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Integral equations for the three-pion decay amplitude of the K meson are derived in the context of a
potential-scattering model. Nonlocal S- and P-wave separable potentials are used. Some numerical solutions
are presented for the S-wave case. The shapes of the decay spectra.are found to be insensitive to the shape
of the potential for the cases investigated. The connection with the integral equations of Khuri and Treiman
is discussed. A zero-range approximation requires that as?>a,? in' order to fit the experimental data. Some
aspects of three-body states in the presence of a resonance are investigated. No observable effects of a
triangle singularity are found for the cases considered.

INTRODUCTION

HE three-pion decay mode of the K meson has
long been of interest because of the possible
information it contains concerning the pion-pion inter-
action. Most previous analyses'™ of this decay have
considered only the first rescattering of the pions in
the final state and have neglected the effects of multiple
scatterings which involve all three pions. The pion-
pion scattering parameters obtained from such calcu-
lations (Ref. 4) generally disagree with the parameters
obtained from other reactions both qualitatively and
quantitatively.®® This has led to the conclusion that
the structure observed on the Dalitz plot for = decay
is primarily a result of the weak interaction itself and
not of the final-state pion-pion scattering. 11
A gap in this argument is, of course, the neglect of
the multiple scattering. Very little is known about
three-body systems but recent work on triangle singu-
larities, 1213 overlapping resonances,'* three-body uni-
tarity, and other aspects'® have indicated that there
may be qualitatively new effects in a three-body system
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not included in previous two-body calculations. Using
the recent work of Faddeev®:'7 and of Hetherington
and Schick!® in nonrelativistic three-body systems, we
investigate some of these effects in detail within the
framework of a potential-scattering model.

In Sec. I we derive integral equations for the decay
amplitudes. The final-state interactions are assumed to
take place through a sum of two-body potentials. The
equations are then specialized to the case of separable
nonlocal S- and P-wave potentials. One choice for the
form of the weak interaction is discussed in Sec. IT A.
The pion-pion potentials which we use, including one
which can produce an S-wave resonance, are described
in Sec. I1.B.

The equations derived in Sec. I are rewritten in Sec.
III in a form suitable for numerical calculations.
Numerical solutions for some simple cases are presented
in Sec. IV under three categories. First, the dependence
of the final Dalitz plot upon the potential shape is
investigated briefly. Then, a comparison with the result
of Khuri and Treiman! is made and the relationship
between our equations and theirs is discussed. Finally,
some aspects of three-body states in the presence of a
two-particle resonance are investigated. Additional nu-
merical work is in progress.

I. INTEGRAL EQUATIONS FOR THE
DECAY AMPLITUDE

The amplitude for K-meson decay into three pions
can be expressed as

(sx| Ul 0x)= W3 | Hu| k), (1.1)

where H,, describes the purely weak interaction which
initiates the decay. The final-state wave function for
the three pions ¥3,¢ satisfies the equation appropriate

16T, D. Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960)
[English transl.: Soviet Phys.—JETP 12, 1014 (1961)7; Dokl
Akad. Nauk SSSR 138, 561 (1961); 145, 301 (1962) [English
transls.: Soviet Phys.— Doklady 6, 384 (1961); 7, 600 (1963)].

17 C, A. Lovelace, Phys. Rev. 135, B1225 (1964).

18 J. H. Hetherington and L. H. Schick, Phys. Rev. 137,
B935 (1965); 139, B1164 (1965); 141, 1315 (1966).
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for outgoing waves:

W3 =03z | + W3 | VGo
=<‘p3w|+<¢3rlTGO, (1.2)

where (p3.| denotes plane waves and G, is the free
three-particle Green’s function

Go=1/(E—Hy+tie), e¢— 0+ (1.3)

where E is the total kinetic energy available (E=mgk
—3m,) and H, is the three-particle kinetic-energy oper-
ator. The interaction of the pions (labeled i, j, %;

i7#% j7k) is assumed to take place through a sum of
two-body potentials

V_—"Z Vz')

i=1

(1.4)

where V; is the potential between pions labeled j and
k. The three-particle ¢ matrix T satisfies the Lippmann-
Schwinger equation

T=V+VG.T. 1.5)

Substitution of Egs. (1.2) and (1.5) into Eq. (1.1)
results in our basic equation for the decay. In operator
form we obtain

U= Hw+ TGOHw
=Hy+VGH o+ VGTGH
=H,+VGU. (1.6)
In order to eliminate the singular part of this equation

we parallel the ideas of Faddeev'® and define the three
operators
1.7

(1.8)

Ui=V.GoU,
U=H,+Y Us.

1=1,2,3
so that

The operators U; then satisfy the coupled equations
Z],'= V¢Goﬂw+z V{G()Uj—l- V,'G()U,'. (19)

i
We now introduce operators £;describing the (off-energy-
shell) two-body scattering of pions j and 2 by the

definition
ti=Vi+V.Got;. (1.10)

Note that the pion labeled ¢ enters Eq. (1.10) only
through the energy denominator of Go. In terms of these
operators, Eq. (1.9) can be rewritten as

A=V G)Ui=(1=VG)t.GoH,,
F(A=ViGo) T 1GoU;, (1.11)
I
or

Ui=t,GoH 43 t:GoU;.

i

(1.12)

The inhomogeneous term in Eq. (1.12) sums all the per-
turbation diagrams in which pions j and % interact and
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fFIG. 1. An example T s ) et
of a perturbation dia- -
gram included in the K ’—@E\\\
first rescattering term. T

pion 7 is a spectator (Fig. 1). This term is essentially
the one used in some previous analyses®? to estimate
final-state interaction effects. We refer to it as the first
rescattering term. It can be seen by iteration of Eq.
(1.12) that the other terms (multiple-scattering terms)
take into account all other graphs (i.e., those with no
pion acting only as spectator—e.g., Fig. 2). Three-pion
potentials are omitted, although they could be included
if necessary.

