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Faddeev Equations for the X ~ 3~ Amplitude*
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Integra1 equations for the three-pion decay amplitude of the E meson are derived in the context of a
potentiaI-scattering model. Nonlocal S- and P-wave separable potentials are used. Some numerical solutions
are presented for the S-wave case. The shapes of the decay spectra, are found to be insensitive to the shape
of the potential for the cases investigated. The connection with the integral equations of Khuri and Treiman
is discussed. A zero-range approximation requires that uP&ao' in order to fit the experimental data. Some
aspects of three-body states in the presence of a resonance are investigated. No observable effects of a
triangle singularity are found for the cases considered.

INTRODUCTION

'HE three-pion decay mode of the E meson has
long been of interest because of the possible

information it contains concerning the pion-pion inter-
action. Most previous analyses' of this decay have
considered only the first rescattering of the pions in
the final state and have neglected the eRects of multiple
scatterings which involve all three pions. The pion-
pion scattering parameters obtained from such calcu-
lations (Ref. 4) generally disagree with the parameters
obtained from other reactions both qualitatively and
quantitatively. ' This has led to the conclusion that
the structure observed on the Dalitz plot for r decay
is primarily a result of the weak interaction itself and
not of the 6nal-state pion-pion scattering. ' "

A gap in this argument is, of course, the neglect of
the multiple scattering. Very little is known about
three-body systems but recent work on triangle singu-
larities, "" overlapping resonances, " three-body uni-

tarity, and other aspects" have indicated that there
may be qualitatively new effects in a three-body system
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not included in previous two-body calculations. Using
the recent work of Faddeev"' and. of Hetherington
and Schick' in nonrelativistic three-body systems, we
investigate some of these eRects in detail within the
framework of a potential-scattering model.

In Sec. I we derive integral equations for the decay
amplitudes. The 6nal-state interactions are assumed to
take place through a sum of two-body potentials. The
equations are then specialized to the case of separable
nonlocal S- and P-wave potentials. One choice for the
form of the weak interaction is discussed in Sec. II A.
The pion-pion potentials which we use, including one
which can produce an S-wave resonance, are described
in Sec. II.B.

The equations derived in Sec. I are rewritten in Sec.
III in a form suitable for numerical calculations.
Numerical solutions for some simple cases are presented
in Sec. IV under three categories. First, the dependence
of the final Dalitz plot upon the potential shape is
investigated briefly. Then, a comparison with the result
of Khuri and Treiman' is made and the relationship
between our equations and theirs is discussed. Finally,
some aspects of three-body states in the presence of a
two-particle resonance are investigated. Additional nu-

merical work is in progress.

I. INTEGRAL EQUATIONS FOR THE
DECAY AMPLITUDE

The amplitude for K-meson decay into three pions
can be expressed as

where H„describes the purely weak interaction which

initiates the decay. The final-state wave function for
the three pions Ps i i satisfies the equation appropriate
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for outgoing waves: FxG. f. An example
of a perturbation dia-
gram included in the
hrst rescattering term.

where V; is the potential between pions labeled j and
k. The three-particle t matrix T satisfies the Lippmann-
Schwinger equation

T= V+VGpT. (1.5)

Substitution of Eqs. (1.2) and (1.5) into Eq. (1.1)
results in our basic equation for the decay. In operator
form we obtain

U= H„+TGpH„
=H +VGpH„+VGpTGpH„
=H„+VGpU. (1.6)

In order to eliminate the singular part of this equation
we parallel the ideas of Faddeev" and define the three
operators

where &happ I
denotes plane waves and Gp is the free

three-particle Green's function

Gp ——1/(8 —Hp+ip), p —+ 0+ (1.3)

where E is the total kinetic energy available (E=mrr
—3m ) and Hp is the three-particle kinetic-energy oper-
ator. The interaction of the pions (labeled i, j, k;i' &k) is assumed to take place through a sum of
two-body potentials

3

V=+ V;,

pion i is a spectator (Fig. 1).This term is essentially
the one used in some previous analyses'~ to estimate
final-state interaction e6ects. We refer to it as the first
rescattering term. It can be seen by iteration of Eq.
(1.12) that the other terms (multiple-scattering terms)
take into account all other graphs (i.e. , those with no
pion acting only as spectator —e.g., Fig. 2). Three-pion
potentials are omitted, although they could be included
if necessary.

Our next step is to specify the basis states in which
to most conveniently express the matrix elements of the
operators in Eq. (1.12). The general case of three
particles of arbitrary mass and isospin is discussed by
Hetherington and Schick."Considerable simplification
in the notation occurs for E decay if one neglects the
pion mass differences and assumes that the weak inter-
action H„obeys a

I ATI =-,' rule, since then the only
important total isospin for the final state is T= i. With
this restriction the three-pion state can be specified in
the over-all center-of-mass frame by giving the total
momentum g;, the relative momentum k;, and the
isospin I of the pions labeled j and k. In terms of the
momenta of the individual pions, Pi, P2, and P3,

q, =P,+Pp ———P;,
k, = p(Pp —P,), i, j, k cyclic.

so that
Ui= V,GpU, i=1,2,3

U=H„+Q U, .

