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between £’ and £’ is given by
~+ ko sind
— (ko cosO—B, W)’

tang =

and

E =sing$,+ cospk,’

§=cos¢s,—singk,’,
and

P,=PALEP;(R cosp— (4 /v,) sing)s,
FPA(4/v:) cosp+R sing)k..

Now tomake the Lorentz transformation 2: [ This trans-
formation is specified by

k()c+ kc,"_“ O = 'YCI:kor - 60 (I/Vor_l_M)] ;

therefore,

Be=ko,/ (Wo,+M)].
Pc'ﬁ'——-P: Pc'§c=:*:Pi(R COS¢_ (A/’Yr) Sin¢))
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and
P, Ee=v.P, B.=Fv.P:((4/v,) cosp+R sing).

(Recall that P,°=0.) There is a time like fourth com-
ponent of the polarization with which we are not
concerned. Thus, the three-vector polarization in the
second-scattering c.m. system is

P,=PA+P;(R cosp— (4 /7,) sing)s.
FvePi((4/v,) cosp+R sing)k,.

A similar derivation can be made for initial polariza-
tion Py=P;k, yielding

P.=PA+P(4 cosp+ (R/v+) sing)s,
£ P{((R/yy) cosp—A sing)k..
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Final-state-interaction theory is generalized to the case of a Reggeon (that is, a particle with mass-
dependent spin) which decays into three particles, any two of which can undergo a resonant S-wave inter-
action, It is shown that the residue functions which describe the coupling of the Reggeon to the three-particle
state can be used to calculate the corresponding contribution to the imaginary part of the trajectory function.
This contribution is not guaranteed to be positive. The formula also predicts the correct unstable two-
particle discontinuity associated with the particle-resonance configuration of the final state.

1. INTRODUCTION

N a previous paper! it was shown how, in an ap-
proximate formulation which used unstable-particle
amplitudes, the three-body problem could be discussed
in terms of Regge trajectory and residue functions, The
specifically three-particle effects in the calculation were
associated with the corresponding discontinuity of the
Regge trajectories.

The analytic properties of the trajectories a(s), of a
two-particle system, with center-of-mass energy s/?, are
well understood. They are real analytlc functions in the
s plane cut along the positive real axis from threshold to
infinity except for possible singularities arising from the
coincidence of two trajectories. Other two-particle
channels coupled to the original one do not disturb this
picture. In the case of channels with three or more
particles even the existence of trajectories has not yet
proved. Some progress has been made recently, how-
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1I. T. Drummond, Phys. Rev. 140, B482 (1965).

ever, in the analysis of the problem of three-particle
unitarity and complex angular momentum.?—®

The purpose of this paper is to see to what extent the
existence of trajectories can be reconciled with three-
particle unitarity or, at least an approximate version of
it. It will be assumed, therefore, that trajectories do
exist and that their analytic properties are the same as
those of two-particle ones.

In Secs. 2 and 3, the model used as a framework for
the discussion is described and simplifying assumptions
made about the structure of the scattering amplitudes
involved. The analytic properties of the three-particle
contribution to the imaginary part of an elastic-scat-

%2 Ya.I. Asimov, V. N. Gribov, G. S. Danilov, and I. T. Dyatlov,
Yadernaya Fiz. 1 941 (1965) [Enghsh transl.: Soviet J. Nucl.
Phys. 1, 671 (1965)]
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1. T. Dyatlov, Zh. Eksperim. i Teor. Fiz. 48, 1776 (1965) [English
transl.: Soviet Phys.—JETP 21, 1189 (1965)7].

4Ya.I. Asimov, A. A. Anselm, V. N. Gribov, G. S. Danilov, and
I. T. Dyatlov, 7h, Eksperim. i Teor. Fiz. 49, 349 (1965) [Enohsh
transl.: Soviet Phys.—JETP 22, 383 (1966)]

5 1. T. Drummond, Phys. Rev. 140, B1368 (1965).
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FiG. 1. Reactions considered in
T the paper.
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tering amplitude are discussed in Secs. 4 and 5, the
implications for the imaginary part of the Regge tra-
jectory are worked out. From this analysis emerges the
importance of calculating the residue functions for the
coupling of a Regge pole to the three-particle state.

