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Two-Channel Model of P» ~-N Partial-Wave Amplitude
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A simple two-channel model of the P11 21--g channel and a phenomenological second channel, the o-E, is
constructed. It is shown that this model reproduces the detailed structure of the m-N phase shift and pro-
duces the nucleon pole as a dynamical bound state with the proper residue. On the basis of this model it is
argued that the forces required in the second channel are comparable to those in the m-N channel, and a
significant portion of the binding of the nucleon is produced by the o.-N channel. Finally, it is observed that
the Roper resonance (600 Mev) corresponds to a pole in the S matrix, and should be Stted into an'''SUs

multiplet.

ECENT analyses of the pion-nucleon elastic-
scattering data have revealed a number of inter-

esting features for the phase shifts up to the neighbor-
hood of incident-pion kinetic energies of 1 BeV.' Of
particular interest is the P~~ partial wave which con-
tains a resonance in addition to the nucleon pole: The
real part of the Ptt (I=-,', J=-'„ l= 1) phase shift 6 is
negative at low energy, reaches a minimum of approxi-
mately —2' at 100 MeV, changes sign at 180
MeV, and rises up through 90' at 600 MeV. In addi-
tion, the absorptive coeS.cient g rapidly becomes small
above S00 MeV. Since these detailed features are not
reproduced in the Chew-Low —type bootstrap calcula-
tions, ' " one might question whether it is possible to
construct a simple theoretical model which fits the
phase-shift data and at the same time contains the
nucleon pole in the form of a bound state.

First, we recall that the E~~ phase shift is consistent
with a modeP' in which the nucleon pole is taken to be
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a part of the potential and the absorptive coefficient
is included phenomenologically by using the Frye-
Warnock equation. "There, it was also shown that the
solution of the Frye-Warnock equation does not re-

produce the phase shift if the nucleon pole was not
included in the potential. This result indicates that the
inelastic contribution is sufficiently large so that the
solution of the Frye-Warnock equation requires the
addition of an elementary-particle pole either in the
form of a nucleon pole in the potential or in the form
of a usual Castillejo-Dalitz-Dyson (CDD) pole in the
D function. On the other hand, such a pole may not
be necessary if one employs the multichannel ÃD '
formalism instead of the one-channel Frye-Warnock
equation. '4

In this paper, we show that a simple two-channel
model can accommodate the nucleon as a bound-state
pole while giving a reasonably good 6t to the scattering
data. "The results of our model indicate that the in-
elastic channel is as important as the elastic channel
in producing the nucleon bound state and the Roper
resonance (90' phase shift at 600 MeV). We shall later
discuss the implication of this result.

In view of the rapid decrease of the absorptive co-
efBcient above 300 MeV, we approximate the in-
elastic channels by a single two-body channel in a
"G. Frye and R. Karnock, Phys. Rev. 130, 478 (1963).
'4 See, e.g. , M. Bander, P. Coulter, and G. Shaw, Phys. Rev.

Letters 14, 207 (1965).
'5 For a qualitative consideration of this problem, see D.

Atkinson and M. B. Halpern, Phys. Rev. 150, 1377 (1966).
(They favor m.E* rather than oS as the second channel coupled
to the Pll~lV channel. ) After the present work was completed, it
was brought to our attention that a similar model was constructed
by I. Bender, D. Heiss, and E. Trankle Lhnd by J. H. Schwarz,
Phys. Rev. 152, 1325 (1966)7.In each case' , the zero of the ampli-
tude is Gtted to the data but the phase shifts difter strongly from
the phase-shift analyses of Refs. 1—4. In pal'ticular, the phase shift
passes through xf2 immediately after goirlg through zero. Their
inability to 6t the phase shift is presumably due to some con-
straints on the input parameters.

1'125



j.726 BALL, SHAW, AN D WON 6
I.O

0.6-

0.2-
0

80

60

40

20

0
-5

0 200 400 600
EL(Me'I//)
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FxG. 1. Plots of calcu-
lated values (solid curves)
for g and 5 versus EI,. The
experimental points shown
are from Ref. 4. The solid
curves for 8 fall on top of
low-energy, energy-depend-
ent phase-shift analysis of
Ref. 1 for Eg(200 MeV.
Curve (a) corresponds to
the 77N phase-space factor
(a) with 5 0 ———285 m», y11
=2360) y12=191, gyp=800,
whereas (b) corresponds to
phase-space factor (b) with
5'p=5.0 m~, gyp=108, gag
=121, yg2=261.

relative S state. We call this the "0-lV" channel and
choose m 3.5m . For simplicity, we approximate the
potential for the mÃ —+ zE, xE —+ o-Ã and the (TS ~ O.E
amplitudes by a single pole at a fixed total energy t/t/0.

