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We study the N/D single-channel equations using a pole-dominated force and a simple model for the
variation of the ratio of the total to the elastic partial-wave cross section. We 6nd that inelasticity can
lower and sharpen existing resonances, produce new resonances, and raise the maximum energy at which
resonances are possible.

I. INTRODUCTION
"
UCH attention has recently been devoted to the

- ~ study of the effects of inelastic channels on the
properties of resonances and bound states in two-body
elastic-scattering channels. For some time it has been
known'' that introduction of inelasticity will narrow
an already existing resonance and shift it to lower
energies; in the case of bound states the binding
energy increases and the effcctive coupling constant
decreases. It remains of interest to study the situation
where the forces are not su6icient by themselves to
produce a resonance or bound state in an elastic calcu-
lation. What will be the effect of the introduction of
inelasticity in this caseP Can it produce resonances?
Where? Etc.

In this short note we introduce the coupling to other
(nonelastic) channels by using the ratio —assumed
given —of the total to elastic cross sections in a two-

body, equal-mass, single-channel E/D calculation. ' We
were motivated in our choice of form and numerical
parameters by previous studies of the pion-pion inter-
action. 45 Using a pole-dominated force cut and a
simple, reasonable model for the variation of the (total
cross section) —(elastic cross section) ratio, we obtain
results similar to those already known when the force
is strong enough to produce a resonance without in-
elasticity. We also show, in the case of axed forces too
weak to produce a resonance or bound state by them-
selves, how a resonance can arise by increasing the
coupling to inelastic channels. This should be expected
because of the time-delay interpretation of resonances.
Of some novelty, however, is our result that introduc-
tion of absorptive effects can, under appropriate circum-
stances, increase the energy at which a resonance is
possible.

* Supported in part by the National Science Foundation under
Grant No. GP-5077.

' See, for example, P. Nath, Lecture delivered at the Conference
on Strong Interactions and Elementary Particles, 1965 Summer
School of Theoretical Physics, University of Colorado, Boulder,
Colorado (unpublished). P. Qath and Y. N. Srivastava (un-
published).' J. R. Fulco, G. L. Shaw, and D. Y. Kong, Phys. Rev. 137,
31242 (1965).

3 See, for example, G. F. Chew, S-matrix Theory of Strong
Interactions (W. A. Benjamin, Inc. , New York, 1962), p. 48, or
G. Frye and R. L. Warnock, Phys. Rev. 130, 478 (1963).

4 K. Smith and J. L. Uretsky, Phys. Rev. 131, 761 (1963).
'A. Saperstein and J. L. Uretsky, Phys. Rev. 133, 81340

(1964l; 140, 8352 (1965).
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In Sec. II of this paper, we summarize the ap-
propriate E/D formalism. We work in dimensionless
units so that the particular value chosen for the pole
location is of little consequence; all that matters is the
relative location of the pole and the inelastic threshold.
In Sec. III, we introduce an appropriate range of values
for the dynamical constants, and we obtain and discuss
our results. Section IV contains a comparison of our
model with some others which have recently been used
in the discussion of the relation between inelasticity
and resonances.

II. INELASTIC N/D FORMALISM

We first summarize briefly a form of the 1V/D' equa-
tions appropriate when inelastic channels are present
and the ratio of the total-to-elastic cross sections is
given. We consider, for simplicity, only I'-wave scatter-
ing and write our scattering amplitude' ' as

v+1 '" v+1 '"5—1
A (v) = e"~"& sinb(v) =

v v 2i

Here S=exp2i5, 8(v) is the phase shift (complex) in
elastic scattering channel, and v is the square of the
barycentric momentum of one of the two particles
expressed in units in which the mass of each of the two
particles is 1.

Although the phase shift is no longer real when in-
elastic channels are open, we may —quite generally—
write the amplitude (1) in terms of two real parameters
E(v) and 8(v):

v+1 '"
A(v) = e"& "& sin8(v) .

v R(v)

From (2) it follows that

/1 v I/2

Im~(v)=( R(v)]A(v)]'
Iv

where Im denotes imaginary part. Using the optical
theorem, ' it follows from (3) that R(v) can be interpreted
as

E(v) =0 (total)/0 (elastic), (4)
' See, for example, K. Xishijima, Fundamental Particles (W. A.

Benjamin, Inc. , ¹wYork, 1964), p. 121.
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3 1/2

ImD(v) =Dr(v) = — R(v)X(v) . (11)
p 1

A (v) = VE(v)/D(v),

Thus the physical scattering amplitude (5) is completely
determined, on the physical cut, by the solution of
Eq. (10).

