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Explicit Solution of the SU(3) SSU(3) Algebra of Currents*
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Explicit formulas are given for various matrix elements of the axial-vector current in an arbitrary irre-
ducible representation of the SU(3)QxSU(3) algebra of currents. The fortnulas express such quantities as
the renormalization Gg of the axial-vector coupling constant, the strength G of the axial-vector transition
between fthm and ¹,the D/t ratio for the axial-vector current between states of the baryon octet, etc., in
terms of the pair of integers that specify an irreducible representation of SU(3).

1. INTRODUCTION

'HE suggestion by Gell-Mann' that the algebra
generated by current components may be used

to calculate such quantities as the renormalization Gg
of the axial-vector coupling constant has been recently
explored in two diferent ways. In one approach the
current algebra is combined with the partially conserved
axial-vector current hypothesis. The pioneering work
along these lines was done by Weisberger' and Adler, '
whose calculation yielded the value

I G~
~

=1.2, in
excellent agreement with experiment. In the other
approach it is assumed that the sum rules derived from
the current algebra are saturated by a limited set of
stationary or quasistationary states. This approach
was first used by I.ee4 and by Dashen and Gell-Mann, '
using the SU(6) algebra generated by the time com-
ponents of the vector current and the space components
of the axial-vector current, and by Gerstein, 6 using the
chiral SU(3)SSU(3) algebra generated by the time
components of the vector and axial-vector currents.
All these authors obtain the unsatisfactory result

/Gg/ =5/3.
Now, in fact, the second approach is capable of

yielding for 6~ any value whatsoever. As was noted
by Lee4 and particularly emphasized by Ryan, ' a
consistent solution of the current-algebra equations
will always be obtained provided the states used to
"solve" the equations form the basis of an irreducible
representation of the algebra in question. Thus an
in6nite set of values can be obtained for Gg, corre-
sponding to the inhnite number of diferent irreducible
representations. Moreover, since a mixture of irre-
ducible representations will also "solve" the equations,
by adjusting the amount of mixing a value for Gg,
intermediate to the values corresponding to irreducible
representations, can also be obtained.

During the past year various arguments have been
presented in favor of representation mixing. These may

* Supported in part by the National Science Foundation.
'M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Physics 1, 63

(1M4).
~ W. I. Weisberger, Phys. Rev. Letters 14, 1047 (1965).' S. L. Adler, Phys. Rev. Letters 14, 1051 (1965).
4 Ii. W. Lee, Phys. Rev. Letters 14, 676 (1MS).' R. F.Dashen and M. Gell-Mann, Phys. Letters 17, 142 (1965);

17, 145 (1965).' I. S. Gerstein, Phys. Rev. Letters 16, 114 (1966).' C. Ryan, Ann. Phys. (N. Y.) 38, 1 (1966).

be summarized as follows
I. In any pure representation the anomalous mag-

netic moment of the baryon octet vanishes. ' This
argument involves two assumptions. It is 6rst assumed
that the component I., of an internal angular momen-
tum along the direction of the linear momentum is zero.
Now if we have a pure representation it is reasonable
to suppose that it involves only one value of I,, and for
the ground state of the system (to which the baryon
octet belongs) it is reasonable to suppose that that one
value is zero. Thus the assumption I.,=O is most
reasonable; nevertheless the possibility that I,WO for
the baryon octet can not be ruled out. Secondly it is
assumed that in the commutation relations of the
relevant current densities there appear no nontrivial
gradient terms. In the quark model this assumption
amounts to supposing that the quarks themselves have
no anomalous magnetic moment, i.e., that their electro-
magnetic interaction is minimal. Again, although this
assumption may be reasonable the possibility that it is
wrong can not be ruled out.

2. Explicit mixtures of representations have been
constructed in which the numerical values of a variety
of quantities come out in excellent agreement with
experiment. ""Although the success of the represen-
tation-mixing schemes is undeniable, it is perhaps not
too surprising that better agreement with experiment
is achieved when additional free parameters, the mixing
angles, are introduced into the theory.

3. In our, perhaps prejudiced, opinion the most
convincing argument in favor of representation mixing
was presented in Ref. 12. In that work a consistency
relation is derived between the renormalization of the

8 It has also been argued (Refs. 9 and 10} that ve must have
representation mixing because the success of the Weisberger-Adler
sum rule hinges on there being contributions from states other
than the q+ octet and the ~3+ decuplet. We omit this argument
from our summary since it only proves that those pure represen-
tations @&hose SU(3) content is 810 are unacceptable, i.e., the
representation 56 in the case of SU(6) or the representation
$6,3$ in the case of SU(3) IR SU(3).