Together with the three residues of the pole (the T
matrix is symmetric) we have a four-parameter repre-
sentation in the XD ' form

T=ED ',

Ne po/(W W——p); i, j—=1, 2,

D;;=3;; pod, (W); —i, j=1, 2

(2)

(3)

d, (W) = p, (W')dW', (4)
(W' Ws)'—(W' W i—e)—

where p, (W') is the phase-space factor for the ith
channel and u; is the corresponding threshold.

For the cd channel, we use an S-wave phase-space
factor with a spread of the 0- mass to avoid a cusp
behavior at the fTS threshold. Specifically, we take

ps(W) = LK (W) —E (M+2/rr )j
X ( (W+M+ rN, )LW' —(M rr/, )')}"'/4W-'

W&M+2//s.
W(M+2r/r (5)=0

and

It (W) —{W M tg +[(W M r/s )2+Psjl/2}1/2

"M. Nauenberg and A. Pais, Phys. Rev. 126, 360 (1962).

where I' is the width of the Briet-Wigner resonance
describing the unstable particle 0. This expression is
similar to that obtained by Nauenberg and Pais,"
differing in that we have forced p2

——0 at the physical
inelastic threshold M+2t/s .The width used, F=0.1m,
was used only to obtain a smooth behavior of the phase
shift around W=M+m, and is not intended to be a
good representation of a physical scalar meson.

For the m-X channel, we consider two choices for

pt(W):
(a) pi(W) = (&/W)'

(b) pi(W) = (/r/M)s, W(18rl
=0, 8'& 18m..

A cutoff is necessary in choice (b) but the solution is
not very sensitive to the cutoff since there are still
four adjustable parameters in the model. Thus we
discuss the (representative) case with the cutoff at
W=18rN, . Note that the factor W ' in choice (a) can
also be considered as a form of a cutoff. As we shall
see below, solutions with (a) and (b) are not very
different.

For a given value of H/'0, we adjust the three residues
7ii, ass, and mrs to produce (i) a zero of the determinant
of the D matrix at W=M, (ii) a zero in the Tii ampli-
tude at W =8.75r/s (Er,= 180 MeV), and (iii) a zero in the
real part of the Tii amplitude at W=10.8r/s (Ez=600
MeV). One can easily verify that these three condi-
tions give rise to three linear equations for y», p»,
and (yttyss —yis'). Therefore, the solution is unique
for a given Ws. (The sign of its is undetermined since
only the square enters into the equations. )

With both choices of the re phase space (a) and (b),
we adjust H/'0 to obtain a good over-all fit to 8 and g.
The results are shown in Fig. 1. As one can see, the
major discrepancy between our results and the experi-
mental analyses lies in the fact that we do not have a
suQiciently small g. The inability to maintain a small

p over a wide range of energies is presumably due to
the neglect of higher inelastic channels.

After Gtting the scattering data, we also calculate
the residue of the nucleon pole and deduce a pion-
nucleon coupling constant. We find our calculated fs
to be 0.072 in case (a) and 0.073 in, case (b), as com-
pared to the empirical value of 0.08.""

The significance of a resonance and a bound-state
pole in the two-channel model considered here is most
easily understood by examining the two channels when
uncoupled. In this case each channel has a resonance
or bound state. When the coupling between channels
is turned on, the lower of the two poles moves to lower
energy, while the higher-energy pole moves up. A gen-

"The calculated f' is not as insensitive to the phase-space
factor as one might infer from the quoted results. We have found
a variation of ~30% among a number of reasonably good fits to
the scattering data."It is interesting to note that the input pole position for case
(b) was 5.0 m (see caption of Fig. 1), which is close to the value
of 4.6 m that one would get from N3P exchange in the static
model. The input strength y11 for this case is also close to the
value given by N»* exchange. The feature that case (a) requires
an input pole far out on the left is due to the convergence proper-
ties of the phase-space factor (a).