In Sec. 6 the two-particle discontinuity formula which
provides a basis for the dynamical calculation of the
residue functions is introduced and discussed. Its ex-
pression in terms of partial waves is deduced and the
dynamical equation for the residue written down in
Sec. 7. The analytic properties of the solutions of the
equation are discussed in Sec. 8.

Finally in Sec. 9 it is shown that the resulting three-
particle discontinuity formula predicts an unstable two-
particle discontinuity which is consistent with the as-
sumptions made.

2. THE MODEL

The model used in this paper has been discussed in
two previous ones.®® It involves the elastic scattering of
two scalar particles of masses m4 and msg,

A+4+B<> A+B, n
and the production of three scalar particles of mass #.,
A+B < rvtrtrw. (2)

It is assumed that the = mesons are identical. Another
reaction of importance is elastic w-m scattering

Tt 3)

These processes are illustrated in Fig. 1. In addition it
is assumed that reaction (3) is dominated by an S-wave
resonance, the p meson of (complex) mass m, The
following reactions therefore, are also of interest:

A+B e 14y, 4)
r+p <> m+p. )
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The amplitudes describing these processes, which in-
volve the unstable p meson, are defined as in Ref. 1, to
be certain factors in S-matrix pole residues.

3. STRUCTURE OF THE PRODUCTION

AMPLITUDE

The amplitude for reaction (2) is denoted by 7. If the
various momenta are as shown in Fig. 1, then

T= T(S; 51752)S3yt1;t2yt3) ) (6)
where the arguments of T are

s=(patps)?,

s1= (ps+pi)?, @
(3,7,k)=cyclic permutation of (1,2,3),
ti=(pa—p:)?.
It is convenient to define also
;= (ps—ps)*. (®)

The kinematics of reactions (1) and (2) have already
been described in detail in a previous paper.®

In order to create a theoretical framework for dis-
cussing 7" it is necessary to know something of its
analytic structure. The complete structure is necessarily
rather complicated since the crossing property of
relativistic amplitudes requires T to describe not only
reaction (2) but also such processes as

A4 Bdrtr.

The concern of this paper is with the constraints
imposed by unitarity on the residues of Regge tra-
jectories in the direct reaction. No attempt therefore,
will be made to satisfy the requirements of crossing.
Just sufficient structure will be included in order to
guarantee the correct analytic properties, or what is
considered a good approximation to them, for the Regge
residues.

The nature of the approximation to be made is
exemplified by the equations for the m-w scattering
amplitude, 4., used as a basis for the calculation. In
Ref. 1 it was supposed that 4., could be calculated in
the Reggeized strip approximation of Chew and Jones.”
A more drastic approximation scheme due to Cini and
Fubini? is assumed to hold in this paper. It utilizes only
the S-wave absorptive part in the three =-m reactions
related by crossing and could be justified on the basis of
the more elaborate calculation. Its plausibility depends
of course, on the assumed dominance of the resonating
S wave.

It is assumed then, that

A r(tiu,0)=8x[F () +F () +F (v)], )

7 G. F. Chew and C. E. Jones, Phys. Rev. 135, B208 (1964).
8 M. Cini and S. Fubini, Ann. Phys. (N. Y.) 3, 352 (1960).
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where . :
F)=- / ——~f(i’) : (10)
T J dmn? i -
and
1= (potps)*=s1, 1)

u=(pa—p2")?, v=_(po—ps")?,
the momenta being those of Fig. 1.

The function F(#) is determined by imposing S-wave
unitarity on 4., by means of the N/D method and
requiring the input and output absorptive parts to
coincide. That is, a bootstrap solution is sought. The
S-wave amplitude is

1

1
Arr()=— | dxA..(tuy),
16

T J—1

where « is the cosine of the 7-m center-of-mass scattering
angle. Dynamical equations determining 4., (¢) are

Amr(t):N(t)/D(t) H

1/~ di
D=1 [ =),

T 2 — (12)
N(@)=B()+ / d,/__f_ﬁ &N,
—i
where
B)=A.())~-F(),
and
p(O)=[(t—4m,*) /4], (13)

An S-wave resonance or bound state of mass M
encountered in reaction (2) contributes a term to 7" of
the form (see Fig. 2)

TP =—g4pA (s1,55,53)/ (s—M?), (14)

where g4p is the ABM coupling constant and 4 (sy,53,53)
is the amplitude for the processes

r+re> T+ M, (15)