9 R. F. Dashen and M. Gell-Mann, in I'roceedings of the Third
Coral CabLes Conference on Symmetry I'rinciples at High Energy,
University of Miami, &66 (W. H. Freeman and Company, San
Francisco, 1966).

'0 H. Harari, Phys. Rev. Letters 16, 964 (1966); 17, 56 (1966}."I.S. Gerstein and S. %. Lee, Phys. Rev. Letters 16, 1060
(1966)."A. M. Sincer, Phys. Rev. Letters 16, 754 (1966).
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axial-vector coupling constant G~ and the D/F ratio
for the axiaI-vector current between states of the octet.
The relation is derived on the assumption that the
SU(3) spectrum of baryon states contains just one
octet but is otherwise arbitrary. Since the experimental
values of G~ and D/F violate this consistency condition
it follows that the SU(3) spectrum of baryons must
contain more than one octet. This is equivalent to
the statement that we must have representation
mixing because the SU(3) content of any irreducible
SU(3)SU(3) representation has at most one octet
in it with one excePtion. If the two representations
used in SU(3)SU(3) are conjugate then in the
Clebsch-Gordan series that determines the SU(3)
content the octet will appear twice (or once). However
in that case the D/F ratio is infinite or G~ vanishes and
the consistency condition is violated anyway.

In the present work we refine the above results by
explicitly calculating a variety of relevant quantities.
In Sec. 2 we confine ourselves to isotopic spin rather
than unitary spin and study the resultant chiral

SU(2) SSU(2) algebra. In that case a complete solution
of the problem is possible, i.e., we present explicit
formulas for all matrix elements of the axial-vector
current in an arbitrary irreducible representation of
SU(2)SU(2). In Sec. 3 we generalize to unitary spin
and the chiral SU(3)SU(3) algebra. Here we give
explicit formulas for G~, D/F, and the strength G* of
the axial-vector transition between E and E* in an
arbitrary irreducible representation of SU(3)SSU(3).

Our results show explicitly that for no pure represen-
tation of the chiral SU(3)SU(3) algebra can the
experimental value

I
G~

I
=1.2 be obtained. (Since the

calculations refer to matrix elements at infinite momen-

tum our conclusions for the chiral algebra hold equally
well for the collinear algebra, the two being equivalent
at infinite momentum. ') Aside from showing that we

must have representation mixing, our results should
be useful in the explicit construction of mixtures that
are required to yield prescribed values for Gq, D/F, G*,
etc.

2. THE SU(2)SU(2) ALGEBRA

where we consider these quantities as 8-component
vectors, then Eq. (1) becomes

[E„,E„]= c„„"E„,,
[I„,I„]=c„,"I.i„
[E„,l.„]=0,

(3)

and therefore we are dealing with the group SU(3)
SSU(3), where the first SU(3) is generated by K,
the second by I,.

We shall deal with this group in Sec. 3. Here we
restrict the values of the subscripts to 1, 2, 3. Then the
c„P are the structure constants of SU(2), the V are the
three isotopic spin generators, and the group that we
are dealing with is SU(2) SU(2). ia

An irreducible representation of the SU(2) group
generated by V may be specified by the number ~

related to the dimension D of the representation by

D=2v+1.

The allowed values of v are 0, —,', 1, ~, . A basis for
this irreducible representation is provided by the set
of states

I
v, m), where m= —v, —v+1, , +v is the

magnetic quantum number equal to the eigenvalue of
V3. It is these states that we identify with physical
particle states since V is the isotopic spin and the
physical particle states are supposed to form isotopic
spin multiplets. Our task therefore is to calculate matrix
elements of the form (v,ml A

I
v', m').

The dependence of the matrix elements on the mag-
netic quantum numbers is disposed of by means of the
Wigner-Eckart theorem:

(v,m"IT fv', m')=(vllTlfv')(v'm', 1mfvm"), (5)

where (vffTffv') is the reduced matrix element indepen-
dent of magnetic quantum numbers, (v'm', Im

I
vm") is

the Clebsch-Gordan coefficient of SU(2), and T is the
mth component in a spherical basis of a rank-one SU(2)
tensor, such as V or A.