Our next step is to specify the basis states in which
to most conveniently express the matrix elements of the
operators in Eq. (1.12). The general case of three
particles of arbitrary mass and isospin is discussed by
Hetherington and Schick.!® Considerable simplification
in the notation occurs for K decay if one neglects the
pion mass differences and assumes that the weak inter-
action H,, obeys a |AT|=3% rule, since then the only
important total isospin for the final state is T=1. With
this restriction the three-pion state can be specified in
the over-all center-of-mass frame by giving the total
momentum gq;, the relative momentum k;, and the
isospin I of the pions labeled j and k. In terms of the
momenta of the individual pions, Py, Py, and P;,

qi=Pi+Pi=—P;,

ki=3(P:—P)), i, 7,k cyclic. (1.13)

Since the basis |q;,k;,J) is just as good as |q;k;I),
we state the transformation matrices

(ai,ks; I]q5,k55 J)=(2m)%6(q;+3q:— k)

(@i, ki; I|qeke; K= (2m)%(qe+3q:+ k)
X (2m)2(k—3qi+3k)R(I,K). (1.14)

The recoupling coefficients R(I,J)=(—1)"*+R(J,I) are
SRS IV
W5 IS i

where rows and columns are the isospin in the order
(0,1,2,) and 4, 7, k are cyclic.1®

(1.15)

F16. 2. An example
of a perturbation
diagram included in -~ ~
the multiple-scatter- T~ —
ing term.

19 Our phase convention is slightly different from that of
Hetherington and Schick (Ref. 18) in that cyclic order is pre-
served in all definitions. It is shown explicitly in Eq. (4.2).
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The Green’s function Gy can be written in any of the where

equivalent forms (| t:@:,D) | Y=V (ki,k/, D)
Gi'=E—3q—ki+ie, anyi  (1162) %" V (k1)K | 1(051) k)
(1.19)
or ,/ (2r)3 32—k
Gi'=E—q*—q;'q;—q;*+1e, anyis%j (1.16b) and
. i gi2=E—32q2. (1.20)

(where the units m,=c=#%=1 are used). Since the
potential ¥, conserves isospin and does not involve
particle 7 we have

Equation (1.19) is a standard integral equation for the
two-pion scattering amplitude for incident relative
momentum k;/, outgoing relative momentum k;, and

(kiqi,1| Vil ki g\ 1) relative energy ¢;*
= b71(2m)%(qi— /) V(ki k(). (1.17) ~ Defining

ki,q;,I| U, =U;(ki,q:,]
The matrix elements of Eq. (1.10) are then and (ki | Usl o) (kg 1)

(koyas,I| 1] kS 0, I7) (kiqid | Hu| ox)=Hu(ki,q:,1) (1.21)
= (k;| 1:(g:,1) | ki )orr (2m)%0(qi—q), (1.18) we obtain from Egs. (1.12), (1.14), (1.16), and (1.18)
@k (ki ti(qs, D) |k Y H (ki qs,1)
(2m)? E—3q—ki*+ie
/ g’ (kil (g D) |4/ +34)R(ILI)U(— 34—, 47, J)
J

l]i(kh(h':l) =/

(2m)° E—q¢P—qi 4/ — g *+ie
iy / d*q’ (kilt:(gs,D) | — ' — 34 RILK) U (3ai'+ 4, 0’y K) (1.22)
xJ (2m)? E—g2—q;-qi' —qi*Fie o

Since the pions are identical the particle labels 4, 7, & can be dropped temporarily.

Equation (1.22) is still too complicated to handle numerically because U (k,q,]) is a function of the three vari-
ables %2, ¢%, and k- q. Further progress may be made by assuming that the potential V(k,k’,7) can be approximated
by a separable potential for each partial wave and keeping only the lowest partial wave for each value of 1.20.2

V (kK1) = 2+ 1)\ vr(k)or (B Po(k-F), (1.23)

with /=0 for I=0, 2 and /=1 for I=1 and v;(k) — % as k— 0 to insure the proper threshold behavior.
For this choice of potential the two-body #matrix element in Eq. (1.19) also separates and is given by

(k| q,1) | &)= 21+ 1)or(R)or (') Pa(k- B')r (g, D), (1.24)
where
1 ack’ ok
D)= / ey (1.25)
A @) @—E e
Now since the two-body ¢ matrix is separable we see from Eq. (1.22) that U(k,q,l) is also separable:
U (k,q,1) = (204-1)or(R)W (g, 1) Po(k-9) , (1.26)
where the new function W(g,I) satisfies the integral equation
adq
W) =r@D|FOD+E O LD, (127)
T
with a3k vi(R)Pu(E -9 H.(K ,q,])
v . »(K',q,
F(g,D)= / ek (1.28)
(2m)? G*—k'2-ie
and (BYPy(g-E)2RI,T) 21+ Do (") Pr(E’-§)
v . , v (B¢
Ko, 1,7 =" Al , (1.29)

E—¢*—q-q'—q*+ie

20 The validity of the separable approximation is discussed in many places, including Refs. 15 and 17.
% See also J. L. Basdevant and R. L. Omnes, Phys. Rev. Letters 17, 775 (1966). Their caution against indiscriminate use of this
approximation should be noted.



155

with k'=q'+3q and k""=—q—1%q".

If the potentials v;(k) are chosen to be simple enough,
the integral in Eq. (1.28) and the angular integrations
in Eq. (1.27) can be performed analytically, leaving a set
of three coupled single-variable integral equations for
the three functions W(g,I). These equations consist of
an inhomogeneous term describing the single rescat-
tering and a “homogeneous” term describing multiple
scattering.

The first rescattering term of Eq. (1.27) is not the
same as used by Brown and Singer® and by Prasad.”
The essential difference is the normalization. If only
one isospin state is important, as in Ref. 6, this affects
only the rate. However, when two or more channels
are present, the relative normalization is important and
the choice used by Prasad is not unique.