(1.7)

(1.8)

Since the basis Iq;,k;,J) is just as good as Iq;,k;,I),
we state the transformation matrices

The operators U; then satisfy the coupled equations

U, = V;GpH„+Q V;GpU;+V;GpU;. (1.9)

t,= V;+V,Gpt, (1.10)

Note that the pion labeled i enters Eq. (1.10) only
through the energy denominator of Go. In terms of these
operators, Eq. (1.9) can be rewritten as

We now introduce operators t;describing the (off-energy-
shell) two-body scattering of pions j and k by the
definition

&q', k'; I
I qt, kt', J)= (2~)'~(qt+ pq' —k)

X (2pr)'8(k;+-Pq;+-', k,)E(I,J),
&q;,k;; I

I qp, kg, K)= (2n) 'h(qp+-,'q~+k;)
X(2 )PS(k,—-'q+-',-1 )Z(I,Z). (1.14)

The recoupling coeScients E(I,J)= (—1)r+~R(J,I) are

3—-'v33
-pV'5

+%3 -'+5

——,'+15
(1.15)

where rows and columns are the isospin in the order
(0,1,2,) andi, j, k are cyclic."

or
U;=t,GpH„+Q t,GpU;. (1.12)

(1—V,G„)U;= (1 V,6p)t;Gp—H„'
+(1—V,Gp) g t.,GpUy, (1.11) FIG. 2. An example

of a perturbation
diagram included in
the multiple-scatter-
ing term.

K

The inhomogeneous term in Eq. (1.12) sums all the per-
turbation diagrams in which pions j and k interact and

"Our phase convention is slightly diA'erent from that of
Hetherington and Schick (Ref. 18) in that cyclic order is pre-
served in all definitions. lt is shown explicitly in Eq. (4.2).
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or

Gp '=E—»Pq,'—kg+i», any i (1.16a)

The Green's function Go can be written in any of the
equivalent forms

where

(k;it;(q;,I) ik )= V(k;,k,I)
d»k- V(k, ,k-, I)&k-~t,g, ,I) ~k, )

(1.19)
(2v.)P

g
P—k"P+i»

gq =E—4gs . (1.20)
(where the units m =v=A=1 are used). Since the
potential V; conserves isospin and does not involve

particle i we have

Equation (1.19) is a standard integral equation for the
two-pion scattering amplitude for incident relative
momentum k, outgoing relative momentum k, , and
relative energy g .

Deaning
(k, ,q;,I i V;) k,q, ',I')

= 8zz (2v.)'8(q,—q, ') V(k;,k, ',I) . (1.17)

Gp ' ——E—q,'—q; @—qt'+i», any i' (1.16b) and

The matrix elements of Eq. (1.10) are then and
&k;,q;,I i U; i q tr) = U;(k;,q;,I)

(k;,q;,Iit, ik,q,I') (k, ,q;,Ii H„i q x)=H„(kg,q;,I), (1.21)

=&k;~t, (g;,I)(k )4r.(2~) 8(q,—q ), (1.18) we obtain from Eqs. (1.12), (1.14), (1.16), and (1.18)

d'k &k;it, (q, ,I) ik )H„(k,q;,I)
U;(k;,q;,I)=

(1.24)
where

(2')' E—»q' —k;"+i»
d n' &k'It*(q', I) lq '+lq')R(I, J)U (—-'. q —q;, q, J)

+Z
(2v.)' E qP q; q/

—q;—"+i»—
d'~p' &k'It,(~ I) I-qp' —pq;)R(I, R')U. (pq. +q;, q. , R)

+Z . (1.22)
(2~)' E gP q qp —

gp +p»

Since the pions are identical the particle labels i, j, k can be dropped temporarily.
Equation (1.22) is still too complicated to handle numerically because U(k, q,I) is a function of the three vari-

ables k', qP, and k q. Further progress may be made by assuming that the potential V(k,k',I) can be approximated
by a separable potential for each partial wave and keeping only the lowest partial wave for each value of I.' "

V(k,k', I)= (2/+1) hr vr (k)vz(k')P )(k k'), (1.23)

with /=0 for I=0, 2 and /=1 for I= 1 and vr(k) ~ k' as k ~ 0 to insure the proper threshold behavior.
For this choice of potential the two-body t-matrix element in Eq. (1.19) also separates and is given by

(kj t(q I) i
k') = (2l+1)vz(k)vz(k')P)(k k')r(q I),

d'k" vrP(k")1
r '(q, I)=-

Kg

d g
W(q, I)= r(g, I) F(q,I)+P — -It(q, q'; I,J)W(q', J)

(2~)'

(2v) P g&—k"P+t»

Now since the two-body t matrix is separable we see from Eq. (1.22) that U(k, q,I) is also separable:

U(k, q,I)= (2l+1)vr(k) W(g, I)P((k j),
where the new function W(q, I) satisfies the integral equation

(1.25)

(1.26)

(1.27)

and

F(9,I)=

E(q,q', I,J)=

d'k' vr(k')P~(k' j)H„(k',q,I)
(2v)' g.' k"+i»—

vr(k')P~(j k')2R(I, J)(2/'+1)vg(k")Pp(k" j')
E q' qq' g"+i»— — —

(1.28)

(1.29)

' The validity of the separable approximation is discussed in many places, including Refs. 15 and 17.
"See also J. L. Basdevant and R. L. Omnes, Phys. Rev. Letters 1?, 775 (1966). Their caution against indiscriminate use of this

approximation should be noted.
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with k'= q'+-', q and k"=—q——',q'.
If the potentials vr(k) are chosen to be simple enough,

the integral in Kq. (1.28) and the angular integrations
in Kq. (1.27) can be performed analytically, leaving a set
of three coupled single-variable integral equations for
the three functions W(q, I). These equations consist of
an inhomogeneous term describing the single rescat-
tering and a "homogeneous" term describing multiple
scattering.