We calculate first the diagonal reduced matrix
elements. It follows from the Wigner-Eckart theorem
and the fact that the V are generators that

We start out with the commutation relations for the
time components of the vector and axial-vector currents
proposed by Gell-Mann':

(v,mf V rfv, m)=(vff Vffv)(vffTffv).

Consequently

(6)

[V„,V„]=c„„"Vg,

[V„,A„]=c„,"Ai,

[A„,A„]=c„„~Vi,

&vllAllv&=&v mlV Af;m)[(v, mfV'fv m)] "' (7).
To get the oG-diagonal elements we note that by the

Wigner-Eckart theorem

where the subscripts run from 1 to 8 and the c„„"are
the structure constants of SU(3) so that the V„are
the eight unitary spin generators. We note that if we

introduce

In view of the relation

&vllA II "&'(»+1)= &"IIA llv&'(»'+1)
K=-', (V+A),
I —=2(V-A) (2)

"The treatment that we give here follows closely that of W.
Pauli, Ergeb. Exakt. Naturw. 37, 85 (1965).
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(which follows from the reality of our matrix elements
and the Hermitian nature of A), we can convert Eq.
(8) into a two-term recursion formula:

2v —1
&vll~ llv+»'+

2v+1
(v,m

~
V A

~
v, m)'

= (v,m
~

A2~ v,m) — . (10)
&v,m)V'(v, m)

Equations (7) and (10) are the solution of our problem
given the values of V', A', and V A for an arbitrary
irreducible representation of SU(2)3SU(2). Let k(l)
specify the irreducible representation of the SU(2)
generated by K(L); the corresponding irreducible rep-
resentation of SU(2)SSU(2) will be specified by the
pair [k,17 (the allowed values of either k or l being 0, -'„

1, 2, ~ ).The group SU(2) SU(2) has two invariants,
i.e., quantities that commute with all the operators,
namely the two quadratic Casimir operators K' and
L'. In the [k,17 representation their values are

thus we have the problem of addition of two angular
momenta, whose solution is the well-known rule

ik —lf =-;, (20)

and the SU(2) SSU(2) representations of interest may
be specified by a single (integer or half-integer) number
l; they are of the form [1+2, 17 o-r [l, i+27. These
two types are referred to as each other's mirror
representations.

Now, by definition, the renormalization of the axial-
vector coupling constant 6& is given by

&ill~ Ill)
Gg —— (21)

Consequently

(19)

Now, in particular, for the nucleon v= —', and we are
only interested in [k,l7 representations which contain
the nucleon. Hence

K'= k(k+1), L'= l(l+1) . Gz=+(1+-,'1), l=0, —',, 1, $, (22)

It follows from Eq. (2) that

K2—L2=V.A=A V, (12)

K'+L'=-'(V'+A')

and therefore in the [k,l7 representation we have

(13)

V A= k(k+1.) l(l+1) =—(k —l) (k+i+1), (14)

—,
' (V'+A') =k(k+1)+l(l+1) .

Finally, since V' is the quadratic Casimir operator of
the isotopic spin SU(2) we also have

&v,ml V'I v, m) =v(v+1) .

where the upper sign holds for the irreducible repre-
sentation [l+2, l7, the lower sign for the mirror
[l, l+-', 7. We note that for l=0 we have ( G~

~

= 1, i.e.,
no renormalization, for l=2 we have ~G~~ =5/3, i.e.,
the famous SU(6) number. These numbers are in
agreement with the known results for the represen-
tations [—,',07, [0,-', 7 and [1,—',7, [-,',17.

By definition, the strength of the axial-vector tran-
sition between E and lV* is given by

(23)

Using the recursion formula, Eq. (18), for v=2 we
obtain immediately

Making use of Eqs. (14)—(16) in Eqs. (7) and (10)
we have in the [k,l7 representation of SU(2) SU(2):

G*'= 8l(1+-'l)/3 (24)

and
&vll~llv) = (k—l)(k+l+»[v(v+»7 '"

provided that the representation v is contained in the
representation [k,l7 (if it is not contained then the
matrix elements vanish).

To see whether the representation specified by v is
contained in that specified by [k,17 we note that ac-
cording to Eq. (2)

V= K+L;

2v —1
&vll~ IIv+1)'+

2v+ 1

=2k(k+1)+2l(l+1) —v(v+1)

—(k—l)'(k+i+1)'/[v(v+1)7, (18)

for either of the mirror representations [l+—'„ l7,
[l, l+ ',7. In particular -G*=O for l=0, as it should
since v=-,'is not contained in either Pi2, 07 or [0,i27;
and G~'= (-;)' for l=-'„ in agreement with the known
value for this representation.

