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S-Wave Pseudoscalar-Meson-Baryon Scattering in a Simple Model
with Broken 8 U(3) Symmetry*

H. W. WvLD, JR.
Department of Physics, University of Illinois, Urbana, Illinois

(Received 15 August 1966)

A model of S-wave pseudoscalar-meson —baryon scattering is studied in which the force is due to vector-
meson exchange. The potential is approximated by a static Yukawa potential and the kinematics is sim-
plihed. The actual physical masses of the particles are used so that SU (3) symmetry is broken. The resulting
problem reduces to a set of coupled-channel Schrodinger equations which are solved exactly on a computer.
The E matrix and the eigenphases are calculated. Several examples of virtual bound-state resonances are
found. The model yields a F0*(1405) as a virtual bound state of KN and an ¹g2*(1570)as a virtual bound
state of EZ.

I. INTRODUCTION

ECENT pion-nucleon phase-shift analyses' ' have
uncovered an unexpectedly complex system of

resonant and near-resonant states. In Fig. 1, for ex-
ample, we give the Argand diagram for the S11 ~E
scattering amplitude as determined in Ref. 1 and 2. The
curves are taken from Refs. 2 and 4. As we see from this
figure the phase-shift determinations are still fraught
with considerable uncertainty. There is, however, clear
evidence for some sort of quasiresonant behavior, which
we shall call X &~2(1570), slightly above the zX thresh-
old at 1490 MeV. This inelastic resonance has been the
subject of several recent papers. Both Hendry and
Moorhouse' and Uchiyama-Campbell and Logan' have
carried out phenomenological analysis of the reaction
m P ~ pm which indicate the presence of a resonance
just above the g V threshold. There is also some indica-
tion in Fig. 1 for a higher S11 xX resonance at about
1700 MeV.

Turning to the hypercharge zero states in the t =0
partial wave of the pseudoscalar-meson —baryon system
we have the well-known I"0*(1405) which, following
Dalitz and Tuan, is thought to be an S-wave EX
virtual bound state which decays through the coupled
mZ channel. ' ' There is also a Fo*(1670)associated with
the gA threshold in the same way as the N*~~g(1570) is
associated with the pE threshold. ' There may also be a
I'~* associated with the gZ threshold. "
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In addition to these resonances there is an I=—,'
resonance, 1V 3/2(1670), which is clearly indicated in the
phase-shift analysis of Ref. 1. The model discussed in
this paper cannot account for this resonance.

We present in this paper a numerical study of a
simple model of S-wave pseudoscalar-meson —baryon
scattering in which the interaction is represented by a
static-vector-meson-exchange potential. This model has
been discussed extensively by Sakurai, who has shown
that it leads to a qualitative explanation of some fea-
tures of the S-wave ~X, ES, and EX interactions. "
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FIG. 1.The Argand diagram of the S»-~N scattering amplitude.
The numbers are energies in MeV. The curves are taken from
Refs. 1, 2, and 4.
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The potential in the model is a Yukawa potential. For
such a potential it is a well-known result of elementary
scattering theory that there are no S-wave resonances
in a single-channel scattering problem. In order to
obtain an S-wave resonance in a one-channel problem
one would need a potential with a repulsive lip outside
an attractive well. On the other hand, Fonda and
Newton" and Dalitz and Tuan have shown that it is
possible to obtain narrow S-wave resonances in multi-
channel scattering problems. In this case the resonance
is essentially a bound state in a higher-mass closed
channel which decays through a coupled lower-mass
open channel. Such resonances have been called virtual
bound-state resonances by Dalitz. In order to obtain
such resonances we need coupled channels with different
masses. In the present calculation the coupled channels
are obtained by using an SU(3) version of Sakurai's
vector-exchange model so that, for example, the mE,
gÃ, ICA, and EZ channels are coupled together. In
order to obtain diBerent masses for the coupled channels
we break the SU(3) symmetry by using the actual
masses of the various particles.

The calculations in this paper are based on the
coupled-channel Schrodinger equation with a matrix
potential. They are thus similar to those of Fonda and
Newton" although the particular examples considered
and the details of the calculation are quite di6erent.
The calculations are very much like those of Dalitz,
Wong, and Rajasekaran, " who concern themselves
exclusively with the Vo*(1405) resonance. Because
there are relatively few examples in the literature of
detailed numerical calculations for multichannel scat-
tering problems, we have presented our results at some
length. Even if the model should turn out to be wrong,
the results of the calculation may be interesting as
examples.

