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It is shown that there are three phase-shift ambiguities that can occur when not all possible observables
are available for the phase-shift analysis at a given energy in spin-0 —spin--, scattering. Two of the ambiguities,
change of sign of the phases and exchange of opposite-parity phases, have been recognized for some time.
The third ambiguity, which is the combination of the first two, can be resolved only by measurement of the
spin-rotation parameter.

i. INTRODUCTION

A LTHOUGH there is agreement in coarse detail
among most of the extensive pion-nucleon phase-

shift analyses currently available, ' there is considerable
disagreement in oner detail. Further settling of these
disagreements will, of course, be obtained by measur-

ing observables (differential cross section, polariza-
tion, and spin-rotation parameters') at energies and

angles where they have not been measured before. The
charge-exchange polarization has been measured only
at one angle at one energy' and the spin-rotation param-
eters have never been measured.

It is shown in this work. that in an analysis at a
single energy there is an ambiguity of partial-wave
amplitudes that cannot be resolved unless a spin-
rotation parameter is measured. However, the energy
dependence revealed by analyses at several energies or
by energy-dependent analyses may serve to settle the
ambiguity without measurement of a spin-rotation
parameter.

II. SCATTERING EQUATIONS

Consider pions scattered by a polarized proton target
with polarization P;. The total cross section 0-~, the
differential cross section for the scattering 0(8), and
the polarization of the recoil nucleon P(8) in the c.m.
system are given by4

where jl=kX (—k')/I kX (—k') I, k is the incident pion
c.m. momentum, and k' is the recoil-nucleon c.m.
momentum (thus, the scattered pion c.m. momentum
is —k'), and 8 is the c.m. scattering angle between
incident and scattered pion. The non-spin-Qip amplitude
is

f= f(8)= p (j+2)Pj I'j 1/2+~—+I'—j+1/2]
j=i/2

and the spin-Rip amplitude is

g=g(8) = 2 L~~. I'~ r/s' ~~+I'~+-»~'3-~
j=l /2

where P "=P„"(cos8) is the Legendre functions,
A,~ is the partial-wave amplitude for the state specified

by j=l&2, j is the total angular momentum, / is the
orbital angular momentum,

A = (ge"'—1)/2ik

in terms of the scattering phase shift 8 and the absorp-
tion parameter g. Further define m= 8)& k and s= 8Xk'

(see Fig. 1).Thus

n&(m= —k,
A

m = —cos0s —sinek',
and

k = +sin8s —cos8k'.

and

~,= (4~/k) Imf(O),

~(8) = If l'+ Igl' —2 Imf*g(P' &),

For P;=0 (unpolarized target):

~(8) = If l'+ lgl'

0 (8)P(8)= —2 Imf*gj/, 2Ref*g(jIXP—;)
+(Ifl'+

I
gl') (jl P,)n —(I fl' [gl')LRx (&xP;)j—,

*Work done under the auspices of the U. S. Atomic Energy
Commission.

' For a review of the recent analyses see L. D. Roper, in Proceed-
ings of the Williamsburg Conference on Intermedi ate Energy Physics
(The College of William and Mary, Williamsburg, Virginia, 1966),
Vol. II, p. 495.

~ Y. S. Kim, Phys. Rev. 129, 862 (1963).
3 R. E. Hill et al. , Bull. Am. Phys. Soc. 9, 410 (1964).
4 L. D. Roper, R. M. Wright, and B. T. Feld, Phys. Rev. 138,

B190 (1965}.
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Fxa. 1. Unit vectors in
the c.m. system.
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and P (8)= —2 Imf*g/a (8) (in the 6 direction). We
shall follow convention and call these specific ex-
pressions the "differential cross section" and "polariza-
tion" observables, respectively.

For P;=&P;8 (target polarized perpendicular to
scattering plane):

recoil proton in the first-scattering c.m. system, and
y„= (1—k"/W") '" Thus the polarization vector in
the second-scattering c.m. system is

P(8) =P(8)a&P;[A (8) cosy+(R(8)/y„) sing]s,
+y,P;[(R(8)/y„) cosP —A (8) sing]k, '.

