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Regge Poles in Resonance Production*
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The theory of Regge trajectory exchange is applied to the high-energy production of meson and baryon
resonances. The helicity representation is used for the production amplitudes. The predictions are compared
with experimental data on production of the Ã~(1238) nucleon resonance by pions and kaons, and a]so
the production of the f0 and p mesons by pions. The energy dependence of the differential cross sections is
found to be consistent with the Regge-pole exchange model. Values for the p, A2, and m trajectories are de-
termined. The p and A2 values are compared with those determined by analysis of elastic and charge-
exchange scattering data. The m trajectory values have not been determined in other reactions, but they
are consistent with the known general properties of Regge trajectories. The spin density matrix elements
are not strongly restricted by the theory, but the predictions that can be made are also consistent with
experiment.

I. DtTRODUCTION AND SUMMARY
OF RESULTS

I
'HE predictions of the Regge-pole exchange model

have been compared with data on elastic scat-
tering of strongly interacting particles at high ener-
gies."The success of these predictions does not provide
a very stringent test of the theory, however, since at
least Gve poles are needed, and there are a large num-
ber of fI"cc parRIQctcrs to bc determined. A better test ls
provided by meson-nucleon charge-exchange scat-
tering, " ' in which conservation laws severely limit
the number of poles which can be exchanged. Successful
predictions are also made for g production by pions, '
meson-nucleon and nucleon-nucleon total cross sec-
tions, ~ and pion-nucleon backward scattering. s Another
class of reactions in which the number of exchanged,
poles is restricted is the production of meson and baryon
resonances in quasi-two-body events.

A large quantity of data is becoming available on
resonance pl oductlon CI'oss scctlons Rt laboI'Rtory
energies from 2 to j.o GeV. There are two features which
characterize almost all of these reactions. The 6rst is a
diGraction peak in the differential cross section, favoring
smaB moInentum transfer between the incoming meson
and meson resonance, and the target baryon and baryon
resonance. The second general feature is the energy
variation of the production cross section, which rises
from zero at threshold to a maximum at about, g—3
GcV, and then decreases with energy above this point.
The object of this paper is to compare these data with
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the predictions of the Regge-pole exchange model, Rnd
to determine the Regge trajectory parameters where
possible. A comparison of these parameters with those
determined from elastic and charge-exchange scattering
provides a further test of the Regge-pole model.

Section II is devoted to the Regge-pole formalism for
particles with arbitrary spin. Using the helicity repre-
sentation, the high-energy behavior of production
amplitudes is deduced, and the dominance of the Reggc-
pole terms is established. In Sec. III, data on the reac-
tions m.++p~srs+E*, E++p~Es+E*, sr +p~
fs+ts, and sr++p-+ p++ p are compared with the pre-
dictions of Regge-pole exchange. Values for the p, A2,
and + Regge trajectories are determined. Some useful
kinematical relationships, along with properties of
helicity amplitudes and Regge-pole terms, are presented
ln Rn appcndlx.

The main conclusion of this analysis is that the energy
dependence of the differential cross sections for meson
and baryon resonances in a quasi-two-body reaction is
consistent with the exchange of a small number of
Regge trajectories. The trajectory parameters can be
determined from the experimental data, and the values
obtained are consistent with those found by analysis of
elastic and (I:barge-exchange scattering. The require-
ments imposed on the spin density matrix elements are
not as stringent as those imposed by single-particIe
exchange, hut their energy variation {or lack of it) is
well reproduced, and their values are consistent with
those restrictions. The main assumptions and results are
summarized below.

Assumytions

(1) The hellclty amphtudes fol resonance production
can be written as single dispersion relations in either
energy or momentum transfer.

(2) The partial-wave amplitudes have simple poles
which move with energy in the complex angular mo-
mentum plalM.

(3) There are no fixed poles in angular momentum.

(4) If cuts in angular momentum occur, their con-
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tribution to high-energy cross sections is either negligible
or indistinguishable from that of a single pole at some

position.
(5) The partial-wave amplitudes satisfy a certain

symmetry relation (the Mandelstarn symmetry) which
allows the pole terms to dominate the high-energy
amplitudes for all trajectory values.

gies, but the ~ contribution growing in importance as
the energy increases. The model is also supported by the
results for p' production, due to x exchange alone. The
extrapolation of the pion residue function to the physi-
cal pion pole again requires rapid variation. The values
and energy variation of the spin density matrix ele-
ments are in agreement with exper~me~t. .