In detail the model used in this paper is the following:
The force between the pseudoscalar-meson octet and
the baryon octet is provided by the exchange of the
vector-meson nonet as indicated in Fig. 2. At the BBV
vertex we assume the SU(3)-invariant interaction

iV2g „,0[B,"y„BI,' Bp'y„B,"]V„,'—

and at the PPV vertex the SU(3) invariant interaction is

i gpo~—+ +V '[P~zdP, /ps' P—PrIP~g/rIxq]. (2)
v2

G2 g mvr

[:6[&)(& I+3[8.) &8. [

+3[8,)(8 [
—2[27)(27[]. (5)

Here we have
g yap ogI 0~+~+l 2

4x 4m.
(6)

and we take m. to be the mass of the p meson. The
states [1), [8,), etc. , are normalized singlet, symmetric
octet, etc., states. We see that the potential is attractive
for the singlet state and the two octet states and
repulsive for the 27 state. Since isospin 2 occurs only in
the 27 state it is clear that the above potential can
never account for an Sir resonance such as E*i~i (1670).

With the potential (5) and perfect SU(3) symmetry
we could for sufficiently large G produce S-wave bound
states in the singlet and octet states, but the Yukawa
potential would not produce an S-wave resonance. We
shall break the SU(3) symmetry by employing (5) in a
Schrodinger equation in which we use the real physical
masses for the pseudoscalar mesons and the baryons.
In order to do this it is convenient to rewrite the
potential (5) as a matrix in channel space,

Here 8,' is the octet tensor of baryon fields, etc. From
the theory of nuclear forces one finds

g yppp/4il ~1.2 —1.8.
From the width of the p meson one has

g'pp + +/4ir=2. 0.
We evaluate the diagram in Fig. 2 in the static limit,
where it reduces to a Yukawa potential. We also assume
at this stage perfect SU(3) symmetry, so that the masses
of the exchanged vector mesons are all the same and the
fourth component of the momentum transfer vanishes.
We thus find the potential

Q2 e
—mvr

V + [Bt kB ' Bt B~.k][Ptl,P j Pt j P l]
4z r

I
I

I
I y
I
I

FIG. 2. The Feynman diagram
giving rise to the potential of Eq.
(5)

Q2 ~
—mvr

Vv(&) = ——
4

(7)

For the various possible choices of isospin and hyper-
charge we have the following matrices C:
I=—' I"=1:27

1' L. Fonda and R. G. Newton, Nuovo Cimento 14, 1027 (1959);
Ann. Phys. (N. Y.) 10, 490 (1960).

'3 R. H. Dalitz, Proc. Roy. Soc. (London) A288, 198 (1965);
R. H. Dalitz, T. C. Wong, and G. Rajasekaran, Phys. Rev. 153,
1617 (1967).
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E=O, Y=O.

~z' 4
Ez —(g6)/2

0
z=- . (g6)/2

Ex qh.

-(v'6)/2
3 3v2/2

3v2/2 0
O -3'/2

(v'6)/2
0

—3v2/2
3

where k; is the wave number in channel i and F and G
are of the form

F,(k,r) = (/1;/k;)'/' sink, r, k;2) 0, open channel
=0, k,2&0, closed channel (16)

G;(k,r) = (/1;/k, )'/2 cosk, r, k;2) 0, open channel
=r,—'," x,=++(—k')

kg &0, closed channel. (17)

I=1 Y=O

~z E.x
0 0 —(g6)/2

~z 0 2 —1
C=Ex —(g6)/2 —1 1.z o o —(g6)/2

z=-.—(Q6)/2 1 0

I=—',, Y= —1:
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—(V'6)/2
1
0
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(10)

In (15) there is a standing wave sink, r in fkr, open
channel i and standing waves cosk,~ in all open channels

j. In the closed channels we have exponentially decay-
ing wave functions. From the numerical solution of
Kq. (12) we obtain the matrix E',; of (15). If some of
the channels are closed, we discard the matrix elements
referring to closed channels and are left with a square
matrix E',; referring to open channels.

