
SPACE —TI ME AND ORIGIN QF INTERNAL SYM METRIES

(3) the sets I'„„—qg„„+I'„„'" and J'„„or the sets The operator 3K de6ned in Eq. (4.1) has a contin-

I'„,—qg„,—I'„„~" and J„„each generate groups with uous spectrum. This can be seen by calculating the

the structure commutator

$9R,Ag']=iLC;; —D",At, tj=2iAgt . (820)

with ~2= —~2, Zg ———+g or its trRnspose. Sllch a group
is a nonsimple group with the Abelian normal subgroup

If BR possessed a discrete eigenvalue, say m, then

(820) indicates that nt+2u is also an eigenvalue, which

contradicts the assumption that 9R is Hermitian.
Incidentally, it may be noted that the three operators
5K & '+8' A '—8' form a subgroup which is iso-

morphic to the two-dimensional Lorentz group 0(2,1),
and it is well known that in the unitary representa, tions
of that group, only one generator has a discrete spec-
trum. In this case, that generator is A,'+8', .
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%e examine whether the recent low-energy A-X scattering data of Alexander et al. are compatible with
the binding. energies of qH' and AHe', if only central A-7 forces are assumed. %'e set up A-N and Ã-E
potentials, in the spirit of the Moszkowski-Scott separation method, to fit the low-energy scattering param-
eters. It is found that although these forces are compatible with the AH' binding, qHe~ is grossly overbound.
This is interpreted as an indication for the existence of an appreciable tensor component in the triplet +-E
potential.

I. INTRODUCTION

ECENTLY, the scattering length and effective
range of the singlet and the triplet lambda, -proton

(A-p) interaction have been determined directly for the
first time from the A-@ scattering data. ' Assuming
chg, rge symmetry, we would refer to these numbers as
the low-energy parameters of the lambda-nucleon (h.-lV)
interaction. An important feature of these results is
that the low-energy parameters in the singlet and trip-
let A-E s-wave scattering are not too diferent, in con-
ti Rdlctlon to pI'evlous RnRlyses.

Previously, these parameters had been estimated from
the data on spins and binding energies of light hyper-
nuclei. ' ' If one assumes an effective central A.-A po-
tential, the binding energy BA of the A in a light hyper-
nucleus is determined primarily by the s-wave interac-
tion. The'most reliable analyses of the binding energies
of hypernuclei are those from AH' and AHe'. For

* Supported by the National Research Council of Canada.' G. Alexander et a/. , Phys. Letters 19, 715 (1966).' B.K. Downs and R. H. Dalitz, Phys. Rev. 114, 593 (1959).
3 J. J. De Swart and C. Dullemond, Ann. Phys. (N. Y.) 19,

458 (1962).
4K. Dietrich, H, J. Mang, and R. Folk, Nucl. Phys. 50, 177

(j.964).
'R. C. Herndon, Y. C. Tang, and E, %. Schmid, Phys, Rev.

U7, B294 (&965).

AH3, the spin-averaged interaction for a A,-S bond is
(3V,+Vt)/4 or Vt, in terms of the singlet and triplet
potentials, V, and V~, depending on whether the total
spin is —,'or —,'. The fact that the observed spin of AH'

is ~ implies that the singlet potential V, is more attrac-
tive than the triplet one Vg. For AHe', the spin-averaged
interaction for a A.-X bond is (V,+3Vt)/4. Assuming the
shape and the range of the potential, V, and V~ can be
determined from the binding energies of AH' and AHe'.

The A-E low-energy scattering parameters can then be
estimated by using these potentials. So far, several sets
of V, and V~ have been proposed. ' 5 They all show

strong spin dependence, the singlet scattering length a,,
being much larger (in absolute value) than the triplet
one a~, and the triplet effective range t'~ being inuch
larger than the singlet one r, . In contrast to this, the
newly determined parameters indicate only weak spin
dependence (see Table II of Ref. 1).