Results

(1) The production of X*(1238)by pions can be ex-
plained by p Regge trajectory exchange. The trajectory
values obtained are consistent with those found by
analysis of elastic and charge-exchange s-p scattering.
Since the helicity amplitudes all have the same phase,
a relationship is predicted for the spin density matrix
elements, and this is in agreement with experiment. The
energy variation of the matrix elements is small, also
in agreement with the Regge trajectory exchange
theory.

(2) The production of N* by kaons can be explained
by a combinatior of p and E trajectory exchange, with
the E exchange contributing the major part. To separ-
ate the p contribution, exact SU(3) symmetry was
assumed for the pxm. and pEE couplings. The trajectory
values determined for the R agree with those from elastic
and charge-exchange scattering results, except in the
small momentum transfer region, where the kinematical
approximations are less accurate. The spin density
matrix element predictions are the same as above, in the
approximation of E. trajectory dominance, and are
consistent with experimental values.

(3) The production of the f' by pions can be explained
by the exchange of a x Regge trajectory alone. The tra-
jectory values obtained are negative and can easily be
extrapolated to go through the square of the pion mass
at zero angular momentum. There are no other values
with which to compare these, since the small trajectory
value indicates that pion exchange may be neglected in
elastic scattering. An extrapolation of the pion residue
function reveals that a rapid variation is necessary for
agreement of the Regge exchange amplitude with the
6eld-theoretic amplitude at the physical pion pole. The
spin density matrix elements are in agreement with the
limited data available.

(4) The production of p mesons by pions can be ex-
plained by a combination of x and au trajectory ex-
change with the ~ contribution dominant at low ener-

H. REGGE-POLE FORMALISM

The starting point for the examination of the high-
energy behavior of the s-channel reaction 2+8-+
C+D is the partial-wave expansion of the amplitudes
for the 1-channel reaction A+(; -+ 8+D. In the helicity
representation of Jacob and Wick, ' this is

M igi5 .is in (1)x)

where the X's are the particle helicities, ) =Kg—Xg,
X'=) ~—X~, I, is the square of the center-of-mass energy,
x is the cosine of the angle between particles A and C,
A ~q„ir,,inin(t) is the partial-wave amplitude, and
d~ii (x) is the rotation coefficient for total angular mo-
mentum J'. The factor (—1)"—"' is taken out so that the
d~), ), functions agree with the phase convention of
Andrews and Gunson. ' It is assumed in the following
that X)

~
X'~, but the results can easily be extended to

other values by using symmetry properties of the rota-
tion coeKcients. ' The next step is the continuation of
the 3~ and d~ functions to complex values of J, and the
use of the Sommerfeld-Watson transformation to con-
vert the J sum into an integral in the complex J plane,
This development is essentially the same as that of
Calogero, Charap, and Squires. "

The d~), ),. functions can be continued through their
connection with the hypergeometric function (see
Appendix). The continuation of the partial-wave ampli-
tudes is de6ned in analogy with the Froissart-Gribov
continuation. ""The orthogonality of the d ),),. is
used to invert (1). For simplicity, we abbreviate
Xg) g by X and X~Xg) by X'.

iv(1) = 3fi,i (/&*)d~gy (x)Ch.

%e now put in analyticity through the assumption

(1+a (x+x')is 1 a) (x—x')/s

3Ei i~ (1,x)=
~

k 2 2 ) x
(3)

' M. Jacob and G. C. Wick, Ann. Phys. (N. ~.) 7, 404 (1959).
'0 M. Andrevrs and J. Gunson, J. Math. Phys. 5, 1391 (1964)."F. Calogero, J. M. Charap, and E. J. Squires, Ann. Phys. (N.Y.) 25, 325 (1963).
"M.Froissart, La JoHa Conference on Strong and Weak Interactions, 1961 (unpublished).I V. N. Gribov, Zh. Eksperiin. i Teor. Fiz. 41, 667 (1961); 41, 1962 (1961) )English transis, : Soviet Phys.—JETP 14, 47g (1962);