The first rescattering term of Kq. (1.27) is not the
same as used by Brown and Singer' and by Prasad.
The essential diRerence is the normalization. If only
one isospin state is important, as in Ref. 6, this affects
only the rate. However, when two or more channels
are present, the relative normalization is important and
the choice used by Prasad is not unique.

In the special case in which vr(k) =const (vr=0 for
I=1), the various integrals diverge. However, we show
in Sec. IV.B that in a once subtracted form Kq. (1.27)
becomes identical to the equations derived by Aniso-
vich, "which are in turn the same as the nonrelativistic
limit of the Khuri-Treiman dispersion equations. Thus
we expect that whenever the range of our potential is
short, we should obtain the same results as would come
from an exact solution of the Khuri-Treiman or Aniso-
vich equations.

II. SPECIFIC INTERACTIONS USED

A. The Weak Interaction H

The spirit of final-state-interaction calculations is
that all the observed energy dependence is assumed to be
due to the 6nal-state pion-pion interaction. In an
attempt to be slightly more general, we have assumed
that the weak interaction H„may contribute terms
which are constant or linear in the energy of each pion.
Within the restrictions of Bose statistics and the

I ATI =s rule there are only two parameters in this
description. The matrix elements (k;,q;,II H

I rprr) are

(k, ,q, ,olH„I «)=-'sgSH ——;&3~(-'k —-'q )

(k,q;,1IH. I yx) =&4 q;,

(k;,q;,2
I H„l q rr)= ,'H+ ',+152 (,'k,'-,'g,'-) . (2.1)-——

Since we have

v(k, k',I)=) ivr(k)vr(k'),

vr(k) = 1/(k'+Pr')(k'+Pre') RePr) 0.
(2.3)

This corresponds to a separable potential in position
space of the form

e ' sinbr) e '"' sinbr')
vr(r, r') = X'

br ) br' )
(2.4)

with Pr=a+ib. The oscillations of the sine function
seem to provide sufhcient barriers to allow an S-wave
resonance to occur. We refer to this potential as the
potential CP (for "complex parameter").

The t matrix generated by this potential is

(kl l(q,I) I
k') =v, (k).(q,I)v, (k'),

r '(rI, I)=-
(8+4s «Prq Prs-3IP. I'-Pr*')—

(pr &rI) '(pr * t'g)—'&rr(pr+ p—r*)'
I pr I

'

The on-shell amplitude has a scattering length and
effective range

4~l p. la I p. l'(p. *'+3lp.l'+p")
+

ar 4 2(Pr+Pr*) '

B. The Pion-Pion Potential

The low-energy pion-pion interaction is not very well
known. For the P wave, the p resonance at 760 MeV
presumably dominates. However, S-wave scattering
lengths deduced from peripheral pion production
(v+p ~ s+7r+n, etc.)' disagree with those obtained from
previous analyses of v decay. The Brown and Singer 0.

resonance' and various explanations of the ABC
anomaly" have also been proposed but no consistent
scheme has yet been devised. Indeed, it is not even
clear whether the S-wave pion-pion potential is at-
tractive or repulsive. '4

The S-wave potential we use has suQicient flexibility
to generate a resonance or a zero effective range as
well as the more usual S-wave behavior. In momentum
space we choose

-'sk;s —-', q,'=-'s(k; qr+ks qs), (2.2) 16 Iprl'(pr'+pr*')
the linear terms obey the above restrictions both on
and o6 the energy shell.

In the absence of final-state interactions, a value of
2/H between —0.33 m ' and —0.46 m ' would fit
the observed energy spectra of E decay.

The numerical work. reported in Sec. IV considers
only the case A =0.

where

(Pr*'+3(Pr* +Pr')
I Pr I'+7

I Pr I'+Pr')
+ (2.6)

lp. l'(p.+p.*)'

&t(q I)= -(I/4~)(-tq-I/ar+s"8+o(q')).

"V. V. Anisovich, Zh. Eksperim. i Teor. Fiz. 44, 1593 (1963)
)English transl. : Soviet Phys. —JETP 17, 1072 (1963)j.

"A.Abashian, N. E. Booth, K. M. Crowe, R. E. Hill, and E. H.
Rogers, Phys. Rev. 13, 2296 (1963)."G. F. Chew. Phys. Rev. Letters 16, 60 (1966).
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and

16-(p+p*)'(p'+p*')
I
pl'

p'/3I PI'(p'+p*')+7I pl'+p*'

I Pl'(3P'+9I PI'(P'+P*')+» I PI'+3P*')

4(p+p*) '(p'+ p*')

and some added restrictions can be placed on the phase
of P. For an attractive potential

a&0 implies (Imp)'& (2+21—7)(Rep)',

a( 0 implies (ReP) ((ImP') ((2+21—7) (ReP)

and for a repulsive potential

a) 0, and ImP(ReP.