I'his matrix, which is real and symmetric, is the
reduced E' matrix discussed for example by Dalitz. "
It has eigenvalues tanb and normalized eigenvectors
s; . The 6 are then the eigenphases, the multichannel
generalization of phase shifts. The T' matrix, which is
the T matrix with a kinematic factor removed is then

The matrix potential (7) is employed in a multi-
channel Schrodinger equation, which for the radial wave
function U;(r) =rf;(r) for S waves has the form

2p'
= (E—m„—m„) U, (.). (12)

U, ,(r) =F,(k,r)5,~+G;(k,r) IC', ;, (15)

"G. Rajasekaran, Nuovo Cimento 37, 1004 (1965).

Here E is the total energy, m&, and m&; are the masses of
the two particles in channel i, and p; is a reduced mass.
We have attempted to take some account of relativistic
kinematics by using an energy-dependent reduced mass
defined as follows:

E—(p2+m 2)1/2+ (p2+m 2)1/2 —m, +m +p2/2~ (E)
(13)

or equivalently

/1;(E) = [E'—(m1,—m2, ) ][E+mr,+mz„]/SE'. (14)

This method was introduced by Rajasekaran. " The
static approximation used in order to obtain a potential
and the energy-dependent reduced mass (14) are crude
approximations. They lead to a set of coupled differ-
ential equations easily solved on a computer. A more
careful treatment of recoil and relativistic kinematics
leads to a set of coupled integral equations in momen-
tum space; these are considerably more complicated
numerically.

We can superpose the solutions of (12) so as to obtain
solutions which outside the range of the potential have
the form

and from this we obtain the S-wave cross sections

0;,= (41r/k, 2)
i
T',;i',

where i refers to the initial and j to the final state.
For a four-channel problem it takes about 6 sec to

perform all these calculations at one energy on an IBM
7094 computer.

II. RESULTS OF CALCULATIONS

(2o)2kf=2e" srn5=22";;

as a function of energy. Here 8= f/, +ib; is the complex
phase shift in some specified channel, and we note that
2kf is twice a diagonal element of the 7' matrix (18).
We recall the geometrical significance of such a diagram
in Fig. 3. Unitarity limits 2kf to the interior of a circle
of unit radius about the point i. If only one channel is
open so that the scattering is elastic, 2kf lies on the

"R. H. Da1itz, Ann. Rev. Nucl. Sci. 13, 350 (1963).

Ke present in this section the results of the numerical
calculations for the model. discussed above. Although
the model is too crude to expect a close fit to experi-
mental data, we shall find that a very rough qualitative
agreement can be' achieved for a suitable choice of the
coupling constant G'/4n. , which is the only pa, rameter
we have varied in these calculations.

We present our results in the form of several kinds of
graphs. First we have Argand diagrams such as Fig. 1
of the real versus the imaginary parts of the scattering
amplitude



H. W. WYLD, J R.
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Another possible condition for a resonance in a multi-
channel system is that one of the (necessarily real)
eigenphases 5 goes through 90'. The resonance energy
E„would then be the energy at which this occurs. We
give some results for the eigenphases below, and it will
be seen that these two definitions of E„ lead in general
to somewhat different results. The experimentalists gen-
erally give the resonance energy as the energy of the
peak in .an appropriate mass distribution. A related,
although somewhat shifted peak would be obtained in
a scattering cross section, for which we also give some
numerical results below.

unit circle; if two or more channels are open so that the
.scattering is inelastic, 2kf lies inside the unit circle. The
scattering cross section 0„ the reaction cross section 0-„,
,and the total cross section 0.

~ are given by

~,= (~/k2) ~a~',

„=( /k )(1—Ibl ),.,= (2./k ) (.~,

(21)

with u, b, c as indicated in Fig. 3.
We also note that for multichannel S-wave scattering

there is a cusp in the Argand diagrams of 2kf at the
threshold of each channel; in fact the curve of Re2kf
versus Im2kf as a function of energy makes a 90' left-
hand turn. This happens because near the threshold f
is a linear function (f=a+bq) of the momentum in the
opening channel. Above the threshold q is real; below
the threshold, q= i~ q~ is positive imaginary, so that the
outgoing wave exp(iqr) becomes a decaying exponential.
These cusps are clearly indicated in the results given
below.