3. THE SU(3)SU(3) ALGEBRA

We now proceed to the case when V stands for the
eight generators of unitary spin and the current algebra
is the algebra of SU(3)SU(3). Most of the equations
of Sec. 2 are generalized to the present case in an
obvious way but there also are some fundamental
difFerences which make the calculation at the SU(3)
level considerably more complicated.

An irreducible representation of SU(3) is specified
by a pair of non-negative integers (p,q) related to the
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dimension D of the representation by

D= (p+1) (q+1) (p+q+2)/2,

and to the quadratic Casimir invariant C(2~ by

C"'=p+q+ (p'+q'+ pq)/3

(23)

(26)

and therefore the analog of Eq. (17) is

&vl!XIIV).= (c„"'—c1"))/Qc„") (31)

provided that v is contained in [x,X], otherwise this
matrix element vanishes.

The analog of Eq. (18) now reads

We shall refer to a representation of the SU(3) group
generated by V, K, and L, respectively, by the symbols

v, ~, and X. Thus u stands for the pair of non-negative
integers (p„q„), ~ stands for (p„,q„), and X stands for
(p)„q1). We shall also use for U (or a; or X) the actual
dimension of the representation and will then dis-
tinguish conjugate representations by a star: ~(p„,q„),
v*~(q„,p„). The representations of SU(3)g)SU(3) will

be specified by [x,X]. The quadratic Casimir operators
are given in the [x,X] representation by the corre-
sponding quadratic invariants

K2 C (2) L2—C (2)

and we also have

(27)

&v) IV'I v) &=C„i'). (28)

Here I v)3& stands for the set of states that provide a
basis for the irreducible representation v ()3, the
"magnetic" quantum number, now involves the speci-
fication of isotopic spin, s' component of isotopic spin,
and hypercharge). These are the states that are now
identified with physical particle states which are now

supposed to form unitary spin multiplets.
As before the problem is to determine matrix elements

of the form &v,)3, I
I

I U2)32). The Wigner-Eckart theorem,
which disposes of the dependence on the magnetic
quantum numbers, has now the more complicated form

U2 8 V1,a)
(vi)31!T„Iv2)32& = !&vill T!IU2&

8 8 8
[A.,A,]=—K3 P y, . (33)

By taking the v, v" matrix element of this equation,
using the Wigner-Eckart theorem and properties of the
Clebsch-Gordan coeKcients, we arrive at the relations

((v"8)v' 8v~ lv" (88)E v ~ )
t i~la 1/

x &VII' IIV'»'&v'IIA llv") "
= (~3/2) (C."))')25",.4r„,s.b, -,.;

E„=8., 10, 10*. (34)

(vll~ IIU).'+ 2 &vll~ llv')'= 2C "'+2C3"'—C "'
v Al)

—(C i2) —C i2))2/C i2) (32)

where again a term such as C„"'appearing on the right-
hand side actually stands for &v)|3

I

K'I v)3), which is equal
to C„"' if v is contained in [x,X], and is zero otherwise.
The summation over v' runs over all values, other than
v, contained in the Clebsch-Gordan series for 8v.
Thus Eq. (32) is equivalent to a multiterm recursion
formula, in contrast to the SU(2) case, and is of little
value unless all but one of the reduced matrix elements
appearing in it have been determined in some other way.

We must therefore search for additional relations
involving the same reduced matrix elements. One such
set of relations is obtained directly from the funda-
mental Eq. (1). In the spherical basis the last of Eq.
(1) is written as

For u"=u these relations involve the same reduced
v2 ul, s)

+ !(vil!TIIV2)„(29) matrix elements that appear in Eqs. (31) and (32).
The SU(3) Racah coefficient appearing in Eq. (34)

is defined by'5
where &vil!T!lv.)~ is the reduced matrix element,

&(Ulv2) U12.av3UV I Ul(U2U3) U23, ))U2')

is the SU(3) Clebsch-Gordan coefficient with phase
conventions as defined by de Swart, '4 and T„ is the pth
component in a spherical basis of an octet SU(3) tensor,
such as A, K, L. V is also an octet SU(3) tensor, but
being the generator of the group here considered, has

only reduced matrix elements diagonal in v, and only
of the type y=a.