In the special case in which v;(k)=const (vy=0 for
I=1), the various integrals diverge. However, we show
in Sec. IV.B that in a once subtracted form Eq. (1.27)
becomes identical to the equations derived by Aniso-
vich,?? which are in turn the same as the nonrelativistic
limit of the Khuri-Treiman dispersion equations. Thus
we expect that whenever the range of our potential is
short, we should obtain the same results as would come
from an exact solution of the Khuri-Treiman or Aniso-
vich equations.

II. SPECIFIC INTERACTIONS USED
A. The Weak Interaction H,

The spirit of final-state-interaction calculations is
that all the observed energy dependence is assumed to be
due to the final-state pion-pion interaction. In an
attempt to be slightly more general, we have assumed
that the weak interaction H, may contribute terms
which are constant or linear in the energy of each pion.
Within the restrictions of Bose statistics and the
|AT|=4% rule there are only two parameters in this
description. The matrix elements (k;,q;,]| H.| ¢x) are

(ki,q:,0| Ho| ox)=3v/SH—3V3A (3k*—197),
(ki,qi,1 [ Ho| ox)=Aki g,
(ki,qi,2| Hu| ox)=3H~+32/154GR— 3¢ . (2.1)
Since we have
$k—102=%(k; qit+ ke qi)

the linear terms obey the above restrictions both on
and off the energy shell.

In the absence of final-state interactions, a value of
A/H between —0.33 m,~2 and —0.46 m,~2 would fit
the observed energy spectra of K decay.

The numerical work reported in Sec. IV considers
only the case 4=0.

(2.2)

22 V. V. Anisovich, Zh. Eksperim. i Teor. Fiz. 44, 1593 (1963)
[English transl.: Soviet Phys.—JETP 17, 1072 (1963)].
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B. The Pion-Pion Potential

The low-energy pion-pion interaction is not very well
known. For the P wave, the p resonance at 760 MeV
presumably dominates. However, S-wave scattering
lengths deduced from peripheral pion production
(r+p — wirtn, etc.)? disagree with those obtained from
previous analyses of = decay. The Brown and Singer o
resonance® and various explanations of the ABC
anomaly? have also been proposed but no consistent
scheme has yet been devised. Indeed, it is not even
clear whether the S-wave pion-pion potential is at-
tractive or repulsive.?*

The S-wave potential we use has sufficient flexibility
to generate a resonance or a zero effective range as
well as the more usual S-wave behavior. In momentum
space we choose

ok, k') =M1 (R)vr(%)
vr(k)=1/(k*+B1%) (k*+Br*?),

This corresponds to a separable potential in position
space of the form

e~ sinbr\ /e~ sinbr’
vr(r,)= )\’( )( ) , (2.4)
br br’

2.3
ReBr>0. 23

with Br=a+ib. The oscillations of the sine function
seem to provide sufficient barriers to allow an S-wave
resonance to occur. We refer to this potential as the
potential CP (for “complex parameter”).

The ¢ matrix generated by this potential is

<k l t(Q)I) | k,)= vl(k)T(Q:I)vI(kl) )

1
T‘I(Q;I) =
Ar

(¢*+4i ReBrg—Br*— 3| B1|*—B1*?)
(Br—19)*(81*—1q) 8 (Br+B*)| Bz ] 2

The on-shell amplitude has a scattering length and
effective range

1 dr|Be|®  |Br]*(Br*4-318:]*+67)
o [ 2(Br+61*)*
16w | Br| “(B1*+B*%)
— -
| B 4-3(8r** 481 | 81| *+-71 81| *+B1*)
|Bz] *(Br+B1*)? ,

(2.5)

b
ar Ar

rr=

(2.6)

where
t1(g,1)=— (1/4n){—ig—1/ar+3r1¢>+0(¢"} .

23 A. Abashian, N. E, Booth, K. M. Crowe, R. E. Hill, and E. H.
Rogers, Phys. Rev. 132, 2296 (1963).
2 G. F. Chew. Phys. Rev. Letters 16, 60 (1966).
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By varying the parameters \; and S, we can adjust
this potential to lead to either a resonance or a bound
state in the S-wave pion-pion system. Knowledge of
only the scattering length and either the effective range
or bound-state energy of the scattering amplitude is
sufficient to determine only two of the three parame-
ters associated with this potential. The third parame-
ter, which we take to be the phase of 8, can be partially
restricted in its possible range of values by requiring
that the coefficients of ¢4, g%, and ¢® in £71(g,I) be rela-
tively small. Also, the structure of the final integral
equation leading to the K — 37 decay amplitude is
such that the numerical method of solution is easier
and faster if the phase of 8 is small [see Eq. (3.12)].

For the cases of interest, summarized below, the
parameters were determined:

(1) In the case of a resonance, by fixing the scat-
tering length, resonance energy and resonance width.

(2) In the case of a bound state, by fixing the mass
of the bound state and the scattering length. The phase
of B8 is arbitrary. The choice Refr=V2 Imp; satisfied
the above conditions for the cases considered and was
adopted in the numerical calculations.

(3) In the case of no resonance or bound state, by
fixing the scattering length and effective range. For the
cases considered, except for zero effective range, it was
again found convenient to choose

Refr=v2 Img;.

(4) In the case of zero effective range, by fixing the
scattering length a. Then

_ 16n(B+8%)' (B8 |BI°
B+3|B*(8*+6*)+7|8] 46

and
1~ [812(38'4-9| B8] 2(82+B*2)+ 11| 8| *+ 38*4)
a 6*2)

a 4(B+8*)%(B6*+
and some added restrictions can be placed on the phase
of 8. For an attractive potential

a>0 (ImB)2> (24/21—T)(Rep)?,
a<0 (ReB)2< (ImB2) < (24/21—T)(Rep)?,
and for a repulsive potential

a>0, and ImB<RepB.