(16)

if M is unstable. An approximation consistent with the
assumptions of the - calculation is to put

and
M atrtm,

A (51,52,55) =8a[G(s1)+G(s2)+G(s5)],  (17)
where ) p
00 51’
Gls)=~ [} e, (18)

For process (15) this is again the Cini-Fubini approxi-
mation® and for (16) it is the Khuri-Treiman approxi-
mation.® The function G(s;) can be determined, to
within an over-all normalization, by imposing S-wave

9 N. N. Khuri and S. B. Treiman, Phys. Rev. 119, 1115 (1960).
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F1G. 2. Pole approximation to A M
the production amplitude.
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unitarity on reaction (14) by the N/D method and
seeking a bootstrap solution.

If interest were restricted simply to fixed s-plane
poles there would be no justification for going beyond
Egs. (14), (17), and (18) in constructing an approxi-
mation to 7. Since, however, the aim is to accommodate
Regge poles in the approximation it is necessary to
include a dependence of 7" on the momentum-transfer
variables. This can be achieved by writing

T=T1+T+Ts, (19)
where

Ti=A(s,s;,t,-,u,~) s 1/—‘_—' 1, 2, 3. (20)

Because T, for example, depends only on (si,f1,%1) it
describes the production of (ms,m3) in a relative S wave.
Similar remarks apply to T and 7.

The existence of Regge poles is guaranteed by re-
quiring the asymptotic behavior for large ¢; of each T';
to be governed by terms of the form

T (s,5.) (e kx) 1)
where =+ takes account of the signature of the trajectory.
Of necessity the same trajectory controls the asymptotic
behavior of all three contributions to 7" and because of
the identity of the = mesons the residue function
T'(s,s5), is the same in each case also.

A more precise statement of the above requirements
on T is as follows. It is being assumed that the structure
of T'; in the momentum transfer plane may be described
in terms of #-type and u;-type singularities. Examples
of these would be poles and normal thresholds in ¢; and
u;, respectively. Singularities corresponding to other
Landau curves will exist but the assumption is that they
can still be classified in the manner stated. A simple
realization of this situation is the model illustrated in
Fig. 3 in which 7, is given by a sum over what are
essentially ladder diagrams. The contributions in the
first line produce #-type singularities while those in the
second produce singularities of #; type. This model is
basically the same as one discussed by Azimar ef al.2
Because of the relations

Li=ma’tmat—2pa0pit-2pap iz, 22)
Ui=mpPt+ml—2paopio—2papisi,
where
2= pA 'P'i (23)

the ;- and #,-type singularities are reflected in the z;
plane where they may be referred to as singularities of
right type and left type. In the limits (sd=ie, 5;==7€) the
example of the box diagram of Fig. 4 which was dis-
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cussed in a previous paper,® shows that the right-type
singularities may indeed lie on the positive real z; axis.
At least they are expected to remain away from the
negative real z; axis. The same example shows however,
in the limits (s=tie, s;Fi¢) that the right-type singu-
larities can lie on the negative 2; axis. Similar remarks
apply mutatis mutandis to the left-type singularities.

This classification of singularities permits 7'; to be
written as

Ti=A(S,Si,Zi)=AR(S,S«;,Z@')+AL(S,S¢,Z¢) y (24:)

where AF is a dispersion integral over right-type cuts
and AL the same over left-type cuts. Amplitudes of
definite signature may be defined by

Ti®=AB (5,54,2:)=A%(5,5:,2:)
FAL(s, 55, —25).  (25)

From the above discussion it follows that these ampli-
tudes do not have singularities on the negative real z;
axis in the limits (s=ie, s;27¢). The asymptotic be-
havior of the amplitudes of definite signature is of
course, controlled by Regge trajectories of corresponding
signature.

Finally it is assumed that the residue function satisfies
a subenergy dispersion relation,

ds 1"
(26)

1 00
P(s,s,-)=—f g(s,57).
T J amg? S — 55

It turns out that this is consistent with the unitarity
equations used.

Fic. 4. Box diagram.
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F16. 3. Model for the produc-
tion amplitude.

