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Off-Shell Pion-Nucleon Scattering. II*
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In an earlier paper, expressions for pionic form factors were derived in an off-shell treatment of pion-
nucleon scattering. The development is improved and numerical bounds are estimated for the ~NN and
xNN (1238) pionic form factors which are found to deviate from unity by less than 1/o and 0.1', re-
spectively, when the invariant square of the off-shell pion 4-momentum is varied between 0 and tn„.

I. INTRODUCTION

'HIS paper is a continuation of an earlier one, '
hereafter referred to as I, in which the nucleon-

sV* (1238-MeV) reciprocal bootstrap' was exploited as
a model to derive the pionic form factors of the mÃÃ
and xEE* vertices. Other authors' have studied the
same model and have shown that the positions of the
singularities of the vertex functions so obtained are
consistent with the Landau prescription.

A qualitative understanding of the mechanism under-

lying the derivation of these form factors comes about
in the following way. First we may think of the existence
of the 1V* as due to the dynamics in the appropriate
partial-wave and isotopic-spin projection of a sum of
particle-exchange diagrams in pion-nucleon scattering
and their higher-order corrections, and dominated by
the nucleon-exchange Born term. 4 That is, this sum of
diagrams is equivalent to the Ã* pole diagram. The
basic conjecture in I, then, is twofold: (a) Since the
off-shell effects associated with an external pion of
in&riant mass squared LP/1 (physical pion ma, ss=1)
are intrinsically buried in the structure contained in
this sum of dynamical diagrams, they are equivalently
buried in the pole diagram, where they may be lumped
into a form factor C»(h') multiplying the m.XX* cou-
pling constant. (b) It is sufficient to consider the dynam-
ics of only the nucleon exchange, as suggested by its
dominant role, in order to obtain a closed and tractable
system. Hence the off-shell effects in the sum are
approximated by lumping them into a form factor
C &(LP) which multiplies the ~1VX coupling constant gi.
The above arguments are then repeated with the roles
of the nucleon and N* interchanged, completing the
conditions on, and uniquely determining, C» and C».

Here we present numerical results based on an
improved version of the unitarization procedure formu-
lated in I. In particular, the choice of phases determin-
ing the D functions is discussed explicitly, we eliminate
the need for subtractions in the dispersion relations,
and the threshold behavior is handled in a better way.
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F(W, L8) =F~(W,dP)+C(W, A'), (2)

where Ii~ is the input Born amplitude freed of kine-
matical zeros and singularities in the 8' plane, and C
is an amplitude which presumably contains the other
particle exchanges and corrections and which, when
added to Ii, gives the unitarized partial-wave ampli-
tude. The unitarization and bootstrap requirements
introduced in I evidently generate the higher-order
structure lumped into C and the pionic form factors.

While C certainly has a signihcant dependence on A~

in the physical domain, the second part of the above
conjecture, now stated more precisely to suit our
requirements, is that the dynamical singularities con-
tained in C have a negligible dependence on 6'. For
example, a part of the difference between Il and Ii~
arises from the dependence of the vertex functions on
the 4-momentum of the exchanged particle in the Born
diagram. The dynamical singularities associated with
this difference are carried by C, and are therefore
assumed to be not strongly dependent on dP.

Elastic unitarity is imposed by writing

F(W 6') =E(W 6')/[D(W)] (3)

where D has a phase representation determined by the
empirically known phase shifts as discussed in I.

II. CHOICE OF PHASES

In a theory satisfying elastic unitarity and restricted
to empirical phase shifts known only for energies
H/'&%+5, it is clear that the choice made for the
behavior of the phase of the amplitude above the in-
elastic threshold will have to be governed primarily by
computational expedience. For this purpose, the change
in variable, X—= (M+1)/ Wis useful, in that it suggests
a way to extrapolate the phases to arbitrarily large
energies, and also, in anticipation of numerical work,
in that the entire physical region in the X plane is a
Gnite interval.

' See the Appendix for an explanation of unde6ned quantities.
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We write the partial-wave amplitude in the form'

f(W, lP) =p(W, A')F (W,A'), (1)