As a result, the analog of Eq. (6) now reads

+12/428

ul u2 v12a u12 u3

Pl P2 @12 @12 P3 P

(V2 U3 V23, )2) (U1 V23

xl (»)
klt32 )33 )323 ) k)11 )323 )3

being the standard recoupling coeKcient that arises
when the product of the three representations
v~8 v2 u3 is reduced in the two different ways:
(Uigl U2) gl U3 and v)g) (U2gl U3).

&U) IV Tlv) &=&vllvllv&&vll7'llv).

'4 J.J. de Swart, Rev. Mod. Phys. BS, 916 (1963).

(30) "The particular Racah coeKcients that will be needed in this
work were tabulated by M. Krammer, Acta Phys. Austriaca,
Suppl. 1, 183 (1964).
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Also

K3—C (3) L3—C~(3)

&up I
V'! up& =C."'.

(36)

(37)

Here C(') is the cubic Casimir invariant whose value
in the (p, (t) representation of SU(3) is

We note that whereas for Jli'r=S„&"'=a Eq. (34)
has an SU(2) analog, for Br=8„y"'=s and for
N~=10, 10* it does not. Another set of relations, also
without an SU(Z) analog, is obtained by considering
cubic Casimir operators. In SU(3) one can construct
a cubic Casimir operator, which Lin contrast to the
SU(2) case] is functionally independent of the qua-
dratic operator. We denote the cubic operators by K',
L', and V' respectively for the three SU(3) groups. In
the

I ((,)(] representation we have

where again C„(s)+C),(') must be replaced by 0 if the
representation u is not contained in

I z,)t].
We now have a suKcient number of relations and

may proceed to an explicit solution of the algebra.

4. EXPLICIT SOLUTIOH OF THE
S U(3) 3S U(3) ALGEBRA

Since V=K+L, the representations u that are con-
tained in

I )(,)i] are those that occur in the reduction of
the direct product ~X. An arbitrary representation
Ls,)(] may be specified by the four integers p„, (I„, p)„qz,
if however I )(,X] is to contain v= S then certain relations
must be satis6ed by these four integers. The desired
representations can be grouped into seven classes, '~

specified within each class by just two integers:

C(s) 6 (p+ (t+ 1) (p (I)+2 (ps' p(7s) + 4 (ps (73) (38) Class I: s = (m+ 2, n —1), X= (n, m), m/0; (43)

Class III: s= (m+1, x+1), )t= (e,m); (4S)

In terms of components in the spherical basis our cubic C ass H: ((= (m —1, m+2), )t= (m, m), m/0; (44)
operator is given by"

ts 8 8,
V'= (4y'15) Q! V VpV, t,sin P p

(39) Class IV: z= (m, rr), ) =(N,m); (46)

and similarly for Ks and L'.
We note parenthetically that the quadratic operator

can be cast into a very similar form:

8 8 8,
V'=g V V,t= —(2v3) P V VsVpt. (40)

~Pl n P p

By taking matrix elements of K' and L' in the repre-
sentation v we obtain two additional relations for the
reduced matrix elements of A. Because of the cubic
nature of these invariants these relations contain terms
up to trilinear in A, and consequently reduced matrix
elements beyond those occurring in Eqs. (31), (32),
and (34). We note however, that the combination
K'+L' is an even function of A, hence does not contain
trilinear (or linear) terms and therefore involves only
the desired reduced matrix elements. We have

ts 8 8,
Ks+L'=-,'V'+(3+15) p I A.At)V~t, (41)skuPp

which upon taking of matrix elements can be manipu-
lated into

(3+1S) P ((u8)u'r Sur I v(88)8,v, &

U

x &.IIA II.'&,&.'IIAII. &,

= (C (s)+C~(s) —tC„(s))/QC (s) (42)

"There seems to be no unanimity in the literature on the
deanition of these Casimir operators. For reference we give the
corinection between our V' and Vs and the M2 and Mg of Okubo
i S. Okubo, Progr. Theoret. Phys. (Kyoto) 27, 949 (1962)]:

V~= ~M2, Vg =63/Ig —93fg.

here m, n are arbitrary non-negative integers. Three
more classes are obtained from classes I, II, and III
by mirroring (the mirror of class IV is again class IV).

The quantities of interest are D//Ii, Gz, and G*
de6ned by

!

8 8

&-,' 1 10
D/F =

ps 8
!

1O

8,

3 &s!!A!IS&.
, (47)s. ~ gs (sl!A!ls).