4. THE THREE-PARTICLE DISCONTINUITY OF
THE ELASTIC-SCATTERING AMPLITUDE

The amplitude for reaction (1) will be denoted by
T 45(s,2), where
g=pa-pa. @7
Unitarity and Hermitian analyticity imply that the
three-particle discontinuity of T4 is

A3 T4p(s,2)= 'i(21r)4/dp (B) T (5455 14,52453+,%1,%2,%3)

X T(S*,S1_,32_,33_,21,,22’,23,) ’ (28)
where
1 3
dp(3)=——1I d*p:6(p2—m,?)
(2m)t =
X6 (prtpatps—pa—ps). (29)

The =+ subscripts attached to the energy variables
indicate the senses of the limits onto the real axes.

If the elastic scattering amplitude of definite signature
T4, is defined in the usual way, then the arguments
of Ref. 5 show, when the identity of the = mesons is
taken into account, that

A0sTan® (5,8) = 3i (2)" / dp(B)A® (5,514,

X T1(+) (s_,sl_,sz_,83_,zl,22;z3) ’ (30)
where
T1(+) (3,31;32733121)22’23)
=AM (5,51,21) +AD (s, 52, —22)
+A - (s, S3, —Za) . (31)

The difference between the situation in this paper
and that in Ref. 5 is that in this case it is not immedi-
ately clear that the various contributions to the uni-
tarity integral in Eq. (3) have singularities only in the
right-half z plane. That they do in the case of the model
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of Fig. 3 follows from the fact that they are all contri-
bution to the three-particle discontinuity of the scat-
tering amplitude illustrated in Fig. 5 which, at least for
restricted ranges of the masses, satisfies the Mandelstam
representation.

A simple example of this sort of model has been dis-
cussed in Ref. 6 where it is shown that the simplicity of
the final result may be due to cancellations occurring
within the unitarity integral. Indeed this may be con-
sidered the usual state of affairs. The reason can be
understood by writing the discontinuity equation in the

form
31 (s1/2—mz)? 7 mq2
[ ()G
(27r)5 ey 45112 811/2

T4 (s,z):
X fdﬂl A 1(+) (S,Sl+,Z1)

XM 1,0 (s_,51,21),

(32)

where

M 1,0 (s_,51-,21)
1
=;L— /ngg T1(+) (S_,Sl_,Sg_,Ss_,Zl,Zz,Za) , (33)
™

and g, is the momentum of 7, in the (2,3) center-of-mass
frame, dQq; is the differential solid angle of ¢, and dQ, is
the same for ;.

From the discussion of Ref. 6 it can be seen that
although the singularities of My, (s,51,21) are by
definition all of right type they may actually lie on the
negative real z; axis. Therefore, the result of performing
the d; integration in Eq. (32) can produce an integrand
which, as a function of 2, has singularities on the nega-
tive as well as the positive real z axis. That the super-
position which results from performing the s; integration
has singularities only on the latter part must be due to a
cancellation. Reference 6 discusses an example of this
phenomenon in detail,

5. PARTIAL WAVES

The standard definition of the partial waves of a
production amplitude yields

1
T1 AP ()= 8n? / TP Doy’ (R)dR, (34)

where R is the rotation which carries the initial state
axes with z axis along $4 into the final-state ones with
z axis along $;. For A=0, as shown in Ref. 5.

T'1,0 (55 51,52,53)
=A® (J,S,Sl) +A S (J}S)SZ)PJ(_ZH)
+A4,s5,55)Ps(—213), (35)

where
1

1
A('H(J,S,Si):E/ dZiPJ(Zq;)A('*')(S,Si,Z,'). (36)

-1
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Fic. 5. Model for the m X “
elastic amplitude. i it n [ his ,
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The partial-wave version of the discontinuity equation
is

Az Tup™P(J,5)=3¢ (21r)4/d;3 3)AD(J,54,514)

X T1,0(+) (]38—231—752—:33—) ) (37)
where
1 7['2 (sl/2—my)2 s9(+H)
/ 453 =——— f ds: f dss, (38)
2x)4 4s J am,? 800
and
$2® =2m 2+ (s—s1—mA2)
L[ (s1—4m 2N (s,51,m42)/s1 ]2, (39)

The phase-space integral, therefore, is over the Dalitz
region shown in Fig. 6. The value of s; for which s,
attains a maximum of (s¥?—m,)? is denoted by s. and
the lower end point s, attains a minimum of 4m,?
when s;= (s—m.?)/2.