where p absorbs kinematical zeros and singularities. We
then let
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Consider the P~~ amplitude' and its MacDowell
reAected extension, the S~~ amplitude, taken, respec-
tively, as the values of a single analytic function on
the right- and left-hand cuts which now constitute a
single finite cut for —1&X&1 in the X plane. In I,
it was suggested that the phase 5 be chosen such that
0&8&m, an ad hoc requirement intended to ensure
the convergence of integrals containing D. This require-
ment is unnecessarily strong, and, in fact, leads to an
undesirable ambiguity. ~ The P» phase shift is negative
above threshold, has a zero near the inelastic threshold,
and remains positive thereafter, going through a
resonance at X=0.715. The 5» phase shift 88II in-
creases from zero at X= —1. Hence the left-hand
phase is Ã 8+I which decreases from x at X= —1,
and may conveniently be joined to the P~~ branch by
a smooth curve. Furthermore, requiring that the joining
curve pass through ~/2 at X=O suggests a procedure
which, if on shaky physical grounds, is at least con-
sistent for handling the complex phase shifts known
along a substantial energy interval above the inelastic
threshold. Thus, assuming that the partial waves
ultimately become predominantly inelastic and con-
sequently imaginary at high energy, we choose the phase
of the oR-shell amplitude above the inelastic threshold
to equal that of the on-shell amplitude, as opposed to
the real part of the phase shift as a possible alternate
choice. However, this procedure results in a disconti-
nuity of x in the phase across the threshold at X= —1
which emerges in the phase representation as a pole in
the D function. Now, the threshold behavior of the
amplitude is already presumed to be absorbed in the
function p~. Hence we prefer to absorb the pole into
the g function, a procedure equivalent to subtracting

z from the left-hand phase, leaving at X=O a disconti-
nuity of ~ which simply governs the asymptotic be-
havior of D. Fig. 1(a) shows the resulting phase,
5~(X), for the combined Srr and P~r amplitudes.

In a similar fashion, we consider the P33 and D33
amplitudes, taken, respectively, as the values of a
single analytic function on the right- and left-hand cuts.
Recent phase-shifts analyses seem to point to a D33
phase shift which is very small and of uncertain sign. '
Taking 6D» ——0, the phase on the left-hand cut would
be m, and may be joined to the P» phase by a smooth
curve. In this case, it seems more natural to let the
joining curve pass through ~ atW, =O, since (a) the P»
phase is already significantly near m. at the upper limit
of the empirical curve in Fig. 1(b), and (b) the D33,
P» amplitudes develop very little inelasticity over the
0—700-MeV region, in contrast to the S~j, Pj~ ampli-
tudes, which are highly absorptive. Again, the dis-
continuity at X=—1 should be removed by subtracting
w from the phase along the interval —1&X&0,leaving,
at X=O a discontinuity of ~ as indicated in Fig. 1(b),
which shows the phase 5~(X) for the combined D33 and
P33 amplitudes.

The phases shown in Fig. 1. determine the functions
labeled Do in I. From the discontinuity of m at X=O;
in each case, we conclude that both Do, fr(W) and
D0,33(W) W, asymptotically.

III. BOOTSTRAP REQUIREMENT

Specializing (2) and (3) to the D33 P3'3 projection of
the nucleon-exchange amplitude, we write a Cauchy
integral for the quantity CD, and with a few manipula-
tions And

F (W A') =F3 (W 6')+L2miD3(W)7 ' dW'Da(W') DiscC3(W', 1)/(W —W)

—fsD3(W)] ' dW'FP(W', 1) ImD, (W')/(W' —W—ie)

+L2~iD3(W) j ' dW'Da(W')6 DiscC&(W', lP)/(W' —W)

L~D&(W)]
—1 dW ImD3(W )AF&B (W A2)/(W W jg) (4)

where D0,»(W) is shortened to D3(W), DiscC3 denotes the discontinuity of C& across the dynamical cuts V, the
unitary cuts are denoted by U, we use the notation Ax(LP) —=x(A2) —x(1), and

F B(W A2) g + (A2)jj 8 (W A2)/p (W A2) (5)

~ The notation for pion-nucleon states is l2$, QJ.' Adding ~ to the negative portion of the P» phase shift introduces two discontinuties which are equivalent to multiplying D by
a ratio of Grst-degree polynomials. One of these is associated with the threshold and must be absorbed into N, while the other is asso-
ciated with the zero in the P» amplitude. If, instead of absorbing the zero into N, it is explicitly retained, equivalent also to a
subtraction in the dispersion integral for the amplitude, there is no u priori knowledge of how its position depends on 6 .

s Phase-shift data come from L. D. Roper, R. M. Wright, and B.T. Feld, Phys. Rev. 138, 8190 (1965).
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Here, we differ from I, where the kinematical zeros and singularities for W&0 were ignored, and make the
correct choice

pa=1/[+'(W, A')R (W, d,')] . (6)