The purpose of this paper is to investigate whether
the new scattering data are compatible with the binding
energies of AH' and AHe5, if only central forces are as-
sumed. In Sec. II, we set up A-A and E-sV central
s-wave potentials in the spirit of the Moszkowski-Scott
separation method, to 6t the new low-energy scattering

6 S. A. Moszkowski and B. L. Scott, Ann. Phys. (N. Y.) 11,
657 (1960).
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data. In Sec. III, the binding energy of zH' is estimated
by using the Feshbach-Rubinow (FR) method. "The
accuracy of the method is examined. In Sec. IV, the
separation energy Bg of the A. in ~He' is obtained, as-
suming the n core to be rigid. It is found that the A in
gHe is grossly overbound. In conclusion, this is inter-
preted as an indication for the existence of an appreci-
able short-range tensor component in the triplet A-S
potential.

II. THE A.-N AND N-N INTERACTIONS

A. The A.-N Interaction

Alexander et a/. ' quote the following low-energy pa-
rameters by analyzing Ap —+Ap cross sections:

a,= —2.46 F, at, = —2.07 I', r, =3.87 F, rg=4.50 F.
These are their most likely values, but no errors are
quoted. By comparing with the results of the previous
analyses, we find that the singlet A-E interaction has
become slightly weaker than its earlier value, since r,
has increased while a, remains about the same. ' The
triplet force has increased in strength, since a~ has a
larger value now, while r& has not changed much. This
has resulted in an approximate equality of the two in-
teractions, although the singlet interaction is still the
stronger of the two. The large values for effective range
mean big "holes" in the zero-energy wave functions,
implying that there is strong, short-range repulsion in
these forces. Reproducing these data in a potential
model would then require introduction of hard cores, "
or possibly strong soft cores. Rather than use such
strong potentials, one can alternatively use weak, long-
range potentials in the Moszkowski-Scott spirit. At
any given energy, the weak, long-range potential can be
adjusted to give the same phase shift as the potential
with hard core, provided the over-all potential is at-
tractive. This is so, since the strong, short-range repul-
sion is "cancelled, "so far as phase shift is concerned, by
part of the strong, subsequent attraction, leaving only
a weak, attractive tail. It is this long-range tail that is
responsible for the observed phase shift in scattering.
If the h. is loosely bound in a hypernucleus, then it is
again this long-range tail that is responsible for this
binding.

We therefore choose the A-E potential of the follow-

ing form:

V, g(r)=0 for r&d, , g

A, &e""/v—r fo,r r&d, ,~,

where the subscripts s, t stand for singlet and triplet,
respectively. Since the "separation distances" d, and

7 H. Feshbach and S. I. Rubinow, Phys. Rev. 98, 188 (1955).
8 M. McMiOan, Can. J. Phys. 43, 463 (1965).' This is true for attractive potentials with negative scattering

length.
"H. Kanada, S. Otsuki, K. Sakai, and M. Yasuno, Progr.

Theoret. Phys. (Kyoto) 35, 971 {1966).

TABI.E I. The parameters of the three
sets of h.-S potentials.

A, Ag
Set d, (F) (MeV) a, (F) r, (F) d~(F) (MeV) ag(F) f'g(F)

I 1.017 204.1 —2.46 3.87 1.180 223.3 —2.07 4.50
II 1.222 295.8 —3.46 3.87 0.940 147.2 —1.52 4.50
III 0.645 108.8 —1.46 3.87 1.278 266.2 —2.37 4.50

d& turn out typically 1 F, it is reasonable to choose
for v the two-pion range (v=1.3992 F '). The two ad-
justable parameters A and d are determined by requir-
ing (1) to fit the low-energy parameters a and r, for
singlet and triplet potentials separately. Since we are
only fitting the zero-energy data, d is a constant and not
energy-dependent. It is hoped, however, that since the
A, is loosely bound to the nucleus, zero-energy param-
eters will sufhce to determine the binding energy 8&
accurately. This assumption has also been made in all
the previous work. By this procedure, we have bypassed
the construction of a complete hard-core potential, and
yet have reproduced the experimental low-energy data.
This results in a great simplihcation in the calculation of
binding energies of pH' and ~He'.