)

implies

implies

The choices of phases used were
ImB=(1/2.4) ReB, a>0,
ImpB=v2 ReB, a<0,
ImB=0.1 Reg, a>0,

attractive potential;
attractive potential;
repulsive potential;

and are such that the coefficients of ¢*, ¢% and @® in

t71(q,I) are small except for the case of a repulsive
potential.
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In order to investigate the dependence of the final
theoretical spectra upon the choice of potential we also
considered the S-wave nonlocal separable potential
(referred to as RP for “real parameter”)

v(k,k' )= Nrvr(k)vr(R'); vr(k)=1/(k*+B1?),

Br real and >0. (2.7)
This potential leads to a scattering amplitude
(kgD | ')y =0r(k)vr (%)
X{1/\+1/8n8:(Br—1ig)*} ", (2.8)

which cannot resonate. Comparisons were made for
cases (2) and (3).
For the P wave we choose

o(k,k’,I) =3)\1v1(k)(k-}§’)vz(k N, (2.9)
with

v1(k) = k/(k2+B1?) (k2+Br*?). (2.10)
The ¢ matrix which results is

(k| g,1) | K'y=3vr(k)E- E'or (") 7(g,I)
where
1 1 ¢+2ig(Br+8r*)—BiBr*
gl = e ig(Br+Br*) —B1Br 2.11)

Ar 8w (Br+B8r*)%(Br—1i9)*(Br* —19)2

The on-shell effective-range expansion is then

4 (8|6
i ot =TIl |~ Zlslt+e
3|8 2(B2+5*2 2
il )}+0(1e4). (2.12)
16(Rep)?

For A=—0.1721X10°% B8=15.04+6.49 7 we can obtain
a resonance at a mass=763 MeV with width I'=100
MeV.

The functions F(g,I) corresponding to these potentials
are

1 1 1

F(g,0)=—— [+3v/5H
4m BoHBo* (Bo—iq) (Bo*—ig)

+(2/3V3) A[E—q*—BoBo*+1q(Bo+B0*) 1,
1 1 1 1
4 B14B1* B1—1q Bi*—iq
X3A[B1B1*—iq(B1+B1*) g,
1 1 1 1
F(g2)=—— [+3H

47 Bat-Bo* Bo—iq B2*—ig
—(V/5/3V3)ALE— 2 —BoB2*+-1q (B8], (2.13)

for the oscillating potential CP.
The linear coefficient 4 must be set equal to zero
for the simpler potential RP to make the integrals
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convergent. We then have

1 1 / /5
Pgo)=———(+-11),

4 Bo—1q 3
F(q-:2>=——'_

1 1 2
(-l——H).
dr Ba—iq\ 3

III. METHOD OF SOLUTION

(2.14)

The forms chosen in Sec. II for the potential allow
the angular integrations of Eq. (1.27) to be performed
leading to a set of three coupled one-dimensional
integral equations of the form

W(qJ)=Wo(q,I)+>; / d¢K(q,q'; LOYWI(g,J), (3.1)
0
where

W0(97I) = T(QJI)F(QJI) ’

— ql T(Q;])
K(g,q'; I,))=——
g (2m)?
N 4 (]7j)az2+B(I:J)az+ C(Ir])
=1 II (ej—as)

Fia)

3.2)
and

a;it+qq
X In . (3.3)
a;—qq

In Eq. (3.3), N is 3 or 5 depending on which potential
is used:

oa=—E+q+q?,
ar=q"+3¢*+B:?,
as=%¢"+¢*+Bs2,
ar=q1g B,
as=1¢"*+¢*+B,*2,

and the matrices 4, B, and C are

(34)

0 0 0
A=1{0 3/q¢¢ Of,
0 0 0
o +E\7/3 0 W
q
w2 0y (),
V3¢  2\gq ¢ 3/q
/15
! N J
2 —V3¢  %/5
C=|—-%3 %97  $9V15|. (3.3)
BVS  2dVIS %
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The procedure used for solving Eq. (3.1) is the same
as that outlined by Hetherington and Schick.®
The kernel K(g,q’; I,J) has logarithmic singularities
at
¢'=3q£ir; ¢ =£3q=Br";
¢ ==29+2iBs; ¢ =-2¢2iBs%;

(3.6)

and
¢'=t3gE(E—1g*+ie)'?,
together with square-root singularities at
g==[§(E+i ]

and other singularities of 7(¢,I).
For ¢ real, the Green’s-function singularities at

q'=3q+(E—{g*+ie)'? 3.7)

lie in the region of integration. These singularities can
be avoided by rotating the variables ¢ and ¢’ simul-
taneously into the fourth quadrant of their complex
planes, i.e.,

g=ye~®; ¢'=x¢""®; xyrealand >0. (3.8)

We are free to make this rotation as long as the con-
tribution from the arc at infinity is zero and the inte-
gration contour (0<x< ) does not cross a singularity
of the integrand. Then the integral Eq. (3.1) becomes

Wy e I)=W(ye®I)+>. / dx
J Jo

Xe R (y 5 e L)W (x e%,J). (3.9)

From Eq. (3.6) we see that as we rotate the integration
contour, the first singularity of the kernel to be en-
countered is at

&;=tan"(ReB/|ImB|).
The functions 7(k,I) and F(k,I) with
]5_: (E— %yze—zid:) 1/2

are not singular in the region 0<®<3r for the po-
tentials under consideration.

Numerical solution of Eq. (3.9) for W (ye—,I) is now
straightforward. However, in order to find W(q,I) for
q real, we have to rotate the complex variable ¢ back to
the real axis in Eq. (3.9). This is equivalent to rotating
only the integration variable ¢’ into the fourth quad-
rant of its complex plane through the angle ® in Eq.
(3.8).