~, (8)= )f]s+ )g~'~2 Imf'gP;.

Thus the polarization observable can be determined
directly by measuring the scattering asymmetry.
Recent measurements of P(8) have been made in this
way. '

For P;=+P;k (target polarized along direction of
motion):

P(8) =P(8)8aA (8)P;sWR(8)P;k',
where

o (8)A (8)=2 Ref*g cos8+ ( ) f ~

'—
~ g ~

') sin8,

o(8)R(8) =2 Ref*g sin8 —([f['—] g(s) cos8.

The quantities A(8) and R(8) are called the "spin-
rotation parameters. "

Now, if s where the normal to the scattering plane of
a second scattering of the recoil nucleon off of a spin-
zero nucleus, one could determine A (8) by means of the
difference in the cross sections of the second scattering
when the polarization of the original target is switched
from plus to minus. However, similar equations apply
for the second scattering as do for the first scattering.
These equations describe the situation in the c.m.
system of the two scattering particles. So we need the
polarization vector in this c.m. system. ' Thus the
polarization vector given above must be expressed in
terms of unit vectors k, ' and s,. The unit vector k, ' is
the incoming direction of the nucleon at the spin-zero
target and s, is the normal to the scattering plane of the
second scattering, both in the second-scattering c. m.
system. The angle P of rotation from k, ' to k' (see Fig. 2)
is determined by making a Lorentz transformation of
the second-scattering momenta from the first-scattering
c.m. system to the recoil-nucleon rest system. (See the
Appendix. ) It is given by

The y„denominators come from the Lorentz transfor-
mation of the polarization from the first-scattering
c.m. system to the recoil-nucleon rest frame. The y,
factor comes from the Lorentz transformation of the
polarization from the recoil-nucleon rest frame to the
second-scattering c.m. system. The details of the
derivation and the definition of y, are given in the
Appendix.

A second scattering of the recoil nucleons off of some
spin-zero analyzing target in the plane specified by
8 and k, ' yields A (8) cosP+[R(8)/y, ) sing by means of
the difference in the cross sections of the second scatter-
ing when the polarization of the original target is
switched from plus to minus.

For P;=&P;m (target polarized in scattering plane
perpendicular to direction of motion):

P(8) =P(8)RAP, [R(8) cosP —(A (8)/y, ) sing]s„.

Wy, P,[(A (8)/y, ) cosP+R(8) sing]k, '.

In the same way as above, a second scattering yields
the quantity

R(8) cos$—(A (8)/y, ) sing.

III. PARTIAL-WAVE AMPLITUDE AMBIGUITIES
IN THE OBSERVABLES

The object of measuring the values of the various
combinations of f and g given above at different energies
and angles is to determine the partial-wave amplitudes
that comprise f and g. We now investigate the ambig-
uities that exist in the relationships between the
observable combinations of f and g and the partial-
wave amplitudes. The relevant combinations written
in terms of the partial-wave amplitudes (after much

kp sino
tang =

p (—kp cos8+Wpk /W )

where kp ——momentum of the spin-zero nucleus in the
first-scattering c.m. system, S'p= corresponding total
energy of the spin-zero nucleus, 8'=total energy of

~ For example, see O. Chamberlain et al. , Phys. Letters 7, 293
(1963).