The choices of phases used were

ImP= (g2.4) ReP, a) 0, attractive potential;

Imp= v2 Rep, a(0, attractive potential;

ImP =0.1 ReP, a& 0, repulsive potential;

By varying the parameters Xz and pz, we can adjust
this potential to lead to either a resonance or a bound
state in the S-wave pion-pion system. Knowledge of
only the scattering length and either the effective range
or bound-state energy of the scattering amplitude is
sufhcient to determine only two of the three parame-
ters associated with this potential. The third parame-
ter, which we take to be the phase of P, can be partially
restricted in its possible range of values by requiring
that the coeKcients of qo, q', and q' in i '(q,I) be rela-
tively small. Also, the structure of the 6nal integral
equation leading to the K —&3m decay amplitude is
such that the numerical method of solution is easier
and faster if the phase of p is small [see Eq. (3.12)].

For the cases of interest, summarized below, the
parameters were determined:

(1) In the case of a resonance, by fixing the scat-
tering length, resonance energy and resonance width.

(2) In the case of a bound state, by fixing the mass
of the bound state and the scattering length. The phase
of P is arbitrary. The choice RePz=V2 ImPz satisfied
the above conditions for the cases considered and was
adopted in the numerical calculations.

(3) In the case of no resonance or bound state, by
fixing the scattering length and effective range. For the
cases considered, except for zero effective range, it was
again found convenient to choose

RePz =v2 ImPz.

(4) In the case of zero effective range, by fixing the
scattering length a. Then

In order to investigate the dependence of the 6nal
theoretical spectra upon the choice of potential we also
considered the S-wave nonlocal separable potential
(referred to as RP for "real parameter")

v(k, k',I)=~zvz(k) v, (k'); .,(k) = 1/(k'+ Pz'),
Pr real and &0. (2.7)

This potential leads to a scattering amplitude

(k I &(q,I) I
k') =vr(k)vz(k')

X (1/Xr+1/8orpz(pr ig) o—) ', (2.8)

which cannot resonate. Comparisons were made for
cases (2) and (3).

For the I' wave we choose

v(lr, ir', I)=3lizvz(k)(k. k')v, (k '),
with

vz(k) =k/(ko+Pzo)(ko+P *o)

The t matrix which results is

(k I t(q, I) I
~ )=3vz(k)k k'vr(k') r(q,I),

(2.9)

(2.10)

where
1 1 q'+2iq(Pr+Pr*) PrPr*-

'(q, I)=—— (2 11)
7 r 8~ (Pr+Pr*)'(Pz iq)'(Pr' —oq)'—

The on-shell effective-range expansion is then

4~ Ipl' 8~
k' cota = —

I p I

' +k'
I p I

'(p'+ p*')
X 16(ReP) '

3l pl'(p'+p*'+
I
pl')

+O(k4) . (2.12)
16(ReP) '

1
I'(q, 1)=-

4or pi+pi* pi iq pi* i—q—
X o& [pipi* —iq(pi+ pi*)jq,

1 1 1
I (q, 2) =—, , ]+lII

4or po+po* p: iq po*—i—q
—(V'5/3"D)A [E—q' —P,P *+iq(P.+P,*)j], (2.13)

For X= —0.1721X10', P=15.0+6.49 i we can obtain
a resonance at a mass=763 MeV with width F=100
MeV.

The functions F(q,I) corresponding to these potentials
are

1 1 1 1
F(q,0) = —— — [+io+SII-

4 Po+Po* (P. iq) (Po* iq)— —

+ (2,~3i/3)-4 [& q' PoPo*+&q—(Po+—Po*)7],

and are such that the coefFicients of g, q', and g' in for the oscillating potential CP.
t '(q, I) are small except for the case of a repulsive The linear coeflicient A must be set equal to zero
potential. for the simpler potential RP to make the integrals
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convergent. We then have

1 1 +5
F(q,0)= —— + II—

4zr Pp —zq 3

The procedure used for solving Eq. (3.1) is the same
as that outlined by Hetherington and Schick."

The kernel E(q,q; I,J) has logarithmic singularities
at

1 1 2
I'(q, 2) =— +-& l.

4zr t4 —iq 3 j (2.14)
and

q'=&Ipq&zPz; q'=+pzq+iPI*;
q'= &2q+2iPz, q'= &2q&2iPz*,.

(3.6)

~rI. METHOD oz SOLUTrom

The forms chosen in Sec. II for the potential allow
the angular integrations of Eq. (1.27) to be performed
leading to a set of three coupled one-dimensional
integral equations of the form

q'= +-', q+(E——,'q'+zp)"'

together with square-root singularities at

q=~Lp(E+zp) j"'
and other singularities of r(q, I).

For q real, the Green's-function singularities at

q'= a-'qa(B —-'q'+i )p"' (3.7)
W(q, I)= W p(q, I)+Q dq'Ii(q, q'; I,J)W(q', J), (3.1)

J lie in the region of integration. These singularities can
be avoided by rotating the variables q and q' simul-
taneously into the fourth quadrant of their complex
planes, i.e.,

where

(3.2)
and

q' r(q, I)
E(q,q'; I,J)=-

q (2zr)'
q=ye '~; q'=xe '~ x,y real and &0. (3.8)

& 2 (I)J)nP+B(I)J)n,+C(I,J) n, +qq'
X ln-

II (n,—n*) ni —qq'

We are free to make this rotation as long as the con-
tribution from the arc at in6nity is zero and the inte-

(3 3) gration contour (0&x& n) ) does not cross a singularity
of the integrand. Then the integral Eq. (3.1) becomes

In Eq. (3.3), 1V is 3 or 5 depending on which potential W(y e-z@,I)=Wp(ye —)z',I)+p Ifx
is used: o

0 0 0i

A = 0 3/qq' 0

.0 0 0.