There are various ways of defining a resonance. Of
course for a single-channel problem we have the condi-
tion that the (real) phase shift increases through 90'.
This corresponds to the amplitude 2kf traversing the
top of the unitarity circle in Fig. 3 in a counterclockwise
direction. On the other hand, even for a multichannel
problem, if a resonance can be represented by a Breit-
Wigner term plus a constant complex background term,
the Argand diagram of 2kf will be semicircular in a
counterclockwise sense as indicated in the example of
Fig. 3. The energy at the top of the circle is the reso-
nance energy E, ; the energies at the edges of the semi-
circle are E,&I'/2, where I' is the width of the resonance.

Re(2k')

I'IG. 3. An example of an Argand diagram for the scattering
amplitude. The significance of the curve is given by Eqs. (20)
and (21).

A,. I ~, F= 1 State

In Fig. 4 we give the Argand diagram of the amplitude
(20) for the a% channel in the I= 2 state for the particu-
lar choice of coupling constant G'/4a =0.91. The curve
in Fig. 4 is qualitatively similar to the experimental
curve in Fig. 1, but obviously there is no quantitative
agreement. If the coupling constant G'/4a. is reduced
from the value 0.91, the point at which the curve in
Fig. 5 leaves the unitarity circle (the rjN threshold)
moves down the side of the unitarity circle and the size
of the loop associated with the zX threshold rapidly
diminishes; alt G'/4a=0. 85 the loop has completely
disappeared. If the coupling constant is increased, the
point where the curve leaves the unitarity circle moves
up the side of the unitarity circle and the loop associated
with the &1V threshold rapidly expands; at G'/4n. =0.93
this loop ills the whole unitarity circle. Thus for
G'/4vr=0. 91 there is a resonance slightly above the pX
threshold, and for G'/4a =0.93 there is a resonance

Im (2kt)

N)

87

178

~ (43i

l077

FIG. 4. The Argand diagram for mX scattering in the I=-,',
Y=+i state for the coupling constant G /Sr =0.91.The numbers
give energies in MeV. Thresholds are indicated by particle sym-
bols in parentheses.
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slightly below the pS threshold. This latter case is
similar to the I's*(1405), which we consider below.
In Fig. 5 we give the cross sections for G'/4s =0.91.
In Fig. 6 the solid curves are the eigenphases for
G'/4rr=0. 91. It will be noted that one of the eigen-
phases goes through 90' at 1501 MeV, which corre-
sponds to the bottom of the loop in Fig. 4.

It is rather remarkable that one obtains this resonance
associated with the qX threshold at all with the poten-
tial (7), (8) since the s.X and qE channels are not
directly coupled with each other; the only coupling
comes through the higher-mass closed channels EA. and
EZ. (In fact it is easy to verify from conservation of G
parity and isospin that exchange of a vector meson
cannot transform a x meson into an q meson. The
simplest exchange which would achieve this is As

a yexchange. ) The absence of direct coupling presumabl
accounts for the extreme narrowness of the calculated
resonance of Fig. 5 compared to the experimental
resonance of Fig. 1. In order to obtain a more realistic
model we would have to include exchange of the 2+
nonet and also the BV channels.

In an attempt to understand the origin of the reso-
nance associated with the gE threshold we have carried
out some auxiliary calculations, which are recorded in
Fig. 6. The dashed curves give the eigenphases when the
mE channel is almost decoupled. To obtain the dashed
curves we made the following replacements in the
matrix (g): Crs ——Csr —+ 0.15, Cr4 ——C4r ~ —0.05. If

24—

22—

20—

IB—

V)
cO IP

e—

g (mN~Kh)

~(wN~ Z)

I550 l400 l450 l500 l550 l60 I650 700 l750

qN Kh KE

ENERGY(MeV)

FIG. S. The cross sections for elastic-wN scattering and for
mE~gN, AN ~ KA, AN ~ EX in the I=~ stat f G2'4
=0.91.

s e or

these elements of the matrix C are taken to be zero, the
eigenphases are essentially identical to the dashed
curves, except that the two curves now cross at 1489
MeV. The nearly horizontal sections give the decoupled
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Pro. 6. Eigenphases for the I=-'„7=+1state. The solid curves ive the ei en hagive e eigenphases for G'/4v=0. 91.The dashed curves give the

th h fo G'/4 =091fo th t -h l bl 'h h
n e ~ - an ~ - Z couplings in the matrix ~8~ reduced b a

gives the N component of the eigenvector correspond' t th h
e wo-c anne pro em with the cou lin matrix I'22~. Th
r orrespon ing to t e eIgenphase which goes through 90' at 1501 MeV.
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IN(2kf)

FIG. 8. The Argand diagram for
ES scattering in the I=1, Y=O state
for the coupling constant 6'/4m=09. 1.
The numbers give energies in MeV.
Thresholds are indicated by particle
symbols in parentheses.