Bound states or resonances in this partial wave are
determined by the vanishing of ReLA(v)$ ', i.e.,

where we assume D to be a real meromorphic function
everywhere in the complex p plane except for a cut
along the positive, real axis ("physical" or "unitarity"
cut). Similarly, cV(v) is a real analytic function, mero-
morphic on the u plane except for the cuts, I', which
generate the forces ("potential" cuts). From (3) it
follows that

D (v) ( V2 )I/2
R cotta=0.

X(v) &v+1/)
(12)

) i /2

Imt A (v)P'= —
~

R(v),
v 1)

(6)
For the purely elastic case we obtain a resonance when
cotb=0, as expected. Since E(v) has been assumed to
have no poles along the physical cut or along the real
v axis between the threshold of the physical cut and the
start of the potential cut—the region in which bound
states are expected to occur—the condition for the
existence of a resonance or bound state becomes
DB(v)=0. The width of a resonance is obtained by
applying the Breit-Wigner single-level formula in the
vicinity of a resonance, i.e.,

so that
I/2

ImD(v) = —v — — R(v)&(v)
p 1

(7)

on the physical cut and

ImiV(v) = v iD(v) ImA(v):—v ip(v)D(v) (8)

on the potential cut. Ke now assume the following
dispersion relations Lno Castillejo-Dalitz-Dyson (CDD)
poles']:

VB2E2(VB)
[A ['=

DB +Dr (V VB) $DB (VB)J +Dr (VB)
v "ImD(v')dv'

D(v) =1+—
(v' —v) v'

(13)
(v—vB)'+ (r/2)'

ImX(v')d v'1
X(v) =— 9b

where the prime denotes the derivative with respect to
~ and vg is the real root of

where 0 refers to the appropriate partial-wave differ- +in.b(v —v), and (7), we obtain, along the physical
ential cross section integrated over all solid angles. cut,

In the usual way' we now write

and

D(v) =1——
P

p(v')D(v')
MB(v, v')d v', (10a)

MB(v, v') =
x '/2 R(x)

dx~ . (10b)
)).x+1 (x—v) (x—v')

To simplify matters, we take the real part of (10); the
integral in (10b) becomes a Cauchy principle part
integral and we then have an integral equation for
DB(v) =ReD(v) to be solved given R(r ) on the physical
cut and p(v) on the potential cut. Given the solu-

tion, DB(v), we obtain $(v) by using (8) and (9b).
Finally, going back to (9a), using 1/(v' —v) =P/( v' —v)

' L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,
453 (1956).See also Ref. 3.

where we have taken one subtraction at the origin in
D and none in E. Combining (7), (8), and (9) in the
usual way and making the usual assumption about
interchanging the order of integration, we obtain the
desired integral equation

DB(v) =0

Using (11),we obtain, for the total width,

v+1 '/' v —vr
R(v) =1+r t)(v —vr),

P V

where vr is the threshold for inelastic processes (vr) 0),
and e(v) is the unit step function. Then, (10b) may be
written as

MB(v, v') =M(v, v')+ rrB(v, v'), (17)

/ ~ ' )'"2(.~)v(.,)
r=2i

& vB+1 DB'(vB)

Calculating the elastic partial width F, from the com-
plete form of (13) in a similar manner, we find r/I', =R,
which gives us another check on the original interpre-
tation, (4).

To obtain useful results easily, we assume a simple
model for the dependence of R, viz. ,
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s + I

PR (max eax}
vrhere

C= vp[h'(vp) r—m(vp pp)+m /a)/a'

= 1/D~(vp), (20b)

v -h(vp) —h(v)
B,(v) =— +rm(v, vp)

P~

From (8) and (9b) we obtain

(20c)

.05
1/1V(v) =~C(vp —v),

so that (15) becomes

I' vas '" R(vs)

2 pa+1 s
~

(vp —vs)B,'(vz)~

and, finally, from (21) and (20a),

(22)

-.01
0

FIG. i. Plot of 8,'(v) versus v for various values of r. Inelastic
threshold vp=3; pole at vg= —3.

where
( x '~s 1

M(v, v') =I' dxi
ix+1) (x—) (x—')

( vs ) l~s Dz(v)
Z(v) cote(v) = =s (vp —p)

&v+1) N(v)
X[C+B„(v)i. (23)