Table I gives the parameters of three sets of ll-X
potentials used in subsequent calculations, together with
the corresponding scattering length and eBective range.
The symbols used in the table have all been explained
earlier in the text. Set I corresponds to the interaction
that fits the low-energy parameters quoted by Alexander
et al. ' In sets II and III, a, and a& are varied arbitrarily
within certain limits about the most likely experimental
values, so that the zero-energy A-p cross section
P" (a,'+3aP)) remains constant. This is done with the
realization that there may be considerable uncertainty
in the experimental values given in set I.

V,"'""(r)=0 for r(0.722F,

~-0.6996' g-1.3992r

=—10.742 —336.2 MeV
0.6996r

'
1.3992r

for r)0.722F. (2)

This gives a&= 5.38 F and r& = 1.72 F.

B. The N-N Interaction

For the calculation of qH' binding, we also need to
know the m-p interaction in the triplets state which 6ts
the deuteron data. Again, in the Moszkowski-Scott
spirit, a superposition of one-pion-exchange potential
(OPEP) and a Yukawa potential of two-pion range is
used which acts only beyond a separation distance d.
The strength of the OPEP is taken as 6xed from theory,
and again the separation distance and the strength of
the two-pion part are varied to 6t the scattering length
a'and the effective ranger' Thee-pp. otentialis thus
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III. BINDING ENERGY OF pH'

&H' is the lightest hypernucleus with A-deuteron
separation energy B,&=0.21&0.2 MeV. The total bind-
ing energy is given by Bz+B&=2.226 MeV. Since the
spin of qH' is 2, the interaction for the A-cY bond is
(3V,+V&)/4, dominated by the singlet interaction.

We examine ~H' using the FR~ ' method. The method
was first developed for the triton assuming three nu-
cleons of equal mass interacting via a, central, s-state
two-body interaction. The wave function 4 of the triton
is taken to be a function of a single variable R:

+=P(E), E=-,'(.r,+r,+r,),
where r~ is the distance between particles 2 and 3, and
similarly for r2 and rs. Here it is assumed that the inter-
action between each pair of nucleons is indentical. The
three-body Schrodinger equation can then be reduced
to an equation for Q(R), which resembles a two-body
Schrodinger equation. This gives an improvement over
the Irving trial function %= exp( —XR), with a varia-
tional parameter X, and yields excellent results for the
binding energy.

To see the accuracy of the FR method in the triton,
let us compare it with the variational calculation of
Tang et a/. " Assuming the s-wave potentials V, = V&
= —Vpe '" with Vp =96.995 MeV and ~= 1.156 F
they found, by an extensive numerical calculation, the
binding energy of the trition to be between 7.65 and
7.84 MeV. They believe that the true value is between
7.65 and 7.70 MeV. The FR method yields 7.57 MeV;
thus the accuracy in this case is quite satisfactory.

The FR method has been applied to zH' by Abou-
Hadid and Higgins, "who have chosen E to be

1

&=-,'(rx+r2+gra),

where rq now stands for the n Pdistan-ce. The parameter
g is introduced to take account of the asymmetry in the
interactions and the masses. q is varied until the maxi-
mum binding energy is obtained. Abou-Hadid and
Higgins have calculated the volume integral of the
g-E interaction of a given range which gives the re-
quired binding energy 8& in zH'. It is found that the
FR method is considerably better than a simple expo-
nential-type two-parameter wave function of the earlier
Dalitz-Dovrns" variational calculation, but much less
accurate than their later six-parameter variational
result. ' The actual values of the volume integral given
by the FR method lie almost midway between the above
two variational results.