In the on-shell limit of (4), the last two integrals are identically zero, and there must presumably occur im-

plicit cancellations between the remaining terms to give the correct amplitude. In view of the difhculties en-
countered in (a) continuing Eq. (4) onto the unphysical energy sheet, in which case we might directly equate
the residues of the pole which must exist near the 1V* resonance in the unitarized Born amplitude and that in
the N* pole diagram, and (b) the lack of guarantee that the residues, now complex, have the same phase to ensure
real form factors, we prefer to equate the amplitudes at the physical value W=E, the real E*mass. However,
this is equivalent to assuming both amplitudes are well approximated by R/(W N+i I'—/2) where R is a constant
in the W plane, and the pole position N —iF/2 is independent of 6', in analogy to the fix'ed nucleon pole, and
then equating residues. At this point, the phases of the pole diagram and the unitarized Born amplitude are
both s/2, and, in any event, the N* pole must lie close to W=N (approximately 60 MeV from the real axis. )

The above prescription yields

2iN[(N M)' —1] "—'[(N+M)' —1] '~'[4 3(D') —1]=hF s(N LV)

[%D3(N)] ' dW' ImD3(W')AFas(W' LV)/(W' N ie), —(&)—

an inhomogeneous linear equation in C» and Ca. In accordance with our conjecture, we have dropped the integral
in (4) containing ADiscC3(W, E ), since it is over the dynamical cut only.

We proceed in an analogous way with the S», P» projection of the X exchange amplitude. The equation cor-
responding to Kq. (4) is

F (W 6') =F (W lV)+[2xiPV —M)Dg(lV)] ' dW'(W' M)Dg(W') Di—scCg(W', 1)/(W' —W)

—[~(W—M)Dg(W)] ' dW'FP(W', 1)(W' M) ImDg(W— ')/(W' —W—ie)

+[27rs(lV —M)D~(W)] ' dW'(W' —M)D~(W')ADiscC~(W', LV)/(W' —W)

—[s (W —M)Dq(W)] ' dW'(W' M) ImDq(W')DFP—(W' Lg)/(W' —W—iq)

—[G(0 lV)+WdG(0 6')/dW]/W'(W M)Dg(W), (8)—
where the complete D function is now the product of the nucleon pole term W —M and Do, ~&(W), shortened
here to D~(W),

F B(lV g2) —
g 2g& (g2)+ B(W g2)/p (W g2)

G(W, LV) = W'(W M)Dg(W)FP(W d—')
(9)

(10)

and the last term is due to the second-order pole in H~ . The correct choice for p~ is

p&(lV, D'-) =1/R (W 6')

Because of the Feynman-diagram treatment of the high-spin exchange and the asymptotic form of D~, the
integrals do not all converge. In the belief that the important 6 -dependent effects are associated with the low-

energy region, we choose to suppress the doubtful high-energy behavior of the lV* exchange amplitude by a cuto6
factor [1+(W/a)'] ', sufhcient to give convergence, thus introducing a parameter a into the procedure. The
normalization of unity at W=0, instea, d of at threshold, reduces the apparent sensitivity of the dependence of the
right-hand side of (8) on u, since the cutoff will occur only in the integrals after the nucleon-pole residue is extracted.

Equating the residues of the nucleon-pole amplitude and the unitarized, cutoff Born amplitude, we obtain

(3g12/16s'M2)[@1(~ ) 1] [sD1(M)]—1 dW ImD1(IV )~F1B(W g2)[1+(W/a)2] —1

+D[G(O,LP)+MdG(0 LP)/dW]/M'D~(M) & (12)
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a second inhomogeneous linear equation in C ~ and C ~. Again, we have dropped the dynamical-cut integral in (8)
containing ADiscC~(W', LV). Equations (7) and (12) are readily solved for the form factors:

(13)
and

(14)
where

jg(A') =L256mi'M'N'/3gPAg(M)7L(N —M)' —17 "'P(N+M)' 17 —' '

X (L—(4N2 LV—y1)+Nd (2N'+4NM 2M—'+1+39)7/12N'

dW' i 8 (W')A (W')a (W', LV)R (W', 6')l1+ (W'/ )q '), (15)

j,(a') = (gp/2m NA3 (N) 7L (N—M )'—17"'[(N+M)'—17"'

XP dW' sin&, (W')A, (W')eP(W' A')Z, '(W', A')fL(W', A')/(W' —N), (16)

and

A&, 3(W) =exp( —(W/7r)P dW'8$, 3(W )/(W W)W 7,

d = d W'bg(W')/m. W" .
U

(17)

(18)

IV. NUMERICAL RESULTS AND
DISCUSSION

The uncertainty inherent in the essentially arbitrary
extrapolations of the phase shifts suggests that a
precise and cumbersome numerical evaluation of the
integrals in (15) and (16) is unwarranted. A sensible
approach within this limited framework seems to be
to invoke the following approximations designed to