However, some care is required. For ¢ real and greater
than /E the singularity of the kernel at

¢'=q,'=4q— (E—3q*+ie)'l?

lies just below the real positive ¢’ axis complicating the
rotation of contour. A suitable choice of contours? is

% J. H. Hetherington (private communication).
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Fic. 3. Integration contours used in obtaining Eq. (3.10).

shown in Figs. 3(a) and 3(b). Then

W(q,I)=Wolg,I )—f—%} / dx e K (g0 e=%; 1,7)
0
3¢V (E-1q?) _
dg’ AK(g,q'; 1,J)
X W(ql)‘]) 9(9—\/E) )

where the discontinuity of the kernel around the loga-

rithmic branch point at ¢,’ is

AK(qq'; 1)) =+(ig'/2rq)7(q,D)er(@LAU T as?
+B(I,])ertC(J) o (E—4¢' D). (3.11)

With this choice of contour, the kernel becomes singu-
lar first at

XW(x e, J)+
(3.10)

®,=tan"Y(ReBs/(¢+|ImBs|))

for each value of ¢. Hence Egs. (3.9) and (3.10) result
from valid contour rotations if we choose

0< B< Brogx, (3.12)

where ®,x is the smallest value of ®, for /=0, 1, 2
and for 0<¢<(4E/3)V/2 (the physical region for K
decay).

A further change of variables was made in Egs.
(3.9) and (3.10) in order to make the integration regions
finite:

z=as/(1—s), y=al/(1—1). (3.13)

The parameter & was used to position the dominant
part of the integrands near the middle of the integration
range 0 to 1.

It was also found to be convenient (when 4=0) to
solve for the functions

ale™™®  fote®
Z(t,I; a,®)= W( I ) .
1—1¢ 1—1¢

(3.14)

This simplifies the numerical calculation of the kernel
at the endpoints of the integration.
With the above modifications, Eq. (3.1) takes the
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final form amenable for numerical calculation:

1 ate™™®
Z(l:I; a:(b):ZO(t;I; 0‘;‘1’)‘*‘2 VNN
7 Jo s(1—s)(1—1)

_fate™® ase™®

XK( , ;I,J)Z(s,]; a,®)ds, (3.15)
1—¢ 1—s

and

o1 ase™®
7 Jo s(1—s) 1—s

X Z(s,J ; a,®)ds+0(q—/E)

Ya—v (E—iq?) _
X2 f dg'AK(q,¢'; ILJYW(¢',J). (3.16)
J Jo

For ¢>+/E, Eq. (3.16) requires knowledge of W(¢',J)
for ¢’<+/(E/3). Hence we first evaluate Eq. (3.16) for
g<+/E and use these results in computing W (q,I) for
¢>~/E.

The last term of Eq. (3.16) is particularly important
when 7(¢,/) has a narrow resonance for ¢*> between $E
and E. In this case the endpoint ¢,’ of the integral
passes very close to the resonance pole in W(q',J). The
resulting logarithmic singularity’® at

q=3¢+ks;

corresponds to the triangle singularity of amplitudes
such as that illustrated in Fig. 4. The effect of this
singularity will be discussed later.

Equation (3.15) was solved by matrix inversion on an
IBM 7094 computer. The angle ® was taken to be
0.5 ®nax and the parameter o was chosen to make the
dominant structure of the solution Z(,I; e,®) occur
near {=3%. A mesh of between 25 and 45 points was
found to be sufficiently accurate. For those potentials
leading to a kernel with rapid variations, the mesh size
was increased in order to check the accuracy of the
solution.

For the case in which a pion-pion scattering ampli-
tude resonates, the imaginary part of 8 (which de-
termines the oscillatory nature of the potential) is
large compared with the real part. Thus ®max is small
(~0.1 rad) and rotation of the contours through an
angle 0.5, does not make the singularities of the
kernel very distant. However, even in this case, a mesh
of 45 points was more than sufficient.

Since the kernel of Eq. (3.16) is more singular than
that of Eq. (3.15), we interpolated the function
Z(tI; a,®) (in general found to be a smooth function)
using a seven-point Lagrange interpolation formula,

& Y——- m
50‘0/‘\ ; Z -
Pt -
&2 -
_——-———————(K )E'_ —

Fi1G. 4. An example of a graph in the multiple-scattering
series which can contain a triangle singularity.

ky*=E— %%2: Mres™— 2— 'L%I‘tes

_———T

T
T
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thus tripling the number of points at which the inte-
grand in Eq. (3.16) can be evaluated. If this procedure
is not followed, then more mesh points in Eq. (3.15) are
needed in order to obtain W(g,I) to the same accuracy.

IV. RESULTS

The differential decay rate is proportional to the
square of the matrix element of Egs. (1.1) and (1.8):

|3 |2= |<¢3,1Hw+élv,-( et @)

Specifying pions 1, 2, and 3 to have charges m, ms, and
m;, respectively, we expand the state (@sr| = (ma,me,ms|
in terms of our set of basis states, i.e.,

2
(myymayms| = 3 C(1,1,I; mjmz)
I=0

XC(I, I, 1, ", m]"',—mk)(CIi,ki,I[ ’

where the C’s are Clebsch-Gordan coefficients and the
indeximay be 1, 2, or 3, and 7, 7, k are cyclic. We choose
the pion labeled 3 to be the odd pion for K* decay and
the #° for K°; decay. The matrix element M is then

(4.2)

3 2

M=%, 3 {Hu(ks,qs,)dss+ Uilkiq:,1)}

i=1 I=0
XC(]-;I;I; miymk>c(1:l:1; M, mJ+mk) ’ (4'3)

where we have used Eq. (1.21). The functions H,(k,q,])
and U(k,q,]) are given by Egs. (2.1) and (1.26),
respectively.

The differential decay rate is a function of only two
variables which we choose to be the Dalitz variables?

x=\/3(P12—P22)/2E= —\/3—q3‘k3/E,

and
y=3P3?/2E—1=3¢s?/2E—1. (4.4)
The physical values of x and y are therefore
x292<1. (4.5)

As is usual, we present our results in terms of the
spectra X (x) and Y (y) which are |M(x,y)|? averaged
over allowed values of ¥ and #, respectively, i.e.,

Vv (1—z2)

/ 2 | M (x,y) | *dy

24/ (1—2x?)
and (4.6)
v (1—y?)

/ | M(xy) |

—v(1-y?