14, 1395 (1962)g.
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When (3) is inserted into (2), the integral over x can be done immediately, and yields

00

A~), ) (t)=—
z0

1+s {x+v)/2(1 s (x-v)/s
A'» (t,~(s))

~

— e'~v(s)ds
2 E 2

00 1+s (&-) ')/2 1—s) Q+) ')/s

+(—1)~ "— A "» (t,u(—s)) e~)„),(s)ds, (4)
7I zQ 2 2 i

where the eJqq. are rotation coeKcients of the second kind, and we have used

e'» (-s)=-(-1)' "e') v(s) (Sa)

i Mg&, i{t,x)x
i

— ' 0.
(g) ~co

(Sb)

This implies that the weight functions in {3)must be bounded by x ", and since e~),), (x) is bounded by x ~ ',
we see that the integrals in (4) converge for J)n. Subtraction terms in the dispersion relation (3) do not contribute
to A~» (t) for J)n. Of interest for the Sommerfeld-Watson transformation is the large J behavior of the partial-
wave amplitudes. Asymptotically, e~),),.(x) e-'~/J'/' as

~ J~ -+~, where e)0 for x) 1. In terms of s and t, g can
be written as

2t(g /1I122 /lIB2I)+(t+MAQ ~C2){t+~B2 JtIID2)

[(t—M g' —Mc')' —kg'Me'j'/2[(t —Me' —Mi)')' —4''Mg)')'/2

for J—X integer. If the dispersion integrals are to converge with a finite number of subtractions, M». (t,x) must be
hounded by a power of x as )x~ —+~,

For t) to (t-channel threshold), it can be shown that x) 1 for s)0, x& —1 for m&0, provided that (cV~'—Mq')
X (Men —3f/)') )0. This last condition, by our convention (1), is true for elastic scattering and resonance produc-
tion, so that the partial-wave amplitudes A~q), (t) are bounded by a decreasing exponential for large

~
J~. The

factor (—1)~—)' is not convergent as Imj -+~, so that two separate continuations must be defined, and the con-
cept of signature is introduced. If we define A+» (t,J) by Eq. {4)with the factor (—1)~ ~ replaced by ~, then

A+» (t,J)=A~q), (t) for J—X even integer,

A ),), (t,J)=A~), ), (t) for J—X odd integer.

It is then convenient to define two functions d+), ),.(x,j) by the relation

d+),), (x,j)=-,'[d~), ), (x)ad~), ), (—x)1.

The partial-wave expansion (1) can then be written

3fyy~{t x)= (—1)" "' Q (J+q)[A+»~(t&J)d+)y~(x J)+A»1(t J)d»1(x J)j.
J

The 3+ and d+ functions are in a form suitable for the Sommerfeld-Watson transformation:

N

M» (t,x)=(—1)" "' P (J+-', )A~));(t)d». (x)

(—1)" "' dj(J+-', ))r
[A+~):(t,j)d+) .-), (—~, J)+A ),), (t,j)d )„),(—~, J)], (10)

2)ri c sin)r(J —X)

where E—1&a&X, with n defined by (Sb), and the contour C consists of the line ReJ=E+—, and an infinite semi-
circle in. the right-half J plane. The A+), ), (t,J) have no singularities in J for J)n, and the d+» (—x, J) have no
singularities in J except for branch points in the region —)«J&A.—1, which is outside the contour. For large

~ J~, d~),), (x) e')'~~~/J'/' where cos0=x. Since A+),q (t,J) is bounded by e '~/J'/' we see that the integral is
bounded by a decreasing exponential as

~
J~ ~~, in the region 0&8&)r and t&to, the physical t-channel region.

