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Analyticity in Momentum Transfer and Short-Range Interactions
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Omnes's work on the relation between short-range forces and analyticity in the momentum transfer is
reviewed and some corrections pointed out. A simpler and more physical proof of his results is given.

I. INTRODUCTION

NALYTIC properties of scattering amplitudes in
momentum transfer t have been studied for about

ten years. Within the last year, Martin, 2 using axio-
matic field theory results and unitarity, has extended
the domain of analyticity of the absorptive part for xm.

scattering to include a circle of radius 4@2 centered at
t=0. Unlike the Lehmann ellipse, ' this domain does not
shrink to t=0 as the energy becomes very large. This
has enabled Martin4 to establish the Froissart bound on
total cross sections without assuming the Mandelstam
representation.

We will follow a diGerent path originally started by
Omnes. 5 Until this recent paper by Omnes, the proofs
of analyticity were not explicitly based on a simple
physical picture. Omnes proposed that the underlying
physics of this analyticity was the short-range nature of
the forces in strong interactions. Essentially his idea is
the following: Suppose one has short-range forces, and
one considers the scattering of an incident wave packet
with larger and larger impact parameter. Then, with
some technical assumptions about the width of the
packet, one expects that the amplitude of the scattered
wave should decrease exponentially with increasing
impact parameter.

The physical idea underlying the proof of analyticity
properties is simple. Large impact parameters corre-
spond semiclassically to high partial waves. A wave
packet with average momentum k and impact param-
eter u contains mainly angular momenta near I.=ka.
Therefore, if the scattered wave decreases exponentially
with a, one obtains an exponential decrease of thepartial-
wave scattering amplitude with large /, which leads to
the desired domain of analyticity. In the proof supplied
by Omnes, this simple picture is obscured. We shall use
this picture to give a more direct proof of Omnes's
results.

* Supported in part by the U. S. Atomic Energy Commission.
' See for example A. Martin, The XIIIth Internat'. ional Confer-

ence on High-Energy Physics, Berkeley, 1966 (unpublished).' A. Martin, Nuovo Cimento 42, 930 (1966).' H. Lehmann, Nuovo Cimento 10, 579 (1958).' A. Martin, Phys. Rev. 129, 1432 (1963).' R. Omnes, Phys. Rev. 146, 1123 (1966).

Omnes's paper, although basically correct, is some-
what imprecise. Under his assumptions, one might prove
analyticity in a domain which is too large at low
energies. Moreover, it is also necessary to make a some-
what stronger assumption than he made in order to
establish his connection between short range forces and
analyticity.

In Sec. II, we brieQy review Omnes's work and point
out some corrections to it. In Sec. III, we present what
we feel is the simpler and physically more transparent
derivation of his results. Section IV presents some
conclusions.

II. OMNES'S WORK

Omnes begins by considering the scattering of an
incident Gaussian wave packet with width b in con-
figuration space, average momentum k, and impact
parameter a with k a=0. In momentum space the
wave packet is

3]2

y(p l —O) e (P k)sb-s/se —iP a—

Omnes shows that in potential theory, the probability
of scattering by a potential with an exponential tail
e &" decreases exponentially with the impact parameter
a=

~

a
~

provided that the width increases with the im-
pact parameter according to

for any positive X. If b were independent of a, the
spreading of the wave packet would mak. e it overlap the
scattering center. Since the spreading is small if the
width of the packet is large, relation (2) suppresses the
spreading of the packet. Since the width varies only as
the square root of the impact parameter, it is still true
that the bulk of the incident packet will lie outside the
range of the forces.

Having established the exponential decrease of the
scattered wave in potential theory, Omnes then imposes
this condition on the physical situation and shows that
this implies certain analytic properties of the absorptive
part of the T matrix as a function of momentum trans-
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fer. Hjs method of proof is somewhat involved, and we
refer the reader to his paper. '

We have two objections to his derivation. First in
the potential-theory case, consider the scattered wave
iP, which is related to the incident wave P by

(3)

impact parameter. This then allows one to derive a
condition on the absorptive part of the T matrix for a
given energy.

One can justify (9) as follows. I et Pz denote the
projection operator on states of total energy less than E
in. the channel n. Then the left side of (9) can be
written as

where T is the T matrix. Qmnes showed that

114112=llr@ll'&Ce "
provided that

where

(d/dE)IIP -z'@III . (10)

(This exists as a measure in E, since IIPe T&112 is
monotonic in E.)

(5) If f(E) is an infinitely differentiable function of com-
pact support defined for positive energies, then

a=a (1+@X—L(1+pP, )2—1]"2).