For continuation to arbitrary J, 4™ (J,s,s,) is calcu-
lated from the Froissart-Gribov prescription,

1
A(+)(J,s,si)=—./ dz1 Qs (2:)AP (s, 55°25), (40)
v

e

where V is the contour shown in Fig. 7. Because of the
method of construction 4™ (s,s:,2;) does not have any
singularities on the negative real z; axis. Equation (40)
therefore, yields a continuation which is bounded by
eMJl for large J with A<, and the continuation is
unique in its asymptotic behavior.

It follows from this equation that

AW (J,S,S,;)—‘: (PAP!')JB(+) (J,S,S,;) ) (41)
where the reduced amplitude B, is analytic in s; where

S
1 sean 57 (s%-my

505
N s (sm,)

Fi16. 6. Dalitz region.

5= 4m?

2

8=(5-
2
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4mz,
Fic. 7. Contour V

Vv Rez: for continuing partial-
¢ +T‘ L wave amplitudes.
-1

2:=0. Because of the asymptotic behavior assumed in
Eq. (21), B (J,s,s;) has a pole at J=a(s) with residue
8nT'(s,55).

The continuation of T'1,0P (J,s,s1,59,53) is achieved in
the manner described in Ref. 5 with the result that Eq.
(35) may be used also for arbitrary J. The same is true
of the discontinuity Eq. (37) provided, as is also
explained in Ref. 5, the flat physical s, contour is re-
placed by a suitably deformed one for s;>s.. For the
term

/d[) (3)A 52 (J,S+,S]+)PJ (_ 2’12)‘4 ) (])8—332—) (42)

the deformed contour is illustrated in Fig. 8.

A proof of this result may be constructed along lines
laid down in Refs. 5 and 6 by writing the discontinuity
formula in the form

34 (s1/2—my)2 12171972
AsT a5 (J,5)= /

(27)® J g (ss1)12
XAD(J,54,510) M 1,00 (J,5_,51), (43)
where .
M1,0(+) (],S,Sl) = / d21 QJ (Zl)M1,o(+) (5,31,21) (44)
T™JV

and using the relationship

so(+)

/ dss T (7,5,5,50,55) , (45)

827

M1,0(+) (],8,51) =

491Q2

¢1 being the momentum of 7, in the (2,3) center-of-mass
frame. The s, contour in this last equation is straight-
forward for s;<s., and is the deformed one for s;>s,.
As pointed out in Ref. 6 the complicated structure of
M 1,0 (s,51,21) means that ¥ must be distributed with
care and that M, (™ (J,s,s1) can diverge as fast as e7!7!
for large J. That the integral in Eq. (43) does not is the
result of cancellations which occur when the s; integra-
tion is performed.

An important point to note concerns the behavior of
M1(J,s,51) as s1— (s¥2—m,)2. Because of its definition
by means of Eq. (44)

M1 P U,s,51)=(pap)’N1,oP (T 5,51),  (46)
where N1,0 (J,s,51) is analytic in s; when p; — 0. This
result could be overthrown by pathological behavior of
the z-plane singularities of M1,0™ (s,51,21). However,
the example considered in Ref. 6 suggests that their
behavior is sufficiently innocuous to allow Eq. (46) to
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be true. This has the rather surprising consequence that
sufficient cancellations occur when the s, integration is
performed to permit the result,

so(+)
/ dsz (pap2) BH (J,5_,52)

2(‘)
XPy(—z) = (Pap)? as p1—0. (47)
6. THREE-PARTICLE DISCONTINUITY OF
THE REGGE TRAJECTORY

An approximation to Azsa(s) can be obtained by a
generalization of a method due to Cheng and Sharp.!°
Both sides of Eq. (37) have poles at J=a(sy). It is
convenient to consider the residue at J=a(sy). The
result is, the signature superfix being dropped for
simplicity,

Yap(sy) (a2t

dp(3) (papr)*CHT (s4,514)

X T'1,0(0(54),5-,51-,52,85-) ,

=3i(27r)4 /
(48)

where 8mya5(s) is the residue of T45(J,s) at the pole
and of course,
Tl.o(a (S+)JS-751—)S2—ys3—-)

=PA"(H)[Pl“(H)B(a(S+),S__,Sl_)