1814(KN

1435

associated with the gS resonance there is a more or less
semicircular curve traversed in a counterclockwise
sense so that we might be tempted to say that there is
another resonance at about 1650 MeV. This is similar
to the experimental curve in Fig. 1. Referring to Fig. 6,
on the other hand, we see that there are no eigenphases
passing through 90' or 270' in this region. In Fig. 7 we

plot the eigenphases for a larger coupling constant
G'/4~= 1.13. For this large coupling constant the.
resonance which was near the qS threshold has moved
far below the qlV threshold to 1395 MeV. At about
1550 MeV this same resonant eigenphase goes through
270'; it goes through 270' so slowly, however, that one
would probably not call this a resonance.

Finally we note that with a coupling constant of
G'/4m =0.91 the S-wave ~X scattering length for the
singlet state is calculated to be ate=0.25 F. This is close
to the experimental value of 0.24 F given by Hamilton
and Woolcock."

i7 J. Hamilton and W. S. Woolcock, Rev. Mod. Phys. BS, 737
(1963).

Ao ——(—1.67+0.72i) F,
Ag= (0+0.69i) F. (23)

With G'/4m =0.91 we find A|——(0.39+1.79i) F. If the
coupling constant is increased to G'/4~=0. 93, the
scattering length becomes pure imaginary, 3&= 1.92i F,
but is too large by a factor of almost 3. Comparing
Figs. 5 and 9 we see that while the resonance associated
with the gÃ threshold in the I=—,', I'=1 state gives
rise to a sharp peak in the inelastic cross section for
~X —+gX, there is no corresponding effect for the
reaction EE —qZ in the I=1, V=O state. 'In fact
there are no bumps in the cross sections of Fig. 9 even
though one of the eigenph'ases in Fig. 10 does go through
90' at 1636 MeV. The eigenphase is going through 90'

B. I=1, Y=O State

In Figs. 8—10 are plotted the numerical results for
the I=1, F=O state for the coupling constant G'/4n.
=0.91. We see from Fig. 8 that the XX scattering
amplitude is almost pure imaginary. Kim's experimental
results' for the I=0 and 1 scattering lengths for Eg are
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Fxo. ij.. The Argand diagram for
scat teHxlg ln the I= g ~ F=—j.

state for the coupling constant (2/4s
=0.91. The numbers give energies in
MeV. ThreshoMs are indicated by
particle symbols in parentheses.

very slowly, and probably one should not call this a
rcsonancc.

C. I=~, F—j State

The results for thc I=~, F=—1 state arc given in
Figs. 11—13 for Gs/47r=0. 91. As we see from Eqs. (8)
and (11) the SU(3) coefBcients are the same for this
case and for the state I=-,', V=+1 with the particle
interchanges E—+ ", E -+E. Thus the diGerenccs
between Figs. 4—6 on the one hand and Figs. ii—13
on the other hand are due to the difference between
the E and masses. From examination of Figs. 11-j.3
we see that our model predicts a —', ~ resonance at
about 1615 MCV. This resonance is essentially a bound
state of EZ, just as the resonance in the I= rs, F'=+1
state was a bound state of EZ. Note, however, that the
resonance appears just above the EA. threshokL The

threshold, which is the analog of the qE threshold
for the I=-', , 7=+1 state, is now 178 MeV above the
EZ threshold. In Fig. 14 we give the eigenphases for
some larger values of the coupling constant G'/47r. The
results here are similar to those given in Fig. 7 for the
I=~s~ F=+1 stRte. Fol this CRse phfslcal reahtg might
correspond to a larger coupling constant for which the
resonance Hes below the EA threshold.
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FIG. 12. The cross sections for elastic-m"" s"attering and for
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D. I=O, Y=O State