For small X, this reduces to

(6)
f(E)

dE

df(E)

dE

df(E) i

In formulating his condition for the physical case, he
imposes a stronger rate of decrease e &, and treats the
case where

dE

df(E)
dE

This restriction is unnecessary. One can assume the
bound given in (4) with o. given by (6) and X restricted
only by the constraint (5).

It is important to note that taking o-=IJ, independent
of X will lead to too large an analyticity domain for low
energy. We shall comment on this in the next section.

The second objection is more serious. In fact, one
cannot derive the required analyticity from condition
(4), because any normalizable wave packet contains a
superposition of various energies, so that (4) involves
properties of the T matrix integrated over some energy
range, whereas we wish to derive properties of the T
matrix at a fixed energy. ' It is sufficient to make the
following stronger assumption: If @ (pi', p2', ,p„')
represents the scattered wave in the channel o., then

d'pi' d'p '
I+ (pi' p.')I'

p
fP

p
/P

X$(E—pi' —p„' )(Cie '~ (9)

Expressed in words, for each fixed total energy, the
integral of the square of the scattered wave over all
other variables decreases exponentially with increasing

'Mathematically, Omnes's error (see the opening paragraph
of his Sec. 8) comes from assuming that if two functions f(x) and
g(x,y) satisfy

f(x) = g(x,y)&(y)dy,

(ge 2~a
df(E)

dE.

III. DEMVATION OF ANALYTICITY

In this section we combine the bound on the scattered
wave with the physical ideas outlined in the introduc-
tion to produce a proof of the desired analytic properties.

At first we follow Omnes's discussion. Consider the
reaction

ai+a2~ ai+ ' ' '+an,
where the set of final particles is called the channel n.
The scattered wave is

Consequently, as a distribution in E, (10) decreases
exponentially with a. All subsequent equations involv-
ing the behavior of the scattering amplitude at a fixed
energy are to be interpreted as a statement about dis-
tributions in the energy. We shall establish that
A (E, cos8) is analytic in cos8 provided that one inte-
grates with some test function in E, where A (E, cos8)
is the absorptive part of the T matrix, E the total
energy, and 0 the scattering angle. We will then assume
that A (E, cos8) is a continuous function of E for fixed 8.
Then it follows that for each energy, A(E, cos8) is
analytic in cose, and therefore in t.

and if f(x) is analytic in a certain region, then g (x,y) is analytic in
x, in the same region for fixed y. This is certainly wrong since
adding s(x)t(y) to g(x,y) where s(x) is arbitrary and 4'a(pl ' ' 'pn ) 2 a(pl~p2j pl ' ' 'pn, )

t(y)k(y)dy=0

leaves f(x) unchanged, but modi6es the x dependence of g(x,y) in
an almost arbitrary manner.

d pid p2
X ti'(p, +p2 pi' —p„')p, (pi, p2—), (12)

Pl P2
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where f, (pt, ps) is the incident wave, and T (pi, ps', A (E,p p") and of P(p). That is,
pi' .p„') is the appropriate T-matrix element. We
take the incident wave to be A. E,j j7' = A, EI't P" 2l+1

l

where-

0'(pt ps) = (A'/~)"'e """'0(p) (13) =4tr 2 A i (E)F t"*(P)Ft"(P) (21)
Lna

4 (p) =2 di-(k, ~)l'l™V) (22)

and

with

P=Pl+Ps/

p= s(pt —ps),

y(p) (y/k/~)3/4e
—(p—k) xe/se —iy a

(14)
Defining15

(16)

(20) becomes

f/(k, a)= P Idl (k,/k)I', (23)

k a=0. 4~ P A, (E)f,(k,a)(c,e
—"'. (24)

will be taken large enough so that If;(pt, ps) I' is
essentially a delta function of P.

The short-range hypothesis is formulated as

IN-(pt'" p-) I'~(E—Pi" P")—
d pt dp~ (C e s" (17)
p

/p
p

/p

where o is given in (6), and we take /k independent of
the channel a.

Ke define of the absorptive part of the two-body
scattering amplitude due to the intermediate state n,

f/~constl/k'. (25)

The fact that this value of the impact parameter makes
the corresponding partial wave large, confirms the semi-
classical consideration given in the introduction. Sub-
stituting (25) into (24), we obtain

By unitarity, each term on the left side of (24) is
positive and so the inequality is strengthened if we re-
place the sum by a single term. Since we are interested
in bounds on A E, it would be useless to pick a term where
fl are very small. The partial-wave expansion of the
incident packet given in the Appendix proves that for
large l, f/ is maximized when a=l/k and is given by

A (E, cos8)

Ta(Pl/P2/ Pl ' ' 'P// )Ta (Pl /P2 / Pl ' Pn )

that is,

Al (E)(C4e "
A ~(E)(C e '~"k

(26)

(2&)

with

d ///t d p~
X&'(Pi+Ps —Pi' —P ')

p" p"'

E=Pt'+Ps', (19)

We have thus shown simply that the absorptive part
of the partial-wave scattering amplitude decreases
exponentially for large l.

