present below only the
contributions of the type (i), although the complete results from (3.9) have been included in the numerical
calculations.

2 1 O' M +Me) Mt+Me)
A&D&(s, t)=— — Iy—

~

1+-
S1 Ms' —s M,Mf mp 1 mp

M,+ M,) 3
Me — l(M~+ C;)(Mf+ Ct)+ Me+—M;+Mf)

i(2C,Cf—3II ' Mf'+t)—
2

2 1 O' M+Me Mt+M
B&n&(s,t) = —— 1+ 1+—

81 3f~'—s 3E;3If m p m, )
X L(M;+ C,)(Mf+ Cf) ', (2C,Ct M;$ Mi'—+-t)](sam—e SU(—3) dependence as in A ~n& ),

where C; and C~ are constants given by

( . . .(
X (3(TrBBTrPP TrBP TrPB)+—Tr(3BBPP 3BBPP BBP—P BBPP—+BPBP—+BPBP)),

Me'+M/ —m
C,=

2M
Cg=

ME'+Mr' mf'—
(A9)

Note that when the partial waves are projected out, all of the U(6,6)-symmetric and one-particle exchange
terms have the correct threshold dependences, i.e., f&+(q) goes as q" as q (the c.m. momentum) goes to zero.