III. RESULTS

We are interested in what the formalism, developed
in Sec II, will tell us about the development of reso-
nances and bound states as we vary the interaction
strength a and the inelasticity parameter r. We choose
simple representative values:

h(v') —h(v)
(18a)

pg = —3 and VT=3 (24)

and

P P

I.!2

h(p) = 2 ln[v'"+ (v+1)'"),
V

and note that Dg(v) vanishes when C= B„(v).In-
Fig 1, we .plot B,(v) with r as a parameter with the
choice of constants (24). The curves are all concave

X VT

m(v, p') =P dx
x(x—v) (x—v')

VT P VT

(18b)
ln VT-

PP P V P

PT
gin[ pr —p[ — in[ pr —p

P V V

Here r is the asymptotic vaIue of the ratio of inelastic
to elastic cross sections. To simplify matters still more,
we replace the potential cut by a single pole at the
negative value vp, i.e., we assume that in (10a)

p(v) = ab(v —vp), (19)

Ds(v) =C '[C+B„(v)], (20a)

where the real parameter a represents the strength of
the interaction producing the scattering. Equation
(10a) then reduces to an algebraic equation which can
be simply solved to give

FIG. 2. Sketch of Lp'/(v+f)P@R cote=De/ff as a function of v
~vith u as a parameter. Here, u& (a&&a3(c4 Gg'(8$.
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~0 WO ~~~~ %%0~

I'zo. 3. Sketch of simple attractive-potential well with
repulsive angular-momentum barrier.

d argA d|i(v)

dE de
(25)

where we have made use of (2). Associating a resonance
with a positive delay time, we can say that resonances
are possible in those parts of Fig. 2 in which 0(v) is in-

creasing. We thus have a resonance when cot0 goes dome

through the zero line. Therefore, the erst intersection
in Fig. 1 corresponds to a resonance; the second marks
the return of 0 back down through 7r/2 suggested by
the Levinson theorem. ' From (25) it follows that the
lifetime of the resonance state increases as the cot8
curve crosses zero more steeply, or from (23) as B,(v)
increases more steeply at the intersection point. Thus,
for a resonance at a fixed point vg, the time delay
increases as B,'(vn) increases. From (22) we see that
this implies a decreasing total width F, as expected.

' M. L. Goldberger and K. M. Watson, Collisiol Theory (John
Wiley 8z Sons, Inc. , New York, 1964), p. 494.'

¹ Levinson, Kgl. Danske Videnskab. Selskab, Mat. I'ys.
Medd. 25, No. 9 (1949); or see Ref. 8, p. 284.

downwards, pass through the zero axis only at v=0 and
some positive value of v, and have a positive maximum
at vn(max, r); they go to —~ as v goes to + ~. With
the choice (24), rr'C/3= —0.266—0.102r+s'/a so that
C~~O as sr'/@~~0. 266+0.102r. For

0&a&an ——w'(0. 266+0.102r), C&0;

in this range,
~
C

~
decreases as a or r increases, and the

horizontal line ~C ~
=constant moves down from + ~

so as to eventually intersect the curve B,(v). We thus
have either zero or two positive values of v (depending
upon a and r) at which D,(v)=0. One of these two
roots is to be interpreted as a resonance.

In Fig. 2, we sketch Eq. (23) with C as a parameter;
as ~C~ increases, the curves move down. The intersec-
tions of the Dn/X curve with the horizontal zero axis
correspond to the two intersections of ~C

~

and B,(v).
The delay time in scattering Q can be written as'

At a= a&, C= 0 and we have a zero-energy resonance;
from (22) we obtain zero width as we should. For
u) ag, C)0, the first intersection in Fig. 1 occurs for
negative v and we have a bound state. The second
intersection gives a rising cot8—hence is not a resonance—and is again suggested by the Levinson theorem.
This model can have, thus, at most one resonance or
bound state.

Studying Fig. 1, we may come to the following
conclusions:

1. With r fixed there may or may not be a resonance
i.e., depending upon the potential strength, the hori-
zontal line )C~ =constant may or may not intersect
B„(v), but if there is a resonance it must occur
for vn&vn(max, r). There is, thus, a maximum en-
ergy at which a resonance is possible, dered by
B,'[vn(max, r) j=0. As the strength a is increased, vn
decreases until, at a=a~, a zero-energy bound state is
formed.

The existence of an upper limit on the energy of
possible resonances may be interpreted in terms of a
simple potential picture. In Fig. 3 we sketch a simple
attractive potential with range ro, together with an
angular-momentum barrier. There will be no time delay
(no barrier penetration necessary) and hence no reso-
nance for energies E&s, where e~l(l+1)/rs' Letting.
the range be determined by the mass of an exchanged
particle, we have ro

~
vs

~

'" so that e l(1+1)(vp(.
For our numbers we obtain e 6 which compares
favorably as an order-of-magnitude result with
vn(max, r=0)-1.5.