'W. S. C. Williams, An Introduction to Elementary Particles
(Academic Press Inc. , New York, 1961), pp. 364-366; H. P,
Stapp, Phys. Rev. 103, 425 (1956),

FIG. 2. Unit vectors in
all three frames used in the
Appendix.
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algebraic manipulation) are'

(j+k) (j'+ 2)
0.(8) = P g {[Aj *A,' +Aj+*Aj.+ c—osB(A; *Aj.++Aj+*Aj. )]

1/2 j' 1/2 sin'8

X (Pj I/2Pj— I/2+—Pj+I/2Pj +I/2)+ jA j Aj —++Aj+ A j — cosB(Aj A—j~ +A—j+ Aj&+)]

X (Pj I/2P—j'+I/2+Pj+I/2Pj' I/2))—y

(j+2)(j'+2)
&2( 8) P( 8) Q Q [(Aj—Aj + Aj+ Aj' )(—Pj I/2Pj—' I/2 —Pj+I/2Pj'+I/2)

sin8j-1/2 j'-1/2

+ (Aj—Aj' — Aj+ Aj'+) (Pj I/2P—j'+I/2 Pj+I/2Pj' I/2)—]|
sin'8j 1/2 j'~1/2

X (Pj I/2Pj' I—/2+Pj+—I/2Pj'+I/2)+Aj Aj' —+— Aj+ Aj + icosB(Aj Aji++A j+ Aj~ )]

(j+2)(j'+2)
0(8)E(8)= P P {[A;*A/.++A/+*Aj. —cosB(A; *A;. +A,+*A,'+)]

and
X (Pj I/2Pj'+—I/2+P j+I/2Pj ' I/2) ) 1—

(j+-') (j'+ l)
0(8)A(8)= P g [—(A; *A;, A;+*A;+)—(P, I/2P, , I/2 P,+1,2P;,+—„,)

j-1/2 j'=1/2 sin8

(Aj—Aj'+ Aj+ A j —) (Pj I/2Pj~+—I/2 Pj+ 2IP/p —I/2)] i

where we have used

and

j+2
PJ I/2 = ('c—osBPj'—I/2 P '+I/j2)

sin8

j+2
Pj'~I/2 = (Pj—I/2 cosBP/yl/2) ~

sin8

1
ImA =—(1—

I/ cos28),
2k

this transformation is equivalent to 8 —& —8 and p —+ p.
This leads to a well-known ambiguity in the di6erential
cross section as shown below. '

(2) A; +-+A,+. That is, Bj ++Bj+ and I/j +-+I/j+. This
leads to the well-known Minami ambiguity as shown
below. ~

(3) A, *+-+ —A;+. Thatis, Bj +& —Bj+ andljj ~2//+-.
This transformation is just the simultaneous applica-

' S. Minami, Progr. Theoret. Phys. {Kyoto) 11, 213 (1954).
8 E. Fermi, Phys. Rev. 91, 947 (1953).

We shall call 0 (8), P(8), R(8), and A (8) "observables. "
We consider three physically allowable transforma-

tions of the partial-wave amplitudes, and determine
which of the four observables are and are not invariant
under these transformations. The transformations are:

(1) A*~ —A. (The subscripts are suppressed. )
That is ReA —+ —ReA and ImA-+ImA for each
partial wave. Since

1
ReA =—g sin28

2k

tion of the first two. This leads to a third ambiguity as
shown below.

The various terms that occur in the expressions for
the observables and their behavior under these three
transformations are given in the top part of Table I.
Upon combining the appropriate terms, one obtains the
behavior of the observables under the transformations
as given in the bottom part of Table I.

From Table I we see that differential cross sections
at a given energy cannot distinguish either of the three
transformations. Transformation (1) (ambiguity of
phase-shift sign) was distinguished at low energies by
utilizing Coulomb interference. ' At high energies the
Coulomb interference is negligible and cannot be used
to resolve this ambiguity. It was shown by Minami,
as in Table I, that in order to distinguish transforma-
tion (2) (ambiguity of opposite-parity states) measure-
ments of the polarization P(B) must be made at the
energy of concern. Likewise, we see from Table I that
in order to distinguish transformation (3) (ambiguity
of opposite-parity states and change of phase-shift
sign) measurements of the spin-rotation parameter
A (8) must be made at the energy of concern. The other
spin-rotation parameter E(8) is, like 0 (8), completely
ambiguous with respect to all three transformations.
However, in the previous section it was shown that
A(8) and E(8) cannot be measured separately. These
ambiguities may not be important when partial-wave
amplitudes are determined at several energies; the
energy dependence of the amplitudes may be enough
to distinguish them, particularly for transformations

9L. Van Hove, Phys. Rev. 88, 1358 (1952); J. Orear, ibid.
96, 1417 (1954).
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P(e)

Jn@IInet
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~e)net

R(Q)cos P — A (Q) sin $
rr

A(Q)cosf + R(Q)sing
rr

Frc. 3. Laboratory arrangement for measuring observables.