We have further examined the FR method in com-
parison with Dalitz and Downs's' six-parameter calcu-
lation. The A-.V interaction is taken to be a Yukavra

» V. C. Tang, R. C. Herndon, and K. W. Schmid, Phys. Rev.
134, 8743 (1964)."L. Abou-Hadid and K. Higgins, Proc. Phys. Soc. (London)
79, 34 (1962).' R. H. Dalitz and B. W. Downs, Phys. Rev. 110, 958 (1958),

TABLE II. Results of the binding-energy calculations with the
A-N poteotials given in Table I. In column 2, the first number is
the one obtained by the FR method, and the bracketed figure is
a rough estimation of the error involved compared with the six-
parameter variational calculation of Downs and Dalitz (Ref. 2).
The latter calculation, for example, would yield with set I the
qH binding energy 2.25 MeV. The equilibrium q (defined in
Sec. III) is 2.82, 2.70, and 3.33 for sets I, II, and III, respectively.

x-N
potential

Binding energy
of,H3 (Mev)

1.6O(O.65)
1.78(0.60)
1.28(0.70}

Separation energy
of A in qHe' (MeV)

6.45
6.02
6.06

potential with two-pion range. In one case, Dalitz and
Downs's calculation yields 2.476 MeV for the binding
energy of &H' and in the other it yields 3.226 MeV. Using
the same potentials, the FR method gives 8=1.908
and 2.760 MeV, respectively. These are smaller than
Dalitz and Dovrns's values by 0.568 and 0.466 MeV,
respectively. Thus we have to admit at least an inac-
curacy of 0.5 to 0.6 MeV in this range of binding energy
of qH'. This inaccuracy tends to increase as the binding
energy of the system is reduced. It is our feeling that
the accuracy of the FR method is marred by the asym-
metry in the interactions between the three particles.

We have used the FR method in qH' despite the fact
that it is less accurate than extensive variational calcu-
lations. This is done primarily because the FR method
is very simple, and yet. suffi. cient to estimate whether the
calculated binding energy is compatible with the ex-
perimental value. We have estimated the total binding
energy of zH', using the forces set up in Sec. II. The
results are summarized in Table II. In view of the inac-
curacy of the method, sets I and II can be compatible
with the observed binding energy of zH', whereas set
III probably cannot bind zH'.

"R.H. Dalitz and B. VV. Downs, Phys. Rev. 111,967 (1958)."A. R. Bodmer and S. Sampanthar, Nucl. Phys. 31, 251 (1962).

IV. BINDING ENERGY OF gae'

&He' is the commonest of all hypernuclei and its A-n

separation energy (3.1 MeV) is accurately known.
The interaction for a A-E bond in ~He is given by
(V,+3V~)/4. Thus the triplet potential is dominant in
the interaction, and it is this part of the force that has
changed most from its earlier estimates. Follovring
Dalitz and Downs" and Bodmer and Sampanthar, "
we calculate the average Geld that the A feels in this
nucleus, assuming the n core to be undistorted. Since
n is a rather tightly bound system, this approximation
is not a bad one. Dalitz and Downs" have estimated the
error due to radial compression of the n core, and found
t to be small. Measuring all the vectors from the center
of the nucleus, the one-body potential for the A, gen-
erated by all the nucleons (denoted by subscript i), is
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given by

U(rq)=g; y, *(r,) V(~r, rq~) p, (r;)d"'r, . (3)

Here the A iV po-tential is V= V,+3V,, since there are
four A,-lV bonds; the p s are the single-particle nucleon
orbitals and the sum is taken over all occupied states.
The expression (3) can be rewritten as

U(r )= p(r~) V(

with

U, (rg) =—
2vF'.y

U= (U,+3U&),

V
e""4~' e ""& 1—erf +p(d. —rq)—

2p

(6)

—e""~ 1—erf yP(—d, +r(), (7)
28

with an exactly similar expression for U&. After U(rq)
is obtained, it is a simple matter to calculate the eigen-

energy of the bound-state A-n system in this potential.
It will be seen from Table II that this binding energy
for all three sets of A-~Y potentials turns out to be too
large when compared with the experimental value of
about 3.1 MeV. It is clear, then, that if the low-energy
scattering data are fitted by purely central forces of the
form we have assumed, then the binding energy of the
A-n system turns out to be too large, although &H'

results for two of the three sets considered are still com-
patible with experiments.