The dominant feature of this state is the existence of
the Fo*(1405) resonance, which is thought to be a
virtual bound state of EN which decays through the
xZ channel. ' In order to simplify the problem somewhat
we first consider a calculation involving only these two
channels. We use for a C matrix the first two rows and
columns of (9). The eigenphases and Argand diagrams
for this two-channel problem are given for several values
of the coupling constant in Fig. 15. We see from Fig. 15

that the coupling constant G'/4~=0. 91 used for the
other states is too large; it leads to a true bound state
(energy below the 7rZ threshold). This is presumably
due to the fact that only for the I=O, I'=0 state does
the strongly attractive SU(3) singlet enter [Eq. (5)j.
For the two-channel problem a coupling constant of
G'/4m= 0.68 leads to an eigenphase which goes through
90' at 1413 MeV. The corresponding mZ cross section,
given in Fig. 16, has a peak at 1408 MeU. The singlet
scattering amplitude for the EN channel turns out to
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Fzo. 15. On the left are plotted the eigenphases for the I=0, Y=O state with just two coupled channels, mZ, EÃ. On the right are
plotted Argand diagrams for ~Z scattering in the I=0, I'= 0 state. The curves leave the unitarity circle at the EE threshold, 1435 MeV.

be Ao= (—1.49+0.97i) F, which is to be comps, red with
the experimental value given in Eq. (23).

In addition we give in Fig. 15 some results for smaller
values of the coupling constant such that the resonance
is in the neighborhood of the EE threshold. The be-
havior here is quite different from that discussed in
connection with I= ', , I'=+1 state —in Sec. 2a. In
particular there seems to be no possibility of obtaining
a resonance above threshold in the two-channel
problem. If the coupling constant is decreased so as to
push the resonance above threshold, then the eigen-

phase no longer goes through 90'. To obtain a resonance
above threshold as in Sec. II.A, it seems to be necessary
to have a bound state in a higher-mass coupled channel.
Another difference between the two- and the four-
channel problems has to do with the discontinuous

jump in the eigenphases. In the four-channel problem
of Sec. II.A this jump occurs when the resonance crosses
the threshold. For the two-channel problem (Fig. 15)
there is a cusp in one of the eigenphases at the threshold.
As the coupling constant is increased, this cusp moves

up. VVhen it reaches 180' there is a discontinuous jump
in the eigenphases. For the problem represented in Fig.
15 this occurs for a coupling constant of about G'/4m.

=0.74 (not shown in Fig. 15); for this value of the
coupling constant the eigenphase crosses 90' at 1382
MeV.

In Figs. 17—20 we give the numerical results for
the four-channel problem in the I=O, I'=0 state with
the full 4&&4 matrix of Eq. (9). We give results for
two values of the coupling constant, G'/4m =0.56 and
G'/4n =0.91.The smaller value of the coupling constant
accounts in a reasonable way for the Fo*(1405).
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FzG. 16. The cross sections for elastic 7i-Z scattering and for the
reaction xZ —+ KS in the I=0 state for the problem with just two
coupled channels, mZ, KN. G'/4' =0.68.

The eigenphase goes through 90' at 1409 MeV and
the singlet KÃ scattering length turns out to be
Ao= (—1.41+0.51i) F, which is to be compared with



Fn. 17. The Argand dia"
grams for mZ scattering in theI=0, F=0 state for thoro
diferent values of the coupling
constant (solid curve, G'/4s
=0.91; dashed curve, 8'/kr
=0.56). The numbers give
energies in MeV. Thresholds
are indicated by partide sym-—)ypgKg) bols in parentheses.

the experimental value given in Eq. (23). For the larg«
value of the coupling constant this resonance has moved
below the mZ threshold to become a bound state. Cor-
respondingly the phase shift in Fig. 20 starts from 180'
at the mZ threshold.

On the basis of qualitative considerations one would
expect to find another resonance in addition to the
Vs*(1405) in the I=O, F=O state. There is a large
diagonal element in the E channel in Eq. (9) and we
would thus expect a bound state in the K" channel to
yield a resonance just as a bound state in the EZ
channel led to a resonance in the I=sr, V=+1 state.
For the smaller coupling constant G'/4m = 0.56 this does
not happen; there are no further resonances in Fig. 20
in addition to the one identified with Fs*(1405).For the
larger coupling constant G'/4ir=0. 91 there is an addi-
tional resonance. One of the eigenphases goes through
270' at 1630 MeV and there are corresponding indica-
tions of resonance in the Argand diagram of Fig. 18 and
the elastic-cross-section curve in Fig. 19.