(2) and (3) because of threshold behavior (8~4"+'),
which is always important for some partial waves at
any energy.

IV. EXPEMMENTAL CONSIDERATIONS

Figure 3 shows the arrangement of the polarizing
magnet poles relative to the original scattering plane

for the measurement of P(8), E(8), and A (8). No great
obstacle exists in the measurement of P(8), and indeed,
several measurements of it using a polarized target have
been made. ' In measuring R(8) cos$—(A (8)/y, ) sing,
the magnet-pole faces restrict thelab nucleon-recoil angle

ice to two ranges in the 0—180' total range that is needed:

0'(fr, & tan '(iew/r) and tan '(—iRw/r) &fq& 180'.

TABLE I. Phase-shift ambiguities in pion-nucleon observables.

Expression

. (1)
Transformation: A* ~ -A Aj ++Aj+

(3)
Aj *+-+ —Aj+'~ j')+

(1) (Aj *A@ +Aj+. Ap+) (Pj 1/2Pj e I//2+Pj+1//2Pp+1//2)

(2) (Aj Ap +Ap+*Ap+) (Pj-1/2Pj +1/2+Pj+l(2Pj -1/2)

(3) (Aj *Ay++A j+*Ap ) (Pj 1/2' I/2+Pj+1(2'+. 1/2)

(4) (Aj *Aq r++Aj+*Ap ) (Pj-1/2Pj '+1/2+Pj+1/2~j '-1/2)

(5) (A& *Ap —Aj+*Ap+) (Pj 1/2Pj 1/2
—Pj+1/28@+1/2)

(6) (Aj *Ajr —A j+*Ajs+) (E~ I/2Pp+1/2 —Pj+1/2' 1/2)

(7) (Aj *Ay+—Aj+*Aj ) (Pj 1/2Pp 1/2
—Pj+1g/2Pp+1/2)

(8) (Aj Ajr+ —Aj+*Aj )(Pj 1(2Pp+1/2 —P;+1/2' 1/2)

Observables
e(())L~ (~), (2), (3), (4)7
&(e)L~(6), (&)7
~(e)L~ (&) (2), (3), (4)7
~(())E~(s), (8)7

Even
Even
Even
Even
Even
Odd
Odd
Even

Even
Odd
Even
Even

Even
Even
Even
Even
Odd
Odd
Odd
Odd

Even
Odd
Even
Odd

Even
Even
Even
Even
Odd
Odd
Even
Odd

Even
Even
Even
Odd

& Change of dummy sum indices.
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The corresponding restrictions that this puts on the
c.m. scattering angle 8 is a function of the energy
of the incoming pion. In order to measure A(8) cosg
+[R(8)/y„) sing, one magnet-pole piece must have a
hole through the middle of it to admit the incoming
pions. The advent of superconducting magnets has
made this experiment feasible. "Again, the magnet pole
faces restrict the laboratory nucleon-recoil angle to

tan '(r/-,'tp) &4r,& tan '(—r/-,'w) .

V. CONCLUSION

The resolution of disagreements among current phase-
shift sets in pion-nucleon scattering or any spin-0 —spin--,
scattering will undoubtedly require measurement of
the spin-rotation parameters. Indeed, we see above that
in an analysis at a single energy there is an ambiguity
in determining the partial-wave amplitudes that can be
resolved only by measuring a spin-rotation parameter.
However, required energy dependences may resolve
the ambiguity.
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APPENDIX

We derive here the polarization in the second-
scattering c.m. system in terms of the polarization in
the 6rst-scattering c.m. system. We do it by 6rst
Lorentz transforming the polarization from the 6rst-
scattering c.m. system to the recoil-nucleon rest system,
followed by a Lorentz transformation from the recoil-
nucleon rest system to the second-scattering c.m.
system.