2'+=

2
3

—v3q' —,'y/'5

C= —-', qv3 ,'qq' q/p15—

ni ———E+q'+ q",
—q)2+ Iqz+, P I

n p= 4q"+q'+Ps',
q)z+lq2+p p)2

—lq)2+qz+p p)z

and the matrices A, 8, and C are

Xe '~E(y e '~)x e '~; I,J)W(x e '~ J) . (3.9)

(3 4)
From Eq. (3.6) we see that as we rotate the integration
contour, the 6rst singularity of the kernel to be en-
countered is at

CI ——taII I(Rep/~ Imp~).

The functions r(k,I) and F(k,I) with

k (E P ypg 2iz') I/2

are not singular in the region 0(C(2x for the po-
tentials under consideration.

Numerical solution of Eq. (3.9) for W(ye '~,I) is now
straightforward. However, in order to find W(q, I) for

q real, we have to rotate the complex variable q back to
the real axis in Eq. (3.9). This is equivalent to rotatinp
only the integration variable q' into the fourth quad-
rant of its complex plane through the angle C in Eq.
(3.8).

However, some care is required. For q real and greater
than QE the singularity of the kernel at

q'= q, '= ,'q (E 'q—'+—ip) '"—-

lies just below the real positive q' axis complicating the
rotation of contour. A suitable choice of contours" is

.—;+5 pqV15 p
2' J. H. Hetherington (private communication).
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qc~g
IM q'

O' PLANE

jp & q & +4E
IM q'

h

O'PLANE

6nal form amenable for numerical calculation:

Z(t,I; n, C) =Zp(t, I; n, C')+Q
p s(1—s)(1—t)

'qs

(a)

—Re q' ~~9qs
S

= Req'

nte '@ nse '~XK, ; I,J iz(s,J; n, C)ds, (3.15)
1 t 1——s

I nse '~

W(q, I)=Wp(q, I)+Q — K q, —;I,J
~

p s(1—s) 1—s )

XZ(s,J; n, Cr)ds+8(q —gE)
5 tI—&(E—'. rI2)

FrG. 3. Integration contours used in obtaining Eq. (3.io). dq'AK(q, q', I,J)W(q', J). (3.16)

shown in Figs. 3(a) and 3(b). Then

W(q, I)= W p(q,I)+g dx e '~K(q, x e '~ I,J)
0

ka—&(E—II'')

XW(xe '~,J)1 dq' BK(q,q'; I,J)
XW(q', J)8(q—gE), (3.10)

where the discontinuity of the kernel around the loga-
rithmic branch point at q,

' is

ddt(q, q'; I,J)= + (i q'/2xq) r(q, I)pr(q) [A (I,J)nir
+B(I,J)ni+C(I, J)]ps((E—-'q'P)"') (3 11)

With this choice of contour, the kernel becomes singu-
lar erst at

C,= tan-'(ReP, /(q+ ~
lmP,

~ ))
for each value of q. Hence Eqs. (3.9) and (3.10) result
from valid contour rotations if we choose

0&C(C (3.12)

where C ~ is the smallest value of C, for J=O, 1, 2
and for 0&q&(4E/3)'t' (the physical region for K
decay).

A further change of variables was made in Eqs.
(3.9) and (3.10) in order to make the integration regions
finite:

x=ns/(1 —s), y =nt/(1 t) . (3—.13)

The parameter a was used to position the dominant
part of the integrands near the middle of the integration
range 0 to 1.

It was also found to be convenient (when A =0) to
solve for the functions

For q) QE, Eq. (3.16) requires knowledge of W(q', J)
for q'&g(E/3). Hence we first evaluate Eq. (3.16) for

q&QE and use these results in computing W(q, I) for

q) v'&.
The last term of Eq. (3.16) is particularly important

when r(q, I) has a narrow resonance for q' between ~pIr'

and E. In this case the endpoint q,
' of the integral

passes very close to the resonance pole in W(q', J). The
resulting logarithmic singularity" at

q p qr+ ttr
q

ttr E s qr iiires 2 & p Pres

corresponds to the triangle singularity of amplitudes
such as that illustrated in Fig. 4. The e6ect of this
singularity will be discussed later.

Equation (3.15) was solved by matrix inversion on an
IBM 7094 computer. The angle C was taken to be
0.5 C,„and the parameter o. was chosen to make the
dominant structure of the solution Z(t,I; n, C') occur
near t=-,'. A mesh of between 25 and 45 points was

found to be suQiciently accurate. For those potentials
leading to a kernel with rapid variations, the mesh size

was increased in order to check the accuracy of the
solution.

For the case in which a pion-pion scattering ampli-

tude resonates, the imaginary part of p (which de-

termines the oscillatory nature of the potential) is

large compared with the real part. Thus C is small

( 0.1 rad) and rotation of the contours through an

angle 0.54, does not make the singularities of the
kernel very distant. However, even in this case, a mesh

of 45 points was more than suKcient.
Since the kernel of Eq. (3.16) is more singular than

that of Eq. (3.15), we interpolated the function

Z(t,I; n, C) (in general found to be a smooth function)
using a seven-point Lagrange interpolation formula,

nte '~ (nte '~

Z(t,I;,C) = Wj,I i. (3.14)

This simplifies the numerical calculation of the kernel
at the endpoints of the integration.