There is experimental evidence for a resonance with
these quantum numbers in the work of Berley ef, at. '
These workers discovered the resonance in the reaction
ElV —+ gA, where it causes a sharp rise and fall in the
cross section ~(KX—riA) near threshold with a peak
value of about 1.0 mb. Ke do not find such a sharp rise
and fill in the cross section as calculated in the model

studied in this paper; instead there is a gradual rise to
a value of about 0.4 mb. For the coupling constant
G'/4ir =0.91 the calculated resonance lies at 1630 MeV
according to Fig. 20. This is 34 MeV below the gA
threshold. By decreasing the coupling constant we can
move the resonance above the threshold. For a coupling
constant G'/4~r=0. 88 the eigenphase goes through 90'
at 1677 MeV, which is 13 MeV above the gA threshold
and close to the value given for the resonance energy by
Berley el, al.9 Otherwise the eigenphase curves are very
similar to those shown in Fig. 20 for G'/4rr=0. 91. The
cross section o (ElV ~ tiA.) is almost the same for the
two cases G'/4+=0. 88 and G'/4+=0. 91. There is no
sharp rise and fall of the cross section such as is
found experimentally and in our model calculation for
o (i' —+ AS).

IG. CONCLUSlONS

VVe have studied a simple model for the 5-wave
scattering of the pseudoscalar-meson octet by the
baryon octet. The actual physical Inasses of the
particles are used, so that the SU(3) symmetry is broken
and the problem becomes one involving coupled chan-
nels. By making drastic approximations in the kine-
matics and the potential we obtain a problem which in
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FIG. 18. The Argand dia-
grams for EX scattering in the
I=0, F=0 state for two
diGerent values of the coupling
constant (solid curve, G j4s
=0.91; dashed curve, G'j4s.
=0.56). The numbers give
energies in MeV. Thresholds
are indicated by particle sym-
bols in parentheses.
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a reasonably convenient way is exactly soluble, albeit
numerically.

We find that it is relatively easy to produce S-wave
resonances in this coupled-channel model with only
Yukawa potentials. These resonances are more or less
complex examples of virtual bound states of the type
discussed by Dalitz and Tuan' —a bound state in a
higher-mass channel gives rise to a resonance in a
coupled lower-mass channel. In the example discussed
in the first part of Sec. II.D there are only two coupled
channels; the bound state in the higher-mass channel
gives rise to the resonance in the lower-mass channel.
In this example the resonance can only appear below
the threshold of the higher-mass channel. In the example
of Sec. II.A there are four coupled channels —xlV, q.V,
KA, EZ in order of increasing mass. The resonance
seems to be due to a bound state in the highest mass
channel, EZ. For the interesting choice of the coupling
constant this resonance appears near the gS threshold
and by varying the coupling constant can be made to
appear above or below the threshold.

The model is so crude that we can hardly expect a
good fit to the experimental data. In addition to all the
kinematic simplifications, we have considered only
vector-meson exchange and have included only the
channels involving one pseudoscalar meson and one
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FIG. 19.The cross sections for elastic-EN scattering and for the
reactions EN —+~X, EN-+gA, EN —+K in the I=O state for
G'/kr =0.91.
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baryon. Clearly there are important corrections due to
baryon exchange, (7rm.) exchange, 2+ octet exchange and
other coupled channels such as baryon —vector-meson
and three-body channels. Nonetheless there is a strong
qualitative similarity between the predictions of the
model and experimental fact. As me have seen in Sec.
II.D it is quite easy to account for the F'0*(1405). In
Sec. II.A me seem to have produced a theory of the
1Vq~q (1570) in which it is to be quaHtatively understood
as a bound state in the EZ channel. We also And a
resonance in the I=O, Y=O state close to the qA. thresh-
old, although the calculated cross section a (EX~ gA)
does not have the sharply peaked character found
experimentally and associated with the Vo*(1670).'

Finally the model predicts a *resonance at about 16I5
MeV. The model does not yield a resonance in the I= ].,
V=O state. Although one of the eigenphases goes
through 90' in this state, it goes through so slovenly that
there are no bumps in the cross sections. In a model in
which the SU(3) symmetry is so badly broken we should
not be surprised if there are some missing members in
the SU(3) multiplets.
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