Define: P is the three-vector polarization in the 6rst-
scattering c.m. system; P' is the fourth component of
the polarization in the 6rst-scattering c.m. system;
S" and k' are the recoil-nucleon total energy and
momentum in the 6rst-scattering c.m. system;
Ii,=k'/W' and is the frame velocity in the first-scatter-
ing c.m. system of the recoil-nucleon rest frame;
y„= (1—P,') 'I', P, is the three-vector polarization in
the recoil-nucleon rest system; E„p=0 and is the fourth
component of the polarization in the recoil-nucleon
rest system; 8"p and kp are the second-scattering spin-
zero nucleus total energy and momentum in the 6rst-
scattering c.m. system; 8'p„and kp„are the second-
scattering spin-zero nucleus total energy and mo-
mentum in the recoil-nucleon rest system; g, =kp, /
(Wp„+M) and is frame velocity in the recoil-nucleon
rest system of the second-scattering c.m. frame;
y, =(1—P,s) 'I', M and is nucleon rest mass; kp, is

'p H. Desportes and B.Tsai, Saclay Report, 1966 (unpublished).

the second-scattering spin-zero nucleus momentum in
the second-scattering c.m. system; k,' is the recoil-
nucleon momentum in the second-scattering c.m.
system, s,=8)&k,'; P, is the three-vector polarization
in the second-scattering c.m. system.

and
P'= +P,AP;,

P, k'=w(A/q, )P;.
Thus, the polarization in the recoil-nucleon rest frame is
P,=P8+RP;s w (A/7, )P;k'.

2. Lorentz Transformation of Polarization from the
Recoil-Nucleon Rest System to the Second-

Scattering c.m. System

The Lorentz transformation is along kp„, the spin-
zero nucleus (analyzer) momentum in the recoil-
nucleon rest frame. So we need to know the direction
of kp„relative to 8, s, and k' in order to perform the
transformation of the polarization since the polariza-
tion given above is expressed in terms of these three
unit vectors.

By Lorentz transformation 1 above (see Fig. 1 and
note that kp is opposite k):

kp 6=0, kp S=kp sin(s. —8) =kp sinH,

kp„k'=y, [(—kp) cos(s.—8)—P,Wp)

=p„(kp cosH P Wp)

and
Wp„=7,[Wp —P,(—kp) cos(s —8))

=y, (Wp —P,kp cosH).
Therefore,

kp„= kp sinHs+7„(kp cosH —P„Wp) k'.

Using this equation and Fig. 2, we see that the angle p

1. Lorentz Transformation of Polarization from the
First-Scattering c.m. System to the Recoil-

Nucleon Rest System

For initial polarization P;=&P;m the three-vector
polarization in the 6rst-scattering c.m. system is

P=P8+RP;s&AP;k'.

(See main body of this report. ) We assume that the
polarization also has a time like fourth component P'
to be determined below.

The Lorentz transformation is along k', the recoil-
nucleon momentum in the 6rst-scattering c.m. system.
So,

P„B=P, P„S'=&RP;,
P„k'= y„[HAP; p„Pp), —

and
P,s=y,[P —P,(HAP;))=0 by definition.