2. Fixing the potential strength a, ~
C

~
decreases as r

increases, whereas B,(v) increases monotonically.
Hence, given any a in the range 0(+(a~, we can find
an r such that a resonance will result for r) r. No matter
how weak the attractive potential is, a resonance is
possible if there is sufhcient coupling to other channels.
Physically, this can be interpreted in terms of the time
spent in the other coupled channels before the return
to the elastic channel; the argument is similar to that
usually given for compound-nucleus formation. "As in
result 1, once an r has been found which produces a
resonance, the resonance can be shifted to smaller p

by increasing the strength.
3. As r increases, v„(max, r) increases. Thus, the range

of v in which a resonance may occur for varying poten-
tial strength may be increased by increasing the in-
elasticity of the channel. In this sense, absorption from
the elastic channel may be said to lead to a shift
upward in resonance energy. This upward shift does
not proceed indefinitely with increasing r, reaching an
absorption-dominated limit when r is great enough for
the first term of B„(v), (20c), to be negligible compared
to the second term. The limiting value is the single

' See, for example, J.M. Blatt and V. F.Weisskopf, Theoretical
2VNdear Physees 1John Wiley & Sons, Inc. , New York, 1952),
p. 340.
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Fxo. 4. Plot of B,(v) versus v for various values of r.
Inelastic threshold vz =10; pole at I ~= —3.

as in Fig. 1, but plotted now with the new threshold,
sr ——10. Qualitatively, our previous results are
unchanged. For small values of r, we see that moving
the inelastic threshold so far out electively dccouplcs
it insofar as determining resonances is concerned. ;
changes in r produce very small changes in vg and I'.
Increasing r indefinitely, we again come to the region
of absorption-dominated resonances; as before, vg
(max, max) is somewhat above the threshold, in, this
case 13.6.

Lowering the inelastic threshold to vz =1, we And
ug(max, max) 2.1, and so the discussion and. results
will be very similar to those obtained with vp=3.

To lend a sense of completeness to our discussion, wc
consider the case where the inelastic and elastic thresh-
olds coincide, v&=0. Our model, Eq. (16), cannot be
used in this case because of the singularity at v=0.
To get a qualitative insight into what occurs in this
case, we simply assume E.=constant. Going through the
formalism of II again, we Gnd that it is equivalent to
putting r=0 and letting a become Eu. Thus, in this
extreme —and perhaps unphysical —model, the opening
of inelastic channels is exactly equivalent to increasing
the strength of the potential and nothing more.

root of
fern(v, up)]'=0;

IV. COMPARISON WITH MULTICHANNEL NlD
AND ANALYTICALLY CONTINUED ANGULAR

(26) MOMENTUM MODELS

for the choice of parameters (24) we obtain vg(max, max)
4.7, The "absorption-dominated" resonance is com-

pletely independent of the potential parameters, i.e.,
we could have no force (a ~ 0, ar) 0) and still get the
same result, a resonance maximum somewhat above the
inelastic threshold.

4. For a Gxed strength a, and an r for which a reso-
nance exists, the resonance can be sharpened and moved
to lower v by increasing r; or it may be sharpened and
kept at the same vg by increasing r while decreasing u.
These results have been obtained in various other ways
before. ' ' In our formalism they follow both from the
decrease in ~C~ and from the increase in vz(max, r).
For large enough r, only the 6rst factor is operable and
the rate of change with r diminishes.

The general validity of our four conclusions can be
tested by comparison with numerical solutions obtained
with potentials more complicated than a simple pole.
For example, the general behavior illustrated in Fig. 2
is demonstrated for increasing u with fixed r=0 in
Fig. 2 of Smith and Uretsky. Similar results, keeping
the potential 6xed and varying r, were obtained in
unpublished calculations of Saperstein using the third-
order pion-pion interaction. ' Here it was seen that an
increase in r allows resonances at larger vg and gives
smaller widths for a given v~ with smaller values of the
coupling constant.

Finally, we must investigate the eGect of moving the
inelastic threshold. In Fig. 4, we give the same curves

In order to judge the trustworthiness of results from
our simple model, it is useful to discuss the assumptions
we have made in the light of some more complex models
which have been recently proposed.