, , I&SIIAIIS).
2

3
G~= &SIIAIIS).+

5

8 8 10'G*=(s)"', i&1ol!A!ls)
-', 1 10 —,

s 1I

(48)

= —(-')')'(10!!A!!8). (49)

"D. Lurie and A. J. Macfarlane, J. Math. Phys. 5, 565 (t964).
"These are special cases of the statement that the maximum

multiplicity 34' of an SU(3) representation (P,q) is given by
3l=1+min(p, q). See, for example, S. Bergia and K. Zalewski,
Nuovo Cimento 44, 542 (1966), and references cited therein.

These de6nitions specify the quantities in question
unambiguously provided that the representations 8
and 10 occur in a given I s,)t] no more than once. The
representation 10, being triangular, can never occur
more than once; the representation 8 can never occur
more than twice."Moreover, in the classes I, II, and
III the octet in fact occurs just once."By solving Eqs.
(31), (32), (34), and (42) for u=S, we then find for
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these classes (for details see Appendix)

(50)D/F —& (C (3)+( ~(») (C (2) —C~(2&)-2

G~= '$C -(" C),—"'+ '(C—,"'+C)"')/
(C."'—C "')], (51)

G*2= (4/15)l C (»+ C), (2)——'(C ('& —C ('&)2

+ (C."'+C~"))/18]

= (2/45)(l C„(')—C), ('&+-', (C."'+C),'»)/

(C (2) C (2))]&—9} (52)

Quite explicitly then, in terms of the integers m and
n that determine the L')(,&] representation, we have

Class I:
D/F = 5 (m+ 2n+3)/(m+ 2), (53)

G~ ——-', (m+2)+-', (m+2n+3), (54)

G*'= (8/45) (m+n+1) (m+n+4) . (55)

Class II.
D/F = —-', (n+ 2m+ 3)/(n+ 2),

G~= x3(n+2) —x5(n+2m+3),

G*'= (8/45) (m+2) (m —1).

(56)

(57)

(58)

We note that (aside from relabeling of m and n) class-II
representations are conjugate to class I and thus have

D/F ratios equal in magnitude and opposite in sign.

Class III:
D/F = —,

' (m —n)/(m+n+3),

G~ = -', (m+ n+3)+-', (m —n),
G*'= (8/45)m(m+3).

(59)

(6o)

(61)

For the representations that are mirrors of the above

the same results hold with Gz replaced by —G&.

We divide class-IV representations into two sub-

classes: class IV& containing just one octet, which

happens when z=X~ is triangular, and class IV~ con-

taining two octets.

Class IV)'. (n=o or m=o)

(62)

G~ ———'C (»/C "&=-', (2m+3) if n=o
= ——,

' (2n+3) if m =0, (63)

The [6,3] representation belongs to this class and
corresponds to m=0, m=1, which gives the famous

SU(6) numbers D/F= ,', G~=5/3, G-"'= (4/3)'.

(Gg),= —(Gg)2= —,'L (2m+ 2n+3)'
—4mn]')', (66)

(G~)),~ = (2/15) (2m+ 2n+ s2 (m2+n'+ mn)

6(m+n+1) (m —)
+2(m'n m—n')+-,'(m' n—')]

&(l (2m+ 2n+3)' 4—mn] "} (67)

Here the subscript 1 and 2 refers to the two octets Si
and 8& which are defined by the requirement that they
not be mixed by the axial coupling: (8)llAll8&), =0.
Since (8)llAll8()= —(82llAll82) for any choice of 8( and
82, the identification is made complete by choosing
8 lie ll8,»o.

S. CONCLUSIONS

From the explicit formulas for G~ given in the pre-
ceding section it is clear that the experimental value
can never be obtained if the nucleon is assigned to an
octet from any one irreducible representation of
SU(3)SU(3) except possibly for class-IVu repre-
sentations. In that case if we identify the nucleon with
either Si or 82 the above conclusion still holds but we
have the option of taking some mixture of Si and 8~.
However for all class-IV representations the J -type
coupling vanishes and so these representations do
violence to the experimental value of the D/F ratio.

We may remark that at the SU(2) level the same
conclusion for Gz follows even more transparently. The
comparison of the results for G~ and G* at the SU(2)
and SU(3) level leads us to a remark which may well
be obvious to experts in the field. Since SU(2) is a
subgroup of SU(3), one might be tempted to "derive"
SU(3) results by dealing with the simpler SU(2). After
all G~, G* refer to nonstrange particles and SU(2)
should be sufhcient. However when we compare the
results for G~, G* at the SU(2) and SU(3) levels we
do not find, in general, the same expressions. In other
words an irreducible representation of SU(3)(g)SU(3)
when reduced with respect to its SU(2)(g)SU(2) sub-
group gives rise, in general, to a reducible represen-
tation. An exception is the [6,3] representation of
SU(3)SSU(3), but this is just due to its low
dimensionality.