I
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Pl ~ ~ ~ ~ ~

5g(X) = —~(X+1),
= -~/2,
=w/2,
=2.5' (0.9—X),
=0,

and

—1
—0.5

0
0.7
0.9

&X&—0.5
&X& 0
&X& 07
&X& 09
&X& 1.0

(19)

estimate bounds on the departure of the form factors
from unity:

1. Simple analytic expressions for the function h.&

and A3 are readily obtained when the phases are
approximated by

\ ~

sr, . .. ~
I

fr
2

~ ~ ~ g t ~ ~ ~ ~ - n

0
+[

FIG. 1.Plots of the
amplitude phases.
(a) The combined S11
and P11 phases. (b)
The combined DIG
and P33 phases. The
solid lines are de-
rived from the known
phase shifts, the
dashed lines are the
high-energy extrapo-
lations, and the
dotted lines are
straight-line approxi-
mations, Kqs. (18)
and (19), used in
carrying out the
numerical estimates
in the text.

ba(X) =0,

=6.25m. (0.96—X),
=0

&X&0
0 &X& 08
0.8 &X& 0.96
0.96&X& 1.0.

(20)

2. The integral of Eq. (15) is estimated with
a=4(M+1), by evaluating a few points on the inter-
val —1&X&1.

3. The rapid variation of 53 near the 3,3 resonance
justifies the approximation:

P dW'f (W') sin83(W')/(W' —N) = (4/x) I'df (N)/dW

+0(I')d'f(N)/dW' (21)

in the integral of (16).
The result's turn out to be quite Rat form factors

(dC,/dA') &0.01, (22)
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(dC,/d~s
( &O.OO1, (23)

for the range 0&LB&i.
The uncertainty in the sign is traced to appreciable

phase-dependent cancellation s which occur in the
integrals. In view of the observed sensitivity of these
bounds (and, in fact, of the sign of the derivative) on
the choice of phases, it has become clear that further
improvements of the model, at least this particular one,
based on the nucleon-E* bootstrap, will require a
special emphasis on determining how the phases should
be handled above the inelastic threshold.

The small values of dC~, p/ddt are, of course, to be
expected in any sensible theory, since there are no
observed low-mass resonances communicating with the
pion. Reinforcing this statement, there is the result that
in the s-exchange —dominated process s=+~p +p
with Anal-state absorptive sects included, the vertex
function and propagator t dependence (lumped into a
form factor) turn out, empirically, to be unimportant,
and in fact, the lower bound on the effective mass in a
simple pole approximation for the form factor is not
inconsistent with (22).

Since the bootstrap model apparently in no way
resembles a conventional calculation in which the form
factor is represented as a dispersion integral over real
states connecting the pion and EiV or X*X systems,
the above consistency may be taken as either an
accident related to the phase-dependent cancellations,
aided by the smallness of the pion mass, or else an
indication of the essential correctness of the liberal
interpretation of bootstrap dynamics stated in the
introduction.
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APPENDIX

Here we list quantities dered or derived in I:
H/ is the total energy in pion-nucleon c.m. system;
M is the nucleon mass;
N is the N* (1238) mass;

g~ is the s-NN coupling constant (gP/4s-=14);
I' is the E*width;

g3 is the ~PS* coupling constant and
=16srN'[(N —M)' —1] "'[(N+M)' —1] '".

R (W ~') = k(W~M)' —1]-~~'L(W+M)P —~P]-~~P.

EEps(W, E') = (1/4pr)L(W —M)R Q((s~)
+ (W+M)R+Qp(sg)];

H s(W 4') =(1/127rN')LVp/R W'+2K&R Q&(sp)

+2FpR+Qp(sp)];
s,=R+R L(M' —1)'—W'(W' —2)

+ (dP 1)—(W' M—'+1)];
sp

——sg+2RpR W'(M' —NP) .

Q((s) = ',f 'dx P((-x)/(s x);-
Vs = —A "+(W+M) B";
V =A'+(W M)B'—
Vp ———A'+ (W+M)B';
A ' = 6W'N'(N+M)+ 2[N' 2N'(2M'—+1)

—2MN'(1+M')+2N(M' —1)—M(M' —1)']
+ 2(LP—1)$ N' MN'+—N(M—' 2)+M (M'—1)]-

A"= 2N(N' M'+1)+ (6'——1)(N+M)
B'= 6W'N' 2[2N—'+2MN—' 4N'+ 2M (M—' 1)N-

—(M' —1)']+(6' 1)[4N'+2M—N 2(M' 1)]y— —
B"= —4N'+ 6'—1.