V. DISCUSSION

Purely central A-cY potentials were constructed to fit
the new h.-p scattering data of Alexander et a/. ' By
studying Table II, it is clear that &He~ is grossly over-
bound by such potentials. Even varying the scattering
lengths a, and a~ within reasonable limits about the
quoted values does not remove this discrepancy.
Another discrepancy is found when the depth of the
A-particle potential is estimated in nuclear matter with
these potentials. Actually, in nuclear matter, states
other than the s state contribute signiiicantly, as is not
true in light hypernuclei. However, the pure s-state con-

Here p(r;) is the density distribution of the nucleons in

n; it is spherically symmetric. We take the normalized
density distribution as

p(r, )= (p3/7r3~ )exp( —p'r, ),
with P= 0.85056 F ', the same value as that of Bodmer
and Sampanthar. "V, and V& are given in Eq. (1), with
the values of the parameters shown in Table I. The in-
tegration in (4) can be done analytically and the average
potential can be written as

tribution should give a fair indication of whether the
total result is going to be compatible with the estimated
depth. This depth is believed to be about 30 MeV" '
from extrapolation of binding-energy data of hyper-
nuclei. If we denote this depth by D, then, in 6rst order,

D=pQ, ,

where p=0.17 F ', the density of nuclear matter, and
0 is the volume integral of (V,+3V,)/4 for the A iV-
potential. Higher-order corrections are small for the
potentials that we have taken. Our estimates of depth
D according to Eq. (8), using potentials given in Table
I, range, roughly, from 80 to 90 MeV. It will again be
noticed that D is grossly overestimated.

We are of the opinion that these discrepancies arise
because we have taken a purely central h-E force in the
triplet s-state. A purely central force contributes to the
binding energy of a spherical system in the 6rst order,
whereas a tensor force starts contributing only in the
second order. This results in a suppression of the con-
tribution of the tensor force to the binding energy of
spherical systems. "It has been shown" that the tensor
force in the A-E interaction should be predominantly of
very short range, since the two-pion exchange part of
the tensor force is very weak, and hence it should origin-
ate mainly from the exchange of heavier mesons. Fur-
ther, since it starts contributing only in the second order,
its range is essentially halved in a binding-energy cal-
culation. This leads us to believe that if the triplet A-E
potential is taken as partly central and partly tensor,
one can fit the low-energy scattering data and the bind-
ing energies of &H' and &He' simultaneously. The in-
troduction of a tensor force would not alter the qH'
binding energy appreciably, since it comes mainly from
the singlet A.-E force. At the same time, there is a
good chance that the binding energy of the A-n system
and the depth of the A potential in nuclear matter can
then be fitted.

There are, however, some other effects which can con-
tribute to the above discrepancy. The effect of the
three-body force on the binding of the &He' may be
appreciable. The two-pion-exchange part of the three-
body force is repulsive in &He', and a crude estimate
suggests that it may reduce the binding of the system
by about 0.7 MeV (see note added in proof).

Bodmer20 has pointed out that the h,-E interaction in
&He' may not be the same as the free A-2V interaction.
This is so since in ~Hes, the virtual process He'+A
~ He4+Z' is forbidden because of isospin conservation,

' B. W. Downs, in Proceedings of the Internal'onal Conference
on Hyperfragments, St. Cergle, Sm~itserland, 1963 (CERN, Geneva,
1964), p. 173.

'7 D. P. Goyal, Nucl. Phys. 83, 639 (1966)."G. Ranft, Nuovo Cimento 438, 259 (1966)."Y.Nogami and F. J. Bloore, Phys. Rev. 133, B514 (1964);
Y. Nogami, B.Ram, and I. J. Zucker, Nucl. Phys. 60, 451 (1964),
A. Delo6 and J. Wrezecinko, Nuovo Cimento 34, 1193 (1964);
M. Rimpault and R. Vinh Mau, ibid. 35, 85 (1965).