Conversely, since it is clear that we need a reducible
representation of SU(3)SU(3) we should perhaps
look to a higher group having SU(3)(g)SU(3) as a
subgroup. Then an irreducible representation of that
group would, in general, be reducible at the SU(3)
level. Such an approach would avoid the introduction
of arbitrary mixing parameters.

G*=0.

Class IVu. (n/0, m&0)

(D/F))= (D/F)2= ~,

(64)

(65)

APPENDIX

%hen the fact that a given representation v may
occur in the product ~@X more than once is taken into
account Eqs. (31), (32), (34), and (42) become (for
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(N iiMp), =(MpiiN ),(M/N)"'
X b(SNM~) ti(SMN~) $2(SNM~) $3(SMN~), (A10)(u. iivp). = (C " —Cg"') (C ")-' '&&

2 (&v-llv. &.+&vpllv- &.+ Z &v-II"- &&upllu'- )}
so thata' v'Qu

brevity we use in the Appendix the notation (u Ilup ), ventions it follows tha, t
for the reduced matrix element (u IIAiivp')~)

= {2C (2)+.2Cg(&) C (2)

(C (2)—C (2))2/C (2)}&& p
~ (A2)

((u"8)u', "Sv„.
i
u" (88)N,u,-.)

~l~f ~f ~II

X&u-llu'-) & '"llv"p&'

= (-,'v3')(C. ('))'~'8„,."&).,P4r, .&);".,

N, =S., 10, 10*; (A3)

3(v'15) 2 &(vs)u'v Svvlu(88)8 v.)

x &..Il.'..),&"..Ilu, ),,
= (C."'+C) "'—«C."')(C "') '"& (A4)

Here the subscripts n, P serve to distinguish the
representations that occur more than once. As always,
the Casimir invariants with the subscript I(: or X must
be replaced by zero if the representation u or u" does
not occur in a(SX. We know that, by construction, the
octet always is present. Hence if we set v= v"=8 we
get from Eqs. (A2)—(A4):

Z (&8-ll27- )&SPII27- &+&8-lls- ).&Splls- & )
a'

+ &S.ll 10)&s, ll 1o&+&s.ll
1o*)

x &Spll 10*)+&8-II1)&SPII1&

&S-lisp), = &Splls. &„

(1ollsp& = —(2/v'5) &SPII10&,

&10*lisp& = (2/v'5) &Spll lo*&,

202

3

Using these relations in Eqs. (A5)—(A9), and in-
cluding Eq. (A1) evaluated for u= 8, we get after some
simple manipulations

(8 ii8p). = (C ' —C), &' )3—'"h (A11)

Z &8-lls. &.&Splls. ).= lL2(C.")+C~(2))
a'

+3—(C (2) —C), (2))2]g (A12)

(6+15)(C &'& —C),('))(SNIISP), =(C„'(+)C& '()5)p, (A13)

(S.ii 1o)(s,ii 1o)—(S.II 10*&(spli 10+)

= (1/18) (C„")+C),"')6 p, (A14)

&8-II 1o&&s,ll 1o&+&s-II 1o*)&st II 1o*)+4&s.ii1&&s,ill&

=
I C "'+C),"'—-'(C (2' —Cg(2))']l), (A15)

& &8-ll27- &&SPII27- )—3&8-ll1&&spll1&

=-',
I 3(C &'&+C &")—18+ (C &'& —C),('))']5 . (A16)

= {2C (')+2C),")—3—(C "&—C),(2))'/3}8,P, (A5)

& {(-'v'6&&8-II27- &&»- lisp&+ &8-ll8").&8- lisp) }a'

Z {(lv'6)&8-II»- &&»- lisp) —&S-lls- ).&8- lisp& }
(A17)&sll1&=o,

&Slls&.= (C."'—C~"')/v3

(sll8), = (c,(')ic),('))

a'

+ (lv'5)(&s. ll
1o*)&1o*lls,)—&s.ll 1o&&1olls,&} (A18)

—(5~2/8) &8-ll1&&1IISP)=0, (A7)

The representations belonging to classes I, II, and
III, and their mirrors, are distinguished by the fact
that they contain just one octet and no singlet. The