+ 022D B(a(s4),5-,52-)Pasy (—212)
+ 5P B(alsy),5-,53-) Paisp (—213)]. (49)

Now when J=>~a(s_)

B(J,5—,5:-)=87T (s_,5:=)/ (J—a(s))J—al(s_).  (50)

But if Asa(s) is small as is expected when s is near
threshold then a(s,)=~a(s_) so that

B(a(sy),5—,5- )8 (s—,5:-)/Asra(s).  (51)
It follows that
71080009 = 12020 4532101,
XG1,0(5-,51-,53,53-), (52)
where
G1,0(s,51,52,53)
= p19OT (5,51) + p2* T (5,52) Pas) (—212)
+p3*OT (5,83) Pagoy (—215) . (53)

The + suffix on s has been dropped when s appears as an

dms,

A

l .........

I'16. 8. Distorted s, contour, upper end.

10 H. Cheng and D. Sharp, Ann. Phys. (N. Y.) 22, 481 (1963).

S,
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argument of a or v, on the grounds that these func-
tions are essentially real in the approximation being
made. Of course, the phase-space contour is the de-
formed one described in the previous section. The
discontinuity can also be expressed in terms of the
residue of Ny,0(J,s,s1) which is 87G,0(s,s1), where

1 89(+)

Pla(s)Gl,o(S,Sﬂ: / ngGl,o(S,Sth,S:;) ) (54)
520

4q 192

which explains the notation. That is

7 (s1/2—mqg)? 1|-2p1q2
v48($)Asa(s)= / dst e
(27!')4 dmqg? (5731)1/2
XT(5,51)G1,0(5,51).  (35)

Clearly Gy, is essentially the S-wave projection of Gy,
in the s; channel.

When a(s)=0 and the Regge pole corresponds to an
S-wave resonance or bound state, Gi,0 reduces to the
right side of Eq. (17). In order to be able to calculate
Asra(s) it is necessary to obtain the amplitudes T'(s,s.)
describing the coupling of the Regge pole to the three-
particle state. These amplitudes may be thought of as
describing the decay of a Reggeon (a particle of mass-
dependent spin) into three particles. The theory for
calculating them, which is set out in the following
sections is then a generalization of the CFKT approxi-
mation [Eqgs. (17), (18)] to the decay of an unstable
particle of fixed spin.

7. TWO-PARTICLE DISCONTINUITY

The discontinuity of interest is that across the cut
beginning at s;=4m,2. It is given by

Ag,rT(3,51,32,83,251,152,13)

=’i(2#)4/dp(2,3)T(S,Sl+,82”,53”,fl,fgu,tg“)

XA wn'(sl—-,u,v) ) (56)
where dp(2,3) is the (ms,m3) phase space and
s''=(prtps")?, s’ = ()2, 7)

B'=(pa—p")?, 1= (pa—ps").

Since unitarity has been imposed only on the S wave
of m-m scattering attention can be restricted to the
implication of this equation for the partially projected
amplitudes:

1
My,0(s,51,21) =— /dQ23T. (58)
4
Equation (56) yields
AorM1,0(5,51,31) = 2ip(51) M 1,0(5,514,81) Az (512) . (59)

THREE-PARTICLE REGGE TRAJECTORY

1755

When both sides of this equation are separated into
terms of left type and right type it can be seen that

Az,,MLo(.S‘,Sl,Zl) = 21p (Sl)Ml,oH') (S,Sl+,21>A T (31._) . (60)

Bronzan and Kacser!! and Bonnevay!? have pointed
out ambiguities associated with the partial-wave pro-
jection in Eq. (58). The results of their discussion will be
considered in the next section. For the moment the
ambiguities may be resolved by requiring the projection
to be straightforward when s;=4m.,?. The meaning of
the functions for other values of s, is determined by
continuation from threshold.

Equation (60) implies that

Ag,.-MLo('H (],S,S])
=2ip(s)M 1,0 (J,8,514) Az (s1-).  (61)

Equating the residues at the pole J =a(s) it follows that

Agnél'o(é‘,sl) = 21:[)(51) G‘l'o(s,sl_,,)A T (Sl...) . (62)
Because of this discontinuity equation
Gl,o(s,sl)="1.0(3;51)/D(31) ’ (63)

where #1,0(s,s1) does not have the subenergy normal
threshold cut. The numerator function is given by

IHI,O(S,SI/)—'HI,O(S,SI)

1 0
%1,o(s,s1)=H1’0(s,sl)+~/ dsy
T J dmy?