With the above modifications, Eq. (3.1) takes the
FIG, 4. An example of a graph in the multiple-scattering

series which can contain a triangle singularity.



AM PL I TU 0FORpgUATIO&FA»EE~

etween pions and 2 requiress mmetry b .
z $ince we ca""o

F55

h the j t'- '
en «nctjon ' '

and F'b)/F( )'

oints at whjc
~(z) be an even

lot g{z)/X O an

~

1 the number of P '
U this procedure

bsolute rates, we P
onsjstent with

bee 1 t . . (3.15) e late
' t ld t e "

(

needed inor er o

b tp23 f E+
rv RECRUITS

here~ is
+ d g &~K

~

pprtipnal tp
O 63 fpr ++

tial dec~y rate P
.1 and (1.&):

. of potentials

s

IMI =1(..l~-+Z,

M = Q (II„(km,qa,I),3+M= „, 8 U;(k;,q, ,I))
s-1 I-0

8.0

The differen
1 nt of Fqs (1

A. Comply&so&

of the matrig e

~;Q eneratethesam

quare o e

(4 1)
f otentjals w& g

Th potentials
,, m2, and digerint e

uatipns depe
s ectra

3 t have charges ~»
the Faddeev eq

1'tude, the energy p

1 2, and o

~
(m~,m2, ma Since

h cattering amP ' '
f the potent'

Specifying p'
-

' '
and the state

behavi«pf t .
tp the shape

d the

~

e e .
be sensitive

e calculate

„respec
t of basis states,

obtained may
reliminary step w

ptentials

in t rms of pur set o

Hence, as a p '
f twpdiGerentp

1I m;,m.)
three-p

h arne scattering
d Rp described

ree- ion decay
rin length a

(m~, mm, mal = '

wh' g
tentjajs used a

~

the potentials js

C1, ;m;,

(4 2
range. The po '

bje djfference m "
entjajjy

1 I 1;m;, m,+ma)(q'~ ' '
.

c lf. Qnenotue
pm This leads

coeKcjents a
the djfferen .

the integrals o "
le

Clebsch-Gorda"
1' ~e choose

d'fferent cutoff »" .
5 g for the co P

a i
e shown in Figs. —

and for the

be1, 2, or3, and &~i~ .
for It+ decay an

The results are o
. 3.15) and (3.16) a

I . F«

the pion labele
he matrix elementay T ethe ~

lete solution,
is chosen. T e

the comp e
h' h potential is

t the egect
independen nt of w '

mpre buterms di er s'g' somewha™
h the

~

rtant «n
rescattering

is more I.mpp
m&) i

i le rescattering
'~ C(1,I, ;m;, m,

of multip
'fference between t e

of Fi . 5The spectra o g

w crewh e have use q.

e of an I=O boun s a

and U(k, q, g' bI) are g'

I

ction o on

I

respective y.

9.0

y y
hich we choose to e

'
riavariables whic w e

x=VS(PP—P~')/2E = —3q~.

nd
' 2E—1.

an

3P '/2E —1=3qa-y — 3

e
'

lues of x and y are thereforeThe physical values of x an y

(4.5)x2+y~&1.

r
'

terms of thee resent ourr results in
aver'agedh' h iM(,F)w lc

w f and x, respectively,
'

over a ow11 wed values of y an x, r

&(1—x~)

(M(*,v)
~

2~y
—v(&—~')

x(x) =

7.0

6.0

5,0
Y(y)

Y(o)
4.0

3,0

I.O

and (46)
0.0

-I.O
I

-0.5
l

0.0
I

0.5 I.O

-v'(&—u')
(M(~,y) (2a~

2~(1-, )

. (London) A69, 527 (I956)."R H. Dalitz, Proc. y . . onPh s. Soc. onRw

-1ra I' y)/F(0) for ao ——4.22 m
2 lit (j (IA=O.oI=1o ' A=O

N t'o ateractions, 1965, Arg
30 ( bl

L boratory Report No.diation a o



9.0

8.0—

7.0—

6.0—

potential Comparison

Complete solution(pote

~"--- Complete solution(pote

--—- First rescottering (pote

First rescattering (pot

I.5

i

Complete
tentiai Rp)

~ n( otential CP)
-Co Piete solution(Po te Ia

5.0—
Y()t)
Y(o)

4.0—

3.0—

2.0—

I.O
X(x)
XXo)

(

tential CP)----First rescatterIng(pote
'

——First reseat tering (potential RP)e ~en rs

(a) tb)

0.0
-I.O -0,5

1

0.0 0.5 I.O

0
0

i t

I 0

s «t«&(y)/F(&) for u, =4.226. The normalized decay spectra y
t

no I=1 amplitude, and 2 = .

s ectra X(x)/X(0) for the same. 8. The normalized decay spectra
Fi . 5 for graph (a an

lotted since the spectra areg o p o ra are
The spectra correspon ing oeven in x.

have a small slope.

at for most cases the spectrumuare-root singul
'

y ieadsarit at us to believe t a o
tain with the potential CP wiill be close1 b Sthe two-pion thresho ld and was poin e

with more comp
'and Wali. ' It is present inmost o our curv

po po tterin amp i u esiceable.