Bander, Coulter, and Sham" have used the Frye
and Warnocks inelastic X/D equations Pin which the
imaginary part of the phase shift (——,

' in'), rather than
8, must be speciaedf in order to compare with results
obtained from a simple two-channel X/D calculation.
Both models were speciied to have no CDD singulari-
ties and simple pole forces. The inelastic, single-channeE
scattering amplitude agrees with the corresponding
results from the two-channel calculation so long as the:
force in the second channel is not strong enough to
produce a bound state in the second channel when.
severed from the initial channel. After the two models
disagree, the authors assume that they can be brought
back into agreement by the addition of appropriate
CDD singularities to the single-channel calculation.
The resultant hypothesis is that single-channel in-
elastic X/D calculations without CDD poles are
meaningless in the presence of coupling to a strongly
bound channel.

Bander, Coulter, and Shaw" have shown that the
breakdown in agreement between the two models
occurs when zeros in the elastic 6rst-channel S matrix

"M. Bander, P. W. Coulter, and G. L. Shavr, Phys. Rev. Letters
14, 270 (1965); see also D. Atkinson, K. Dietz, and D. Morgan,
Ann. Phys. (N.Y,) 37, 77 (1966).
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-element Sj~ move from the second sheet, through the
inelastic cut, onto the physical sheet. At this real zero
of the scattering matrix element, as determined by the
two-channel calculation, q also vanishes; the result is a
singularity of the Frye-Warnock equations —a break-
down of the Fredholm nature of the equations. Thus,
the need for CDD poles may be associated with the
fact that the corresponding single-channel integral
equation is no longer Fredholm.

In contrast, the integral equation of our model, Eq.
(10), shows no change in character at a zero of Sit, if
the left-hand cut is such that the equation was Fredholm
before the development of a zero in 5», the equation
remains Fredholm during and after the development of
such a zero. In other words, the change in R resulting
from a zero in S~~ cannot change the Fredholm nature
of the integral equation so long as R remains smooth
and bounded, which it does. Hence, there can be no
discontinuous need for CDD singularities. In view of
this contrast, it is reasonable to hope that our model—
without CDD poles —gives a fair indication of what may
happen when mazy inelastic channels are present,
combining to give a smooth function R similar to that
assumed in this paper.

As another different approach, we consider the work
of Hartle and Jones." They consider first the Frye-
Warnock p equations for very large angular momentum
where no bound states, resonances, or CDD singularities
are allowed. Assumieg the possibility of analytic con-
tinuation in angular momentum L, they continue the
Frye-Warnock p equations to small L where resonances
are possible. They distinguish between two types of
resonance poles on the unphysical sheet reached by
passing through the elastic cut. "Elastic resonances"
are dehned as those which move to the left-hand cut
as L becomes large; if the pole retreats through the

"J.B. Hartle and C, E. Jones, Phys. Rev. 140, 390 (1965).

right-hand inelastic cut in the limit of large L, it is an
"inelastic resonance. " They point out that an "in-
elastic resonance" can only be produced by a 6xed-L
single-channel E/D calculation if CDD singularities
are included. "Elastic resonances" can occur without
CDD poles and, if they do so, they require left-hand
cuts unlike the "inelastic resonances" which —because
of the CDD poles —can exist with no potential cuts. In
a manner very similar to the results of Bander, Coulter,
and Shaw, the "inelastic resonance" becomes evident-
and the CDD poles become necessary —when q passes
through a real zero, i.e., when the Fredholm nature of
the Frye-Warnock equation breaks down.

It is evident that the "inelastic resonances" of Hartle
and Jones are quite difTerent in nature from the reso-
nances considered in Secs. II and III of this paper. 80th
gine resonance behanior which would not occur in a purely
elastic calculation. The "inelastic resonance" of Hartle
and Jones is truly inelastic in that it requires no poten-
tial; however, it is necessary to specify the CDD param-
eters, as well as the inelasticity parameter q, and it
might be necessary to specify a potential as well. Our
results require only the specification of a potential and
the inelasticity parameter R. There seems to be no a
priori reason to rule out one or the other of these two
distinct types of resonance. It may even be that our
resonances will dt into the category designated "elastic
resonance" by Hartle and Jones.

From the point of view of practical calculations, e.g. ,
bootstrapping, it seems most reasonable to start the
calculation using methods analogous to those developed
in this paper since no arbitrary CDD parameters will be
necessary. Later on, it may prove necessary to include
CDD poles in some manner. In any case, it seems fairly
evident from the results of this paper and others (e.g.,
Refs. 1, 2, 11, 12) that calculations made without
reference to inelasticity are likely to be faulty and
misleading.