This bound allows us to conclude that the Legendre
expansion of the absorptive part (21) converges to an
analytic function in the cosa plane in an ellipse with
foci at &1, and with semimajor axis r where~

and where 8 is the angle p and p" defined in (15).Then
using (12), (17) can be written as

A. (E,f5 P")~(p)~*(p")«.«."« -'-, (2o)

Recalling that

1 (es//lk+e 2///k)—

f= 2k'(cos8 —1), (29)

+here C3 contains come unimportant energy-dependent
terms and dQ„ is the element of solid angle in the center-
of-mass system. So far we have followed Omnes almost
verbatim.

From (16) it is clear that unless IpI = IkI, the left
side of (20) will decrease exponentially with a. Thus
(20) is most significant if

I p I

=
I
k

I
and we shall assume

this from now on.
Let us now make a partial-wave expansion of

the absorptive part is analytic in t in an ellipse with
apex

—ks(es///k+e 2///k 2)—(30)

and foci at 0 and —4k'
From (6), one can see that o. is maximized for

' From (2'/) it is clear that p A/ (E)//' converges for
~
p;

~

&es«k.
The rest follows from the relation between power series and
Legendre expansions. See for example E. T. Whittaker and G. N.
Watson, A Course of Modern Analysis (Cambridge University
Press, New York, 1952), 4th ed. , p. 323.
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minimum X. Choosing X minimum subject to (5), that is

X=1/k, (31)

one sees that for large k, 0 approaches p, , and t,
approaches 4p,'.

What we have done is to compute the analyticity
domain of that portion of the absorptive part which
comes from the intermediate channel e. At a given

energy, only a finite number of channels are open, each
having at least this analyticity domain, and therefore
the full absorptive part will have this analyticity
domain.

Thus the assumption of short-range forces in the form

(17) has led to a significant part of the analyticity
domain which Martin' had obtained from axiomatic
field theory.

For small k, &

2~/k =1, (32)

IV. CONCLUSIONS

We have shown that a slightly strengthened form of
Omnes's short-range-force condition leads easily and in
a physically transparent way to analyticity of the
absorptive part of the two-body scattering amplitude.

To extend this proof to the full partial-wave scattering
amplitude T& one has only to consider unitarity. Since
unitarity implies

our bound on the absorptive part is also a bound on the
full elastic amplitude. Using the same proof as in Sec.III
it follows that the full elastic scattering amplitude is
analytic in the cos8 plane in our ellipse with foci at &1
and a semimajor axis given by

Y—1(zr/0+e —r/k) (35)

For large energy this corresponds to analyticity in the t

plane in an ellipse with apex at t =p,'. Analyticity in any
larger ellipse would exclude the possibility of a pole at
t= p,', and is therefore undesirable.

The proof we have given can be reversed. From the
analyticity of A (E, cos8) or T(E, cosg), one can prove'
that A&(E) or T&(E) decreases exponentially with l, for
large enough I,. Substituting this into our formalism one
obtains an exponential falloff of the scattered wave for
large impact parameters. The fall off coefBcient may,
however, differ from 0-.

A. Martin, in Strong Interactions and High Energy Physics,
edited by R. G. Moorhouse (Oliver and Boyd, London, 1964).

and t, approaches 0. If 0- were independent of k for
small k, the analyticity domain would extend to

(33)

which approaches infinity much too quickly to be
reasonable. For example, analyticity in so large a
domain does not hold for scattering by Yukawa
potentials.

In comparing the presented physical approach with
that of axiomatic field theory, it should be pointed out
that the formulation of the short-range condition in

Eq. (17), especially the form of 0 given in Eq. (6), is
somewhat arbitrary. The form of 0- we have used was
obtained from crude estimates in potential theory which
can be improved. Any form of 0, however, will be an
ad hoc assumption in relativistic theory. In axiomatic
field theory the short range of forces is built in as a
condition on the allowed mass spectrum which is not an
ad hoc assumption.

The choice of 0. in Eq. (6) has the virtue of being
rather simple but it leads to an analyticity domain
which is smaller than the Lehmann ellipse for small

energies. One could, however, choose cr so as to re-

produce the axiomatic field theory results. Such a
complicated choice for fr would run counter to the main

purpose of this approach which is to provide a simple
but intuitive basis from which analyticity properties can
be understood.
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APPENDIX

Consider the wave packet

y(p) (ya/~)3/4a —(y-k)~La/2e —iP a (A1)

where
( p )

=
~
k

(
and k a =0. We expand p into partial

waves

4 (p) =2 di-(k, a) Yi"(p) (A2)

We wish to show that, for large u,

l

f, (k,a) = P (d, (k,a)('
m—l

(A3)

is maximized for i=ka, and then fi is of order /.