Polarization is defined to be a three-vector (P,'=0)
in the rest frame of the particle. Therefore,
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between k' and k, ' is given by

+kp sine

and

P, k, =y,P„k„=~y,p;((A/7„) cosP+R sing).tan =—y, (kp cos8—P,Wp)
(Recall that P„'=0.) There is a time like fourth com-
ponent of the polarization with which we are not
concerned. Thus, the three-vector polarization in the
second-scattering c.m. system is

and
s= costs, —sinPk, ', k'= sings, +cospk, ',

and

P,=PIMP;(R cosP —(A/y„) sing)s,
~pi((A/7r) cosk+R stn4)kc p pg~p (R y (A/ )

'
y)g

Now to make the Lorentz transformation 2: [This trans- Wy, p;((A/y„) cos$+R sing) k. .
formation is specified by

kp, +k,'= 0=y,[kp„—y, (Wp, +M)];
therefore,

g.=kp„/(Wp, +M)j.
P, il=p, P, s,=+P;(R cos$—(A/y„) sing),

A similar derivation can be made for initial polariza-
tion P;=&E;k, yielding

P,=P@&P;(A cosP+ (R/7, ) sing)s,

+7,P;((R/7„) cosP —A sing) k, .
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Simplified Model for a Three-Particle Regge Trajectory*

IAN T. DRUMMOND

Department of A pplied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England
(Received 19 September 1966)

Final-state —interaction theory is generalized to the case of a Reggeon (that is, a particle with mass-
dependent spin) which decays into three particles, any two of which can undergo a resonant S-wave inter-
action. It is shown that the residue functions which describe the coupling of the Reggeon to the three-particle
state can be used to calculate the corresponding contribution to the imaginary part of the trajectory function.
This contribution is not guaranteed to be positive. The formula also predicts the correct unstable two-
particle discontinuity associated with the particle-resonance configuration of the final state.

I. INTRODUCTION

N a previous paper' it was shown how, in an ap-
- ~ proximate formulation which used unstable-particle
amplitudes, the three-body problem could be discussed
in terms of Regge trajectory and residue functions, The
specifically three-particle effects in the calculation were
associated with the corresponding discontinuity of the
Regge trajectories.

The analytic properties of the trajectories n(s), of a
two-particle system, with center-of-mass energy s'", are
well understood. They are real analytic functions in the
s plane cut along the positive real axis from threshold to
in6nity except for possible singularities arising from the
coincidence of two trajectories. Other two-particle
channels coupled to the original one do not disturb this
picture. In the case of channels with three or more
particles even the existence of trajectories has not yet
proved. Some progress has been made recently, how-

*The research is sponsored by the U. S. Air F(Iree QKce of
Scientific Research OAR under Grant No. AF ROAR 65-36 with
the European OKce of Aerospace Research and U. S. Air Force.' I. T. Drummond, Phys. Rev. 140, 8482 (1965).

ever, in the analysis of the problem of three-particle
unitarity and complex angular momentum. '

The purpose of this paper is to see to what extent the
existence of trajectories can be reconciled with three-
particle unitarity or, at least an approximate version of
it. It will be assumed, therefore, that trajectories do
exist and that their analytic properties are the same as
those of two-particle ones.

In Secs. 2 and 3, the model used as a framework for
the discussion is described and simplifying assumptions
made about the structure of the scattering amplitudes
involved. The analytic properties of the three-particle
contribution to the imaginary part of an elastic-scat-

' Ya. I.Asimov, V. N. Gribov, G. S. Danilov, and I.T.Dyatlov,
Yadernaya Fiz. 1, 941 (1965) /English transL: Soviet J. Nncl.
Phys. I, 671 (1965)$.' Ya. I.Asimov, A. A. Anselm, V. N. Gribov, G. S. Danilov, and
1.T.Dyatlov, Zh. Eksperim. i Teor. Fiz. 48, 1776 (1965) LEnglish
transl. : Soviet Phys. —JETP 21, 1189 (1965)g.

4 Ya. I.Asimov, A. A. Anselm, V. N. Gribov, G. S.Danilov, and
I.T. Dyatlov, Zh. Eksperim. i Teor. Fiz. 49, 549 (1965) /English
transl. : Soviet Phys. —JETP 22, 383 (1966)j.

~ I. T. Drummond, Phys. Rev. 140, 81368 (1965).' I. T. Drummond, Phys. Rev. (to be published).