nsistent with t e experi

1 1S

1 h h the shapes ofout that a t oug

si nof thesopeinthe shape of the
not as can be seen

be insensitive to e s

ence on x.
f h O'6

absolute rates are not, as c
s

~ ~ ~ ~

ust a reQection o

n with Khuri-Tresmann wi '-T '
an Approximation

The otential which has a

odel for the 5-wave pion-pioUsing a zero-range rn
1// de endence (RP near r=

o g

dispersion relation,

the otentia w ic
le re ulsive

-d o h diff
potentials —se

an ~- ecay
a and u2. eir o

p " "o po
we have found. is

'

study. However, this limited comparison

L5

'= ~E is a kinematical fac o qtor e ual to 0.64.'grhere p2= 3E5$~ IS a

rates in units of H' calculatedTABLE . T e absoute ecay ra s
terin approximationfrom the 6rst rescattering a

solutions (R,) for the potenba s

y(y) l.0

&(o)

5-

f0.

ap ——4.22m
mps= 1.91m;

no I=2 potential

ap=4. 22m
mBs= 1.91m~~.
a2 ———0.8m -';
'

=�2.
0m

ao= -0.8m~ ';
rp ——2.0m
no I=2 potentia

R]. Ro

CP 8.15 6.92
RP 26.36 51.20

rfRg" R," R,'/R, '
2.68 1.93 3.58
8.59 14.20 3.60

8 5.54 1.14 1.41 3.94CP 43
RP 10.38 18.40

3.66 3.65 3.46CP 11.70 12.63
RP 36.00 173.3 10.21

a s ectra Y(y)/Y(0} for a = —0.8FIG.. 7 T e normalized decay spectra y
m '"rp=2. m, nÃ

No anal-state
interaction

0.8376 0.2094



155 Q ATIONS FOR X~3o. AMPL1TUDF 1721

(Note that our sign convention for the scattering lengths
is opposite to that of Khuri and Treiman, so that ay&0
corresponds to an attractive potential. ) However, their
derivation depends on a cutoff due to relativistic kine-
matics. Since our formula is nonrelativistic, the corre-
sponding cutoG is provided in a different manner and
therefore results cannot be compared directly. With this
in mind we denve from our equations the nonrelativistic
analog of the Khuri-Treiman matrix element.

Equation (3.1) for W(q, I) can be subtracted at
q=go=g(-'o ), the center of the Dalitz plot. The integral
equation for the difference function W(q, I)—W(,I)Itt,

—
g p,

converges even in the limit of constant potential, i.e.,
P ~oo . I the limits P —& oo and X ~ oo are taken in such
a way that the scattering length stays 6nite, one can
obtain equations for the functions U(k, q,I) introduced
in Eq. 1.21:

slope at the center of the Dalitz plot for r decay of

~oko'(aoo/(1+ ko'ao') —aoo/(1+ ko'aoo) ) (4.15)

which differs from expression (4.8) in that it depends
only on the squares of the scattering lengths.

Cusps due to the square-root singularities at the two
pion thresholds, such as those noted in Sec. IV.A,
will arise from the explicit appearance of (ko—k;) in
Eq. (4.14).

Although we have not solved Eq. (4.10) we
expect that for potentials having a short range the
solution to Eqs. (3.15)-(3.16) will be very similar to the
solution of Eq. (4.10). In Figs. 9 through 15 we show
the results for the complete solution to Eqs. (3.15)—
(3.16), the single rescattering or inhomogeneous term of
Eq. (3.16), and the approximate formula, Eq. (4.13).
In all of these cases, parameters were chosen to make

where

Cz
C (q,I)= (igo —iq)G(I)

1+iqar

U(k, q,I)= U(q, I)= U(qo, I)+4 (q,I), (4.9)

l 5

I I

Complete solution

First rescottering

4pproxirnote solution

+P R(I,J) L~(M') —A(A, U') jc4',I)d9'; (4 1o)
l,O

A(g, g') =——in~

1 q' (E—q' —q" qq'+i o)—
~ q kE q' P—+—gg'+io)

(4.11)

0.5—

G(I) = II-(I)+U(lo,I)+Z 2R(I,~) U(co,j) (4 12)
J

is proportional to the decay amplitude at the center of
the Dalitz plot.

These equations are identical to Eqs. (17) and (24) of
Anisovich" except that the subtraction point is at the
center of the Dalitz plot. (Anisovich also uses g instead
of q as the integration variable. ) The connection between
t e Khuri-Treiman and Anisovich equations is dis-
cussed in Ref. 13.

In the spirit of Khuri and Treiman we 6nd an approxi-
mate solution by taking only the inhomogeneous term
(first rescattering term) of this subtracted equation.
We thus obtain for the matrix elements for v and v'

ecay

M, =1+D(k,a )+-'LD(k, a )+D(k,a )j
+~o[D(Eg,ao)+D(ko, ao)],

3I,.= ——',+-o,D(ko) ao) —gD(ko, ao)
——',$D(kg, a,)+D(ko, ao)$, (4.13)

where

D(k;,ar) = (ko )ka(r/i+—k,ar), —

o=-„~(o' ) is the value of k; (=g~) at the center of
th e Dalitz plot. These simple expressions predict a

0
-I.O

'1

-0.5
1

0.5 l.O

l.5—

Complete solution

——First rescattering
--- A pproximate solution

~(» io
Y(o)

5—

FIG. 10. The normalized decay spectra F(y)/F(0) for a0=+0.3
m, ', ay=+1.0 m ', zero effective range, and A =0.