"A. R. Bodmer, Phys. Rev. 141, 1387 (1966).
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and therefore the Z channel can only contribute through
the T= 1 state of the four nuclei, which may be about
20 MeV above the ground state. This should result in a
suppression of A-N and A-NiV forces. A similar effect
arises when a A is in nuclear matter because of the Pauli
principle between nucleons. In this case, consider the
interaction between a nucleon and the A via two-pion
exchange. All intermediate states of the nucleon which
are below the Fermi level are forbidden. Hence the A-N
interaction in nuclear matter would be different from
the free case. However, if we calculate the binding en-
ergy of h in nuclear matter with these modified A-N
and A-lV-N interactions, we get the same result as with
free A-N and A.-N-N interactions up to fourth order in
the pion coupling constant. "The above result is true
only when three-body forces are included. It is also
possible that by neglecting the Z-channel suppression
in AHe', but including the free three-body contribution
to binding, Bodmer s effect is being taken into account.

"D.Kiang and Y. Nogami (to be published).

In conclusion, then, we think that the overbinding
(by a central force) of the A in ~He' and in nuclear
matter warrants the introduction of a short-range tensor
force in the triplet A-N interaction. We plan to do a de-
tailed calculation including the tensor force to verify
this, and to investigate the other effects mentioned in
the above paragraph.

Note added ie proof Th.e repulsive contribution of
0.7 MeV was calculated taking only the central part of
the two-pion-exchange A.-N-N force. However, we have
since then found that the tensor part of the A.-N-E force
is much more important and reduces the overbinding of
8& in &He~ substantially, without seriously affecting
~H'. Details of this calculation are submitted for pub-
lication in Ann. Phys. (N. Y.).
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Determination of the 8-Wave ~-~ Amplitude near the p Peak
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A fit to recent extensive data for the reaction m. +p ~ m++7t- +n at incident m. momentum 4 BeV/c
and fina] two-pion center-of-mass energy m m, was made. The peripheral model with absorption was
used jn the fit. The asymmetry in the final two-pion distribution 8 gives a quantitative determination of the
~-~, g-wave, I=0 scattering amplitude. A constant phase shift of +60' gives as good a fit the to data as
a resonance e (at 730 MeV with a width of 90 MeV), proposed by Durand and Chiu. A negative phase
shift of —60 is ruled out by examining the distribution in 8 as a function of m

I. INTRODUCTION
' 'T is known' that the angular distribution in 0 for

the final two pions in the reaction'

of the final pions in the reaction'

(2)

near the final two-pion center-of-mass energy m m,
requires a large 5-wave phase shift bo interfering with
the 1=1 production. Furthermore, the 8 distribution

*Work supported in part by the National Science Foundation.
' See, e.g., G. Shaw and D. Wong, Phys. Rev. 129, 1379 (1963);

M. Islam and R. Pinon, Phys. Rev. Letters 12, 310 (1964).
2 In this paper, we will be discussing data for incident ~ labora-

tory momentum ~4 BeV/c.' A subscript will be used on the amplitudes and phase shifts
to denote the l value, and a superscript to denote the isotopic spin.

At these values for m, d waves are neglected (but f' produc-
tion probably becomes important at somewhat higher m ).

near m m, yields a small negative value for the I=2,
5-wave phase shift. Thus, reactions (1) and (2) indicate
the presence of a large x-x phase shift bo' near the p
region.

The peripheral production model with absorptive
corrections gives a good fit' ' to reaction (2), not only
for the cross section as a function of the momentum

' Saclay-Orsay-Bari-Bologna Collaboration, Nuovo Cimento
25, 365 (1962).' K. Gottfried and J. Jackson, Nuovo Cimento 34, 735 (1964).

7 L. Durand and Y. Chiu, Phys. Rev. 137, B1530 (1965).' M. Bander and G. Shaw, Phys. Rev. 139, B956 (1965).