Yiy)=
o=

26 R, H. Dalitz, Proc. Phys. Soc. (London) A69, 527 (1956).
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The symmetry between pions 1 and 2 requires that

X(x) be an even function of x. Since we cannot calcu-

late absolute rates, we plot X(x)/X(0) and Y (y)/Y(0).
The experimental data?’ are consistent with

X(x)/X(0)=1 and Y()/Y(0)=14ay, (“7)

where « is about 0.23 for K+ — rtrtr—, and « is about
—0.63 for K+ — n% %+ and K% — w70,

A. Comparison of Potentials

A large class of potentials will generate the same low-
energy pion-pion scattering amplitude. These potentials
differ in their high-energy and off-energy-shell behavior.
Since the Faddeev equations depend on the off-shell
behavior of the scattering amplitude, the energy spectra
obtained may be sensitive to the shape of the potential
chosen. Hence, as a preliminary step we calculated the
three-pion-decay Dalitz plots for two different potentials
which give the same scattering length and effective
range. The potentials used are CP and RP, described
in Sec. IL. One noticeable difference in the potentials is
the different shape for large k2. This leads essentially
to a different cutoff in the integrals of the equations.

The results are shown in Figs. 5-8 for the complete
solution W(g,I) to Egs. (3.15) and (3.16) and for the
first rescattering approximation W(q,J)=W(g,I). For
the complete solution, the spectra are very nearly
independent of which potential is chosen. The first
rescattering terms differ somewhat more but the effect
of multiple rescattering is more important than the
difference between the potentials.

The spectra of Figs. 5 and 6 are dominated by the
presence of an /=0 bound state at 1.91 m,. The cusp at

8.0 T T T

80 |- Potential Comparison

Complete solution(potential CP)
70 e Complete solution(potential RP)
————— First rescattering (potential CP)
6.0 - -—-— First rescattering (potential RP) 1

5.0
Yy
Y(o)

4.0

3.0

2.0
T

LO
o
0.0

F16. 5. The normalized decay spectra ¥ (y)/V (0) for ap=4.22 m, !
and a bound state at 1.91 m,, no I=1 or 2 amplitudes, and 4 =0.

27 G, H. Trilling, in Proceedings of the Argonne International
Conference on Weak Interactions, 1965, Argonne National Labora-
tory Report No. ANL-7130 (unpublished), p. 115; Lawrence Ra-
diation Laboratory Report No. UCRL 16473 (1965) (unpublished).
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2.0 T T T

80 Potential Comparison

——— Complete solution(potentiol CP)
- Complete solution(potential RP)

--—-- First rescattering (potential CP)

6.0 — -—— First rescattering (potential RP)

10
T’{
0.0

F16. 6. The normalized decay spectra Y (y)/¥(0) for ap=4.22
m="! and a bound state at 1.91 m., aa=—0.8 m 7Y, ra=2.0 m, %,
no I'=1 amplitude, and 4=0.

y=1 in Fig. 6 is due to the square-root singularity at
the two-pion threshold and was pointed out by Sawyer
and Wali.? It is present in most of our curves, although
it is not always noticeable.

It should be pointed out’that although the shapes of
the spectra seem to be insensitive to the shape of the
potential, the absolute rates are not, as can be seen in
Table I. This is just a reflection of the different cutoffs
provided by the potentials. The potential which has a
1/r dependence (RP) near =0 produces a larger rate
than the potential which goes to a constant at the origin
(CP). Thus there may be cases (for example, repulsive
potentials—see end of Sec. IV.B) where the sensitivity
of the spectra to the potential shape is much greater than
we have found. This important point deserves more
study. However, this limited comparison of potentials

Potential Comparison 7

Complete solution (potential CP)

=== Complete solution (potential RP) /”'///
— , . eyt
First rescattering (potential CP) L

[+ L 1 1
-0 -5 0. - 10

y

Fic. 7. The normalized decay spectra ¥ (y)/¥(0) for a®=—0.8
ms 1 r70=2.0 m,!, no I'=1 or 2 amplitudes, and 4 =0.
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T T T T T
Complete solution (potential CP)

wwnmmnnnn-Complete solution (potential RP)

First r ing (potential CP) —
—-——First rescattering (potentiol RP}

05—

(a) (b)

o |
o K3

X

o
o

F1c. 8. The normalized decay spectra X (x)/X (0) for the same
parameters as in Fig. 5 for graph (a) and Fig. 6 for graph (b).
Only the region x>0 is plotted since the spectra are necessarily
even in x. The spectra corresponding to the parameters in Fig. 7
have a small slope.

leads us to believe that for most cases the spectrum
shapes we obtain with the potential CP will be close
to those obtained with more complicated potentials.

The pion-pion scattering amplitudes considered here
are clearly inconsistent with the experimental data,
having the wrong sign of the slope in the y variable and
too much dependence on «.

B. Comparison with Khuri-Treiman Approximation

Using a zero-range model for the S-wave pion-pion
scattering amplitudes and a once subtracted relativistic
dispersion relation, Khuri and Treiman' related the
7-decay spectrum to the difference between the I=0
and I=2 scattering lengths, @ and a,. Their formula is

2

| M (x,y) | 21+ -(a0o—az)y, (48)

0
Sr(1+3p7)12
where p?=%4Emx is a kinematical factor equal to 0.64.

Tasre I. The absolute decay rates in units of H? calculated
from the first rescattering approximation (R;) and the complete
solutions (R.) for the potentials CP and RP.

Ri" Rcr er’ Rcr’ Rc'r/REr’

ap=4.22m,7}; CP 815 692 268 193 3.58

mpg=1.91m; RP 2636 5120 8.59 1420 3.60
no I=2 potential

ao=4.22m,1; CP 1170 1263 3.66 3.65 3.46
mpg=1.91m,; RP 36.00 173.3 10.21 49.80 3.48
as=—0.8ms1;
79=2.0m;"1

ap=—0.8m,"1; CP 438 554 1.14 141 394
ro=2.0m,1; RP 1038 1840 2.68 4.38 3.95
no I=2 potential

No final-state 0.8376 0.2094 4
interaction
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(Note that our sign convention for the scattering lengths
is opposite to that of Khuri and Treiman, so that ¢;<0
corresponds to an attractive potential.) However, their
derivation depends on a cutoff due to relativistic kine-
matics. Since our formula is nonrelativistic, the corre-
sponding cutoff is provided in a different manner and
therefore results cannot be compared directly. With this
in mind we derive from our equations the nonrelativistic
analog of the Khuri-Treiman matrix element.