—~%2(8 II1)(1lisp) ={3 ,'(C„&'&——C),('))'—}8 p, (A6) solution for these classes follows immediately from the
above equations:

(2/~3) (C*"'—C~(2)) &8-lisp& +&8-II 10&&»lisp&

+(S.II10+&&10*ils,)=o, (As)

(2/v3) (c "'—c~"')(8-lisp) —
&8-II 1o)&10IISP&

—&S.li 1o*)(1o*llsp)

= (2/9/5) (C.&"+C ('))8. (A9)

XI (6+15)(C "'—C~"')] ', (A19)

&SII10)2=4(c (2)+c&(2)) L(c (2) c&(2))2

+ (1/36) (C„&'&+C),&'&), (A20)

(SII10*)~=) (c &2&+c),&2&)—~ (c &2& —c,(2))2

—(1/36) (C.&'&+C),&'&), (A21)

—18+(C "'—C),"&)'] (A22)

Z &SII27 )'=-'L3(C "'+C~"')
From the reality of the matrix elements, the

Hermitian nature of A, and the de Swart phase con-
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We note that for these classes, C.("—C),(') can not
vanish so that Eq. (A19) is meaningful; we also remark
that Eq. (A12) is superfluous —combined with Eq.
(A13) it results in a relation among the Casimir in-
variants which is an identity within the classes under
consideration.

Combining appropriately Eqs. (A18)—(20) we obtain
Eqs. (50)—(52) in the text.

Class-IV representations contain the singlet and
contain, in general, two octets. Moreover for this class
we have (since «=X*):

C (2) g„(2)—p

C (3)+C~(3)—0 (A23)

P &1lls &2=4c„(», (A24)

2 &1olls.&&1lls.&
=o, (A25)

Z &10*lls-&«lls-&=o, (A26)

& &1118-&&s-lisp&.&1llsp&= (2/v'15)c. "' (A27)

We divide class-IV representations into two subclasses,
IV) and IU2.

Class IV~ one octet only. Although class-IV repre-
sentations contain in general two octets if ~=X* is
triangular D.e., «= (p, q) has either p=o or g=oj then
we get only one octet."We easily 6nd the solution:

and Eq. (A13) becomes a useless identity. However
now we may obtain additional equations by taking
v=1 in Eqs. (A2) and (A3) I Eqs. (A1) and (A4) are
identities for u= 1j.Moreover we may replace the cubic
invariant equation (A4) by an equation for K~—L'
evaluated in the singlet state. This combination of cubic
operators contains a term trilinear in A and was there-
fore not considered before since when evaluated in the
octet state it would contain as intermediate states
representations as complicated as those occurring in
8&388. Here, however, we evaluate it in the singlet
state so that the intermediate states must be octets only.

The additional equations that are obtained in this
way are

(sll»'=-,'C.

&slls&, =C„(»I (2v'15)c„(»3-),

&slllo&= &slllo*&=o,

P &sll27«&'= (9/1o) (3c ' 4).

(A28)

(A29)

(A30)

(A31)

(A32)

Here again one of the three equations, Eqs. (A12),
(A24), (A27), is superfluous; they may be combined
to yield a relation among the Casimir invariants which
is an identity within this class.

From Eqs. (A29)-(A31) we obtain Eqs. (62)-(64)
in the text.

Class IV2. two octets. If a=A* is not triangular we
have two octets. These two octets may be identihed in
a variety of ways. In the present context the most
reasonable choice seems to be to require that A be
diagonal within the subspace of the two octets, i.e.,
that they not be mixed by the axial coupling. So we
define 8& and 82 by

&s,lls, &,=o.
With this definition we get the solution

&s~lls~). = (-'c "'+-')'"

&s lls &
=-(-c ()+-) (

&s,ll 1o& -&s,lllo*)'= 2(S,II1)

(A33)

(A34)

(A35)

(A36)

=-', (2C (')—C.(')(12C (')+9)-'~'} (A37)

&s.ll 10)'= (82111o*)'=2(sgll1)

=—&2C (2)+C„(&)(12C (&)+9)—)/2) (A38)

P (syll27 )'= (6/5) (C (')—3)+—'C (2)

+-,'Cg") (12C.")+9) '(' (A39)

Q (82II27~&'= (6/5) (C„(')—3)+ac (2)

—(3)c.(') (12C (')+9) 'i'. (A40)

From Eqs. (A34)—(A37) we get Eqs. (65)-(67) in the
text.