"Since our simple model gives a good description of all the
features of the F11 partial wave, it is worthwhile to use the D
function from this model in the Dashen-Frautschi LPhys. Rev.
137, 81331 (1963)g calculation of the r/-p electromagnetic mass
splitting. Defining D by the relation 7'ar=Pyrr/(W —Wo)P/Li, we
obtain D's which enhance the N3P' exchange even more than
models considered by G. Shaw and D. Y. Wong /phys. Rev. 147,
1028 (1966)j.
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eral result of this is that if the 600-MeV resonance and
the nucleon-bound state appear in a coupled two-
channel scattering amplitude as in our model, the
strengths of the forces in the uncoupled channels must
be such as to produce in each channel a bound state or a
resonance in the range 6.7m & W'&10.8m . This indi-
cates that the forces in the higher-mass channel (o-N)
must be comparable to those in the m-N channel, par-
ticularly in view of the higher threshold for this channel.
We believe that these results are more general than the
particular model considered here and depend primarily
on two channels being a good approximation to the
x-N P11 scattering amplitude.

The strength of the a-N channel would seem to be
sufhcient to satisfy the above requirement if one con-
siders the strength of the 0--N coupling which measures
the strength of the nucleon exchange as determined in
fits to N-N scattering data. '0

so A. Scotti and D. Y. Wong /Phys. Rev. 138, B145 (1965)g
find g,'=3.0; J. S. Ball, A. Scotti, and D. Y. Wong LPhys. Rev.
142, 1000 (1966)j find g,'=5.1—4.1. These values correspond to
an f '=0.'?—1.5.

In our model, the strengths of the potentials were
such that the uncoupled mN amplitude has a resonance
at 9m and 7.8m for cases (a) and (b), respectively,
and the uncoupled O.N channel has a bound-state pole
at 8.45m (a) and 7.2m, (b). In both cases (a) and (b)
the coupling constant associated with the uncoupled
xN amplitude is within a factor of 2 of the coupled case.
This indicates that although the two-channel model is
essential to account for the phase-shift data, the original
Chew-Low —type calculations of coupling-constant rela-
tions still have semiquantitative significance.

As stated above, the uncoupled problem contained
two poles in the 5 matrix. Thus, regardless of the
coupling mechanism, the Roper resonance must be
associated with an SU3 multiplet of the 8 or higher
representation. It will probably be necessary to perform
detailed phase-shift analyses to find the other members
of the multiplet.

Finally, we remark that it will also be useful to
apply the simple multichannel ND ' model to the
analyses of other m-N partial-wave amplitudes.
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We demonstrate the possibility that M&M„ in an oG-shell, SU2-symmetric, reciprocal bootstrap model
of the X and the 6 LE*(1238)$. Only the static electrical potential between charged pions and the proton is
used as a driving term. However, the change in the 6-exchange contribution to the strong forces (due to the
electromagnetic mass shifts in the 6 isoquartet) may be more than enough to reverse the "intuitive" result,
M, &M„.

'HE ubiquitous problem of the n-p mass difference
has recently been re-examined by several authors

within the framework of various versions of the boot-
strap model pf the nuclepn' ' pr thrpugh "prppagatpr"
methods. ' ' In a critique of the Dashen-Frautschi ap-
proach to mass shifts, Sawyer" has proposed an oB-
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136, B1053 (1964).' R. F. Sawyer, Phys. Rev. 142, 991 (1966).In our application
of Sawyer's work, we do not include the self-energy modi6cations
of the exchanged baryon propagators. The relevance of this
correction to actual problems of inelastic unitarity will be touched
upon later.

shell Lippman-Schwinger approximation to the Bethe-
Salpeter equation as a favorable alternative to N/D,
for use in exploring questions pertaining to bootstrap
theory. In this paper, we adopt this formalism to study
the e-p mass difference, and have obtained the following
qualitative results: (a) The difference 3f„M~=3„„——
cannot be calculated numerically without a rather
complete theory of the strong interactions. This is ie
addition to a knowledge of the electromagnetic driving
terms. (b) However, it turns out to be entirely plausible,
as a result of the bootstrap, and contrary to "intuition, "
that 8„„&0 with only the electrical Coulomb force
operating without retardation between the a.+ and p
as a "driving term. "

By "bootstrap, "we mean only (a) the compositeness
of the N and 6 in terms of m's and 1V's, in an SU2
framework, and (b) the explicit recognition of the im-
portance of d, exchange to bind the 1V, and vice versa,
as was first pointed out by Chew. ""G. F. Chew, Phys. Rev. Letters 9, 233 (1962).