81/—81
Xp(sdN(st'), (64)
where .
Hy,0(s,51) = G1,0(s5,51) —T'(s5,51) . (65)

It follows that Hi, is itself determined by I'(s,s:). A
bootstrap solution is obtained by requiring the input T
to coincide with that obtained from the output.

It should be noted that the dynamical equations,
(62)-(65) are homogeneous and do not determine the
normalization of I'(s,s;). A convenient way of fixing this
is to require I'(s,s;) to have the correct residue gy (s)/V3,
at the subenergy pole s;=m2, where v(s) is the Regge
residue obtained from the amplitude for reaction (4) and
g is the prr coupling constant. The factorization
property of Regge residues requires that

v () P=v4B()vxo(s),

where v, is the residue obtained from the amplitude for
reaction (5). Thus

T'(s,5:) =gv(s)v(s,5)/V3, (67)

where y(s,s;) is a solution of the dynamical equations
with unit residue at s;=m,% Substituting Eq. (67) into
Eq. (52) the result is

Agrar(s) =4 (2m) gy ry (5) / dp(3)p1* Py (s1,514)

I Xgl,o(s_,S]__,Sz_,Sg_) ) (68)

11 J. B. Bronzan and C. Kaczer, Phys. Rev. 132, 2703 (1963);
C. Kaczer, ibid. 132, 2712 (1963).
12 G. Bonnevay, Nuovo Cimento 30, 1325 (1963).

(66)
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F16. 9. Cuts in the s; plane of Hy,o(s,s1).
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where g1,0 bears the same relation to y(s,s1) as Gy,0 does
to I'. Because of the factorizability property of residues,
Eq. (68) makes no reference to yap. By making the
identification

R(a(s),s)=2 (27")582/(1!_’ (3) 1y (54,514)
X g1,0(5-,51-,52-,55-) ,

the claim made in a previous paper! about As.a(s) can
be substantiated.

In the next section the analytic structure of Gi,o is
considered in detail particular regard being paid to the
relationship between the function calculated in this
section and that which appears on the right side of
Eq. (55).

8. THE ANALYTIC STRUCTURE OF & ¢(s,s1)

The singularities of Gy,0(s,s1) may be deduced from
the fact that

Gl,o(s,sl)=I‘(s,s1)+H1_o(s,s1). (69)

The first term gives rise to a normal threshold cut which
runs 4m,2<s;<o, and the other singularities arise
from the second term. Because of the identity of the =
mesons this may be expressed as

P19 H o(s,51)

1 s9(+)
= / dSz Pza(s)l‘ (S,SQ)P4(3)<_Z:[2) . (70)

29192 J 52

It follows that H(s,s;) is analytic in the s; plane cut
along the image of the s, normal threshold cut which
is generated by the equations

s P =55, Am2<s52< 0. (71)

This mapping has been studied by Bronzan and Kacser
and by Bonnevay.? In this case, Eq. (70) is made
precise when s;~24m,? by adding —ie to both s and 52 on
the right side. Therefore, it is convenient to distribute
the cuts as shown in Fig. 9, where they have been drawn,
so that analytic continuation from threshold can be
effected by moving along the real s; axis.

As pointed out in Refs. 11 and 12, when continuation
is made to values of s;> (s—m,2)/2 the lower end of the
sz contour in Eq. (70) is wrapped around the branch

IAN T. DRUMMOND
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point sy=4m,2 This situation is illustrated in Fig. 10(a)
(the deformation round p,=0 which affects the upper
end is omitted for simplicity). For s;> (s¥2—m,)? the
contour can run between complex values. The function
G1,0 defined by these carefully arranged s, contours is
the one calculated in the previous section. The function
used in Eq. (55) however, derives originally from
M1,0P (s,51,21) calculated in Eq. (33) by means of a
physical subenergy S-wave projection which utilized flat
integration contours even when s> (s—m,?)/2. The
result is that in this case Gy, is calculated always with
the flat s; contour illustrated in Fig. 10(b). The
two functions, therefore, while they coincide for
51< (s—m,?)/2 differ when s, is greater than this value.
It is easy to verify that this difference is just the
discontinuity across the cut running below the real axis
in Fig. 9. A convenient way of encompassing the differ-
ence between the two functions is to permit Gy, to be
the same in both cases but to require the s; contour in
Eq. (55) to run along the real axis from threshold to
(s—m,?)/2 and then to cross the cut as shown in Fig. 9
and lie inside the “sack” up to (s'2—m.)2.