FIG. 9. The normalized decay spectra F(y)/F(0) for a0= —0.3
nz ', a2= —1.0 m ', zero effective range, and A =0.
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Frc. 15. The normalized spectra I (y)/F(0) for a repulsive
potential, uo=+0.8 m, ', no 1=2, zero effective range, and A =0.
The spectracorresponding to the approximate solution, Eq. (4.13),
are the same as those in Fig. 14.

Results are shown in Pig. 11. It is quite likely that a
6t to the data could be found but it would still require

Our results dier from those of Khuri and Treiman'
in that the slope is independent of the sign of ay, as
can be seen by comparing Pigs. 9—11. Khuri and
Treiman did not actually consider bound states in their
formalism, since no bound dipion is known. They did,
however, assume Eq. (4.8) to be valid for repulsive
interactions. Our Eq. (4.13) predicts that repulsive
potentials and potentials attractive enough to produce
a bound state should have the same Dalitz plot if they
have the same scattering length. Comparison of Figs.
14 and 15 shows that this does not apply to the complete
solution. The reason can be seen in the relative rates in
Table II. A repulsive interaction is expected to decrease
the rates. This decrease shows itself as a cancellation
between the pure weak matrix element and the re-
scattering terms in Eq. (4.3). This effect is already

FIG. 16. The normalized spectra Y(y)/Y(0) for an I=O reso-
nance of mass 357 MeV and width 86 MeV, no I=1 or 2 ampli-
tudes, and A =0.

apparent with the inclusion of only the first rescattering
term. With the multiple rescattering included the
cancellation is almost complete in the physical region
for the parameters chosen. In fact, at one point the
real part of the matrix element goes through zero while
the imaginary part remains small. Since the anal
spectra depend sensitively on this cancellation, the
shape of the Dalitz plot shown in Fig. 15 could be
dependent upon the choice of potential.

C. Resonances

All of the zero-range curves are linear near y= —1.
Some of the data' on the E2 —+ x+x xo decay show a
maximum near y= —0.8. A 6t to this maximum could be
obtained by assuming an I=0 resonance of mass 357
MeV and width 86 MeV. (See Fig. 16.). However, these
parameters do not 6t the q

—&m+x x' spectra. If the
mass is increased to fit the g spectra, no maximum
would appear in the E~' spectrum. Our results are
equivalent to those of Brown and Singer. ' This is due

Tmr. E II. The absolute decay rates in units of II' calculated from the first rescattering approximation
and the complete solution for some zero-range cases.

uo=+03m~ '; u2=+1.0m~ '
uo=+o.3m -'; u2= —1.0m

uo = —0.3m.-'; u2= —1.0m.-1
uo= —0.8m, '; up= —1.5m

uo = —1.5m ' u2= —0.8m

uo = +0.8m '; attractive
uo =+0.8m '; repulsive
No final-state interaction

Rg'

6.39X10~
8.10X10'
7.80X10'
6.53X102

6.28X10'
1.79X10'
1.81X10 '

0.8376

R,'

9 19X10'
8.02X10'
1 85X10'
8.44X104
6.41X104
2.01X10'
6.25X10 4

R1"

1.60X10'
2.08X10'
1.95X10~
1.64X10~
1.57X102
4.51X10&
4.55X10-~

0.2094

R,"'

2.32X10'
2.10X103

4 69X10'
2.13X104
1.61X104
5.11X10'
240X10 4

R,'/R. "
3.96
3.82
3.94
3.96
3.98
3.93
2.60

"P.Basile et af., in Proceedings of the Argonne International Conference on Weak Interactions, 1965, Argonne National tLabor-
atory Report No. ANI -7130 (unpublished), p. 77.
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I'xG. 17. The square of the matrix
element for r' decay plotted as a
function of the m' —m-' relative energy
k» at three different values of K
The I=O pion-pion resonance is at
350 MeV with a width of 21 MeV.
There is no I= j or 2 amplitude, and
2=0. The small k» region, where the
eftect of the tr angle singularity would
appear, is also shown on an expanded
scale.

.5 ~4

to the dominance of the resonance pole which makes the
complete solution nearly proportional to the first re-
scattering term.

In I'ig. 16 we have also plotted the X(x) spectrum
for r decay because in the presence of a resonance X(x)
may show appreciable departure from being constant.
This should be considered when fitting a resonance
form to the data. lt is also important to include the
momentum dependence of the width of the resonance.

Ke also looked for e6ects" of the triangle singularity
of diagrams such as that in I"ig. 4. In order to bring the
triangle singularity close to the physical region, the
resonance should have a narrow width. However, the
strength of the singularity is proportional to the width,
so a compromise width of 21 MeV was chosen. The total
kinetic energy Ewas varied in order to move the position

of the triangle singularity relative to the physical region.
Results are shown in Fig. 17. The triangle singularity
should appear as an E-dependent structure near the
k'=0 end. No eKect distinguishable from the square-
root singularity at k'=0 is observed. There is also no
eGect on the absolute magnitude, as can be seen from
the fact that the three curves use the same ordinate
scale.

Further calculations, with the inclusion of the p reso-
nance in the T= 1, 3= 1 pion-pion scattering amplitude
and the linear term A of the weak interaction, are being
pel fol med.
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