From (A2),

di„(k,a) = g(p) Yi"*(p)dip. (A4)

To evaluate (A4), we choose k along the z axis, a
along the x axis, and take 1= 1/k. The last choice is a
matter of convenience and the same results can be
obtained without it.
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We now use the following formulas': Since

(A9)

X(—1)'+"e'"oP t"(cosg), (A5) we have
2

J (kg sing) — e+imoe ik—a sino oinotly
y

2x'
(A6)

a )'" (2ka)"
ft(k, a) =4or —

i

e-'".
~ki (2i)!

(A10)

e"' 'Ooof (ka sing)
(kg) ~a+ n

=(—1)"' 2 P~ (cosg), (A7)
=o (2nt+n)!

and one finds that

For large 1, Stirling's formula yields the estimate

g ) s/2 (2ka)2l
fi(k, g) =4sr —

~

e '"'. (A11)
irk] (2l)"e—"(2sr2l)'"

g t&2 (ka)2t
~d,„(k,a)~s= 4n- e

—2%a (Ag)
srk (i+in)!(l—nt)!

' For (A6) and (A7) see G. N. Watson, A Treatise oe the Theory
of Bessel Functions (Cambridge University Press, New York,
I952), 2nd ed. , pp. 31, 149, and the Batemen Manuscript Project
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. II,
p. 182.

and then
a = (l+-,')/k,

ft = cons tl/k',

which completes the proof.

For fixed l and k, fi is maximized when

(A12)

(A13)
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Interpretation of the N* Effect in Deuteron Compton Scattering*
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Calculations of deuteron Compton scattering based on impulse methods demonstrate a peaking of the
energy distributions due to the N~ pole in the factored nucleon amplitude. It is suggested here that the
factorization procedure is questionable when a pole exists in the factored amplitude, as is evidenced, for
example, by the failure of the procedure near threshold where the nucleon pole term is of importance. This
difhculty is obviated in this paper by correctly treating the N* as an intermediate state. It is shown that
there exists a singularity which extends into the so-called anomalous region, very close to the physical
scattering domain. This Landau singularity, manifested in a diagram having four propagators, has the
eGect of simulating a resonance-like behavior just above the ¹nucleon threshold. However, this "resonance"
has the interesting properties that as the deuteron momentum transfer increases, its effective width enlarges,
while the peak height substantially diminishes. Using the dominance of the above-mentioned singularity as
the basis for a computation, an expression for the deuteron Compton differential cross section was derived.
To avoid ambiguities inherent in the spin case, scalar particles were used. A comparison with the limited
experimental data available above the photopion threshold produced very encouraging results. However, to
further clarify the manner in which the N* manifests itself, it is suggested that attempts be made to extend
the experiments (1) to a photon lab momentum of at least 350 MeV/c (the expected peak value) and (2) to
the center-of-mass forward hemisphere, where the cross sections are anticipated to be both appreciably in-
creased and more sharply peaked in the vicinity of the "N~."

I. INTRODUCTION

'HEORETICAL treatments of deuteron Compton
scattering have been limited to impulse-approxi-

mation calculations. "In practice the deuteron ampli-
* This work was supported by the U. S.OfI5ce of Naval Research

under Contract No. 1834(05).
R. H. Capps, Phys. Rev. 106, 1031 (1957}, and references

contained therein; R. H. Capps, ibid. 108, 1032 (1957);M. Jacob
and J. Mathews, ibid. 117, 854 (1960); V. K. Fedyanin, Zh.
Kksperim. i Teor. Phys. 42, 1038 (1962) /English transl. : Soviet
Phys. —JETP 15, 720 (1961)j.

~ J. D. Fox, Ph.o. thesis, Washington University, 1964
(unpublished).

tude is written as the product of the nucleon amplitude
and a "sticking factor. "' The manner in which this
factorization is to be carried out is, however, still
uncertain. Ambiguity related to the choice of nucleon
momentum is just one of the diKculties. In any case,
the process of factorization does not appear to be
justifiable when the nucleon amplitude is dominated by

' G. F. Chew, Phys. Rev. 84, 710 (1951); R. E. Cutkosky&
in Proceedings of the Tenth Annual jrtternationul Conference oe
Fligh-Energy Physics at Rochester, 1960, edited by E. C. G.
Sudarshan, J. H. Tincot, and A. C. Melissions (Interscience
Publishers, Inc., New York, 1961),p. 236.