Equation (3.1) for W(g,I) can be subtracted at
¢=go=+/(E), the center of the Dalitz plot. The integral
equation for the difference function W(g,I)—W (go,I)
converges even in the limit of constant potential, i.e.,
B—o . If the limits 38— and A — are taken in such
a way that the scattering length stays finite, one can
obtain equations for the functions U(k,q,I) introduced
in Eq. (1.21):

Uk,q,l)=U(g,)=U(g0,])+2(g,]), (49)
where
ar
#(g)=——| it ig)o(1)
1+4igar

+E R() / [A(q,q')—A(QO,q’)]*I’(q’,J)dq’]; (4.10)

(4.11)

g (E—qg*—q?—qq+ie
Mgg) =T ),
E—q*—q"*+q¢'+ie
and
J

is proportional to the decay amplitude at the center of
the Dalitz plot.

These equations are identical to Eqgs. (17) and (24) of
Anisovich?? except that the subtraction point is at the
center of the Dalitz plot. (Anisovich also uses § instead
of g as the integration variable.) The connection between
the Khuri-Treiman and Anisovich equations is dis-
cussed in Ref. 13.

In the spirit of Khuri and Treiman we find an approxi-
mate solution by taking only the inhomogeneous term
(first rescattering term) of this subiracted equation.
We thus obtain for the matrix elements for 7 and 7/
decay

M =1+ D(ks,a2)+3[D(k1,02)+ D(k2,a2) ]
+3[D(K1,a0)+D(ks,00)],
M o= —3+3D(ks,a2)—§D(ks3,a0)
—3[D(k1,a2)+D(ksya2)], (4.13)
where

D(ki,ar) = (ko— ki)ar/(—i+kiar), (4.14)

and ko=+/(3E) is the value of k; (=¢;) at the center of
the Dalitz plot. These simple expressions predict a
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slope at the center of the Dalitz plot for 7 decay of
Fho*{ @Y/ (1+ko'a:t)— ao?/ (1+ko%ae?)},  (4.15)

which differs from expression (4.8) in that it depends
only on the squares of the scattering lengths.

Cusps due to the square-root singularities at the two
pion thresholds, such as those noted in Sec. IV.A,
will arise from the explicit appearance of (ko—k;) in
Eq. (4.14).

Although we have not solved Eq. (4.10) we
expect that for potentials having a short range the
solution to Egs. (3.15)-(3.16) will be very similar to the
solution of Eq. (4.10). In Figs. 9 through 15 we show
the results for the complete solution to Egs. (3.15)-
(3.16), the single rescattering or inhomogeneous term of
Eg. (3.16), and the approximate formula, Eq. (4.13).
In all of these_cases, parameters were chosen to make

T T T
Complete solution

----- First rescottering

......... Approximate solution 7

05— —]

o 1 1 1
-10 -05 0 05 1.0

y

F1c. 9. The normalized decay spectra Y (y)/¥Y(0) for ay=—0.3
mat, ae=—1.0 m, 7!, zero effective range, and 4 =0.

I I T
Complete solution

——=— First rescattering
-- Approximate solution

o 1 ] 1 .
- -5 o 5 [

y

F1c. 10. The normalized decay spectra Y (y)/Y(0) for ap=-40.3
ma Y, az=+1.0 m, 7, zero effective range, and 4 =0.
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I T T J
——— Complete solution '/
¥ First rescottering ,/
15 B e Approximate solution s - 15

o -05 [ 05 1.0
y
F16. 11. The normalized decay spectra Y (y)/¥Y(0) for ap=-40.3
maY, ag= —1.0 m,7, zero effective range, and 4 =0.

the effective ranges zero. The spectra X (x) are essen-
tially constant and are not shown.

The first conclusion to be drawn from these results is
that the single rescattering term is not a good approxi-
mation to the complete solution. This is especially
noticeable in Fig. 11, where it even leads to the wrong
sign in the slope. The reason for this is that the homoge-
neous term in the integral equation is much larger than
the inhomogeneous term, as can be seen from the rela-
tive rates in Table II.

On the other hand, when the equation is “renormal-
ized” by making one subtraction the resulting inhomo-
geneous term does provide a good approximation, i.e.,
Eq. (4.13), for small scattering lengths as was argued
by Khuri and Treiman. As the scattering length becomes
larger in magnitude, the real or virtual bound-state
pole in 7(g,I) at g=1/ar moves closer to the Green’s-

! I !

Complete solution

——— First rescattering

— Approximate solution

o | | |
A =5 0 5 1

y
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T I T
Complete solution

----- First rescattering

- Approximate solution

-

o 1 ] ]
-1.0 -0.5 o 0.5 1.0

y

F1c. 13. The normalized decay spectra ¥ (y)/¥(0) for gy=—1.5
ma1, aa=—0.8 m, 7}, zero effective range, and 4 =0.

function singularity of the kernel so that it is no longer
a good approximation to replace W(¢’,I) by a constant
inside the integral of Eq. (3.1) which is an alternative
way of obtaining Eq. (4.13).

Thus, for attractive potentials, the multiple scat-
tering does not change the sign of the slope from what
has been found previously, i.e., to fit the experimental
data one needs |ao| <|az| (Figs. 12 and 13). The ap-
proximate form for the slope, Eq. (4.15), predicts that
(a2?— ao?)~2 would fit the data. This contradicts what
is generally expected for the scattering lengths, namely,
a, small and @, large and negative.®

Chew?* has suggested that @, might be positive
because of a fictitious bound state in the I=0 pion-pion
system. To investigate this possibility in the context of
our potential model we chose a scattering length of
+0.3 corresponding to a binding energy of 11 m,.