In the next section essential use is made of this
intimate connection between the two definitions of
Gl.O(S ,81).

9. Ase(s) AND THE =-¢ THRESHOLD

Because of the existence of a m-p intermediate state
it is to be expected that «(s) has a complex normal
threshold at s= (m,~+m,)%. This should appear not on
the physical sheet but on the unphysical one reached by
continuing from physical values into the lower half s
plane. It follows that As,a(s) must exhibit this same
singularity.

Equation (55) predicts that such a complex normal
threshold follows because it is generated when the end
point (s'2—m,)? coincides with the pole of I'(s,s;) at
si=m,2 The discontinuity is easily evaluated since the
difference between continuing one way and another
round this singularity is expressed by a loop integral
round the pole. It follows that

Ya8()Ara(s)=(—V3/2m)p(m/;?)
X (p2eH/s1) gy (5)Gro(s,m,”) . (72)

ém Sz,

Am:‘ 52(-) S(+)
2,
£ > Rc S2

Fic. 10. (a) Dis-
(a) torted s; contour,
lower end. (b) Un-

dms, distorted contour.

ami s 2. Res,

(b)
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The problem, therefore, reduces to calculating Gy,o(s,m,2),
remembering that the value sought is obtained by
continuing from inside the “sack.”

It is simplest to evaluate Gi,, not on the sheet
directly of interest but on the one outside the sack
which is reached by continuing directly from the
underside of the normal threshold cut. If G, and
A+ denote the values of these functions on the upper
side of this cut then on the lower side,

Gr,0(8,51)=G1,0"(5,51)/[1—2ip(s:) A (s1)].  (73)

As s;— m,? both the numerator and denominator be-
have like poles of known residue and the result is

Gro(s;m2)=—i(4n/N3)y(s)/go(m,2) .
If this value is substituted into Eq. (72) the result is

(75)

(74)

Arp(s) =207z, (5) pr* /512,

which is exactly what is expected for the approximate
value of a two-particle discontinuity of a Regge
trajectory.1?

It is still to be established that this value is correct
even though evaluated on the wrong sheet. This follows
from a property of the N/D equations that the N
function when evaluated at a pole position has the same
value on all sheets. Equation (64) can be written

n1,0(5,51) = H1,0(s,51) D (s1)
®© dSll

1
+- Hi,0(s,51)p(s1)N (s1).

T J 4me? S1 — 81

(76)

THREE-PARTICLE REGGE TRAJECTORY
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At a pole position D(s;) vanishes and the cuts of H;,g
cease to influence the value of #1,0(s,s1). It follows that
n1,0(s,m,2), and hence Gi,o(s,m,2) has the same value
inside and outside the “sack.” This proves the result.

10. CONCLUSION

In this paper it has been shown how to discuss a
generalization of the theory of a final-state S-wave
interaction to the case where the production amplitude
exhibits a Regge-type dependence on momentum trans-
fers. In particular it was possible to obtain a generaliza-
tion of the CFKT approximation to calculate the
residue functions which describe the coupling of the
Regge pole to the three-particle state.

It was shown that the three-particle discontinuity of
the trajectory function a(s) could be calculated by
means of a unitarity-type integral which involved these
residue functions. The unitarity-type integral was one
of the reorganized kind discussed in a previous paper
and involved deformed contours which included points
outside the physical region. For these reasons it cannot
be concluded that the three-particle contribution to
Ima(s) is positive. Nevertheless, the formula for this
contribution is such that it predicts correctly (within
the approximation) the unstable two-particle discon-
tinuity of a(s) associated with a particle-resonance
configuration of the final state. This last result depends
on imposing subenergy unitarity conditions correctly.
It suggests that, to the extent that particle-resonance
configurations dominate three-particle states, the con-
tribution to Ima(s) coming from these states will in fact
be positive where it is of any size.