T T T

—— Complete solution
~—=~=— First rescattering

~-==--- Approximate solution

Y(y) 10
Y(o)

[ | | 1
=T -5 [ S5 ]

y

Fic. 12. The normalized decay spectra Y (y)/¥(0) for ap=—0.8 Fi1c. 14. The normalized decay spectra ¥(y)/¥(0) for ao=+0.8

ms"Y, az=—1.5 m,"1, zero effective range, and 4 =0.

my"%, no I=2, zero effective range, and 4 =0.
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I T I

Complete solution

8.0 |- ) N -
~=-~= First rescattering

F1c. 15. The normalized spectra Y (y)/¥(0) for a repulsive
potential, ao=-0.8 m,~1, no I =2, zero effective range, and 4 =0.
The spectra corresponding to the approximate solution, Eq. (4.13),
are the same as those in Fig. 14.

Results are shown in Fig. 11. It is quite likely that a
fit to the data could be found but it would still require
lao] <|asl.

Our results differ from those of Khuri and Treiman?
in that the slope is independent of the sign of az, as
can be seen by comparing Figs. 9-11. Khuri and
Treiman did not actually consider bound states in their
formalism, since no bound dipion is known. They did,
however, assume Eq. (4.8) to be valid for repulsive
interactions. Our Eq. (4.13) predicts that repulsive
potentials and potentials attractive enough to produce
a bound state should have the same Dalitz plot if they
have the same scattering length. Comparison of Figs.
14 and 15 shows that this does not apply to the complete
solution. The reason can be seen in the relative rates in
Table II. A repulsive interaction is expected to decrease
the rates. This decrease shows itself as a cancellation
between the pure weak matrix element and the re-
scattering terms in Eq. (4.3). This effect is already
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T T g

Complete solution

s L ___———— First rescaftering 4

ol
o
-~

-1 -5
y

F16. 16. The normalized spectra Y (y)/¥(0) for an =0 reso-
nance of mass 357 MeV and width 86 MeV, no I=1 or 2 ampli-
tudes, and 4 =0.

apparent with the inclusion of only the first rescattering
term. With the multiple rescattering included the
cancellation is almost complete in the physical region
for the parameters chosen. In fact, at one point the
real part of the matrix element goes through zero while
the imaginary part remains small. Since the final
spectra depend sensitively on this cancellation, the
shape of the Dalitz plot shown in Fig. 15 could be
dependent upon the choice of potential.

C. Resonances

All of the zero-range curves are linear near y=—1.
Some of the data? on the K,° — n*z~n? decay show a
maximum near y= —0.8. A fit to this maximum could be
obtained by assuming an /=0 resonance of mass ~357
MeV and width 86 MeV. (See Fig. 16.). However, these
parameters do not fit the » — nrr—n® spectra. If the
mass is increased to fit the 5 spectra, no maximum
would appear in the K,° spectrum. Our results are
equivalent to those of Brown and Singer.® This is due

TaBLE II. The absolute decay rates in units of H? calculated from the first rescattering approximation

and the complete solution for some zero-range cases.

-RIT Ro’ Rl” Rc” Rc’/Rcf,

ap=+40.3m;"1; as=+1.0m, ! 6.39X102 9.19X103 1.60X10? 2.32X103 3.96
ao=-4+0.3mz"1; as=—1.0m, ! 8.10X 10! 8.02103 2.08 10! 2.10X103 3.82
ao=—0.3m,"1; as=—1.0m,71 7.80X102 1.85X108 1.95X102 4.69X105 3.94
ap=—0.8m,"1; a2=—1.5mr 6.53 X102 8.44X 104 1.64 X102 2.13X10¢ 3.96
ao=—1.5ms"1; a2=—0.8m,7! 6.28 X102 6.41X104 1.57X10? 1.61X10¢ 3.98
ao=+0.8m,~1; attractive 1.79X102 2.01X103 4.51X10! 5.11X102 3.93
ap=-+0.8m,71; repulsive 1.81X10™! 6.25X10™4 4.55X10°2 240104 2.60
No final-state interaction 0.8376 0.2094 4

%8 P, Basile e al., in Proceedings of the Argonne International Conference on Weak Interactions, 1965, Argonne National JLabor-
atory Report No. ANL-7130 (unpublished), p. 77.
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Fic. 17. The square of the matrix
element for 7' decay plotted as a
function of the #°—#?° relative energy
k? at three different values of E.
The I=0 pion-pion resonance is at
350 MeV with a width of 21 MeV.
There is no I=1 or 2 amplitude, and
A =0. The small k2 region, where the
effect of the trangle singularity would
ap;iear, is also shown on an expanded
scale.
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to the dominance of the resonance pole which makes the
complete solution nearly proportional to the first re-
scattering term.

In Fig. 16 we have also plotted the X(x) spectrum
for 7 decay because in the presence of a resonance X (x)
may show appreciable departure from being constant.
This should be considered when fitting a resonance
form to the data. It is also important to include the
momentum dependence of the width of the resonance.

We also looked for effects®® of the triangle singularity
of diagrams such as that in Fig. 4. In order to bring the
triangle singularity close to the physical region, the
resonance should have a narrow width. However, the
strength of the singularity is proportional to the width,
so a compromise width of 21 MeV was chosen. The total
kinetic energy E was varied in order to move the position

of the triangle singularity relative to the physical region.
Results are shown in Fig. 17. The triangle singularity
should appear as an E-dependent structure near the
k?*=0 end. No effect distinguishable from the square-
root singularity at k2=0 is observed. There is also no
effect on the absolute magnitude, as can be seen from
the fact that the three curves use the same ordinate
scale.

Further calculations, with the inclusion of the p reso-
nance in the T=1, /=1 pion-pion scattering amplitude
and the linear term 4 of the weak interaction, are being
performed.
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