Thus the semicircular part of the contour integral vanishes, and the only contribution is along ReJ= E+s. Next,
the contour is pushed to the left in the J plane to ReJ= —~. We assume that in the region ReJ&n, the partial-
wave amplitudes A+),),.(t,J) have only simple poles in Jwhich move with energy, the Regge poles. The position of a
pole is denoted by a(t), and the residue by P+» (t). The factor 1/sin)r(J —X) has poles at integer J—X. The terms
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from J=) to J=Xcancel the 6rst part of the originalpartial-wave sum. The remaining terms from J=o to J=X—1
give terms proportional to d~), ), (x). However, for integer J—X in the range X'&J&X—1, d~)), —=0, so that only the
terms from J=0 to J=X —1 remain. The branch points in the d~qq functions are now included in the contour of
integration. However, these occur only in the normalization factors (see Appendix), and the same factors appear in
the partial-wave amplitudes due to the e~ function. These branch points cancel, and the only singularities left
are 6xed poles in J for integer J—X, at positions J=—e&X —1, where e is zero or a positive integer. Since, by
assumption, 6xed poles are not permitted, restrictions must be placed on the continuation of the partial-wave
amplitudes. These are of the form

gath the above assumptions, the hclicity amplitudes may be written as

P+),), (&) X'—1

(—1)"' "My), (/, X)= —sr p (n+ 22) -d+y, ), (—X, n) p(J+—-2')A~), ), (/)d~), ),.(X)
Regge poles Sins" (G—X) J=O
Rt.r). & —-',

1 ~'" dJ(J+-', )
[A+),g (/, J)d+), , ), (—x, J)+A ),), {/,J)d ), );( x, J')]. (1—2)22;,„sin2r(J—X)

d~y), (x) — - x~ R'~+i~ '
j~) -moo

(13)

The region of interest is the high-energy region of the
s channel, which corresponds to large negative x and
small negative / Since . the representation. (12) was
proved valid only in the physical t-channel region, it
must be continued to negative t. This can be done either
by dispersion relations'4 or by using a slightly different
representation for the partial-wave series. "The result
is that the Regge-pole terms have the same form in the
negative t region, while the remaining terms are slightly
different.

The representation (12) is suitable for continuation to
large x= cos8 also. As x becomes l.argc, cos8 acquires an
imaginary part which enters in the integral term of
(12) as expImO~ReJ~, and since ReJ= ——', and fixed,
the integral converges independently of Im8, or x. The
large-x behavior of the d~), ),. function is

which grows larger as ReJ decreases. In this region, the
integral term becomes more important and cannot be
neglected compared to the Regge-pole terms, since
RcNQRCJ. The polIit at which the lIltcgIal tcllIl ls
bounded by the smallest power of x is precisely at
ReJ= —2. However, the values of some Regge tra-
jectories are certainly less than zero in physical regions
of interest, and the approximation of neglecting the
integral term becomes worse and worse as 0. decreases,
no matter what the value of x. Hence it is desirable to
find a representation for the helicity amplitudes for
which the Regge-pole terms will dominate for all values
of 0.. Such a method has been devised by Mandclstam"
for spinless particles, subject to a symmetry property
in J of the partial-wave scattering amplitudes, which he
proved for potential scattering. We propose to extend
this method to particles with arbitrary spin.

We use the relation between the e~qq. and d~q-

functlOnS:

d~),), (x)
' 1

(14) sinir(J —X) 2r cos2r(J—X)d~), ), (x) x ~~+
~ *.

l*l ~~

unless J is real and satisfies —X'+-2'+
~

J+-',
~

=—I, in
which case

For the terms in (12), the Regge-pole terms are bounded
by x '~, the integral term by x ' ' and the sum by
x "', where X'&1. The Rcgge-pole terms will then
dominate over the other terms for large values of

~ x~,
with the terms with largest Rco. the most important.

An examination. of (13) reveals why the contour
integral was stopped at ReJ= ——,', rather than at some
more negative value. For RCJ& ——,', we have

g J&&, (X) X
—ReJ'

i~t

~4H. Cheng and R. Nunez-Lagos, Nuovo Cirnento 26, 177
(&962}.

"A, Q. Sarker, Nuovo Cimento 30, 1298 (j.963}.

The e~),), (x) function has an. asymptotic behavior of
x ~ ' for all J, so it is useful to use it rather than d~),q.
in the contour integral. We de6ne a function g+), ), (x,J)
in an analogous manner to the d+),), (x,J). We start
with {9)for the helicity amplitudes, and add and sub-
tract the expression

J
( 1)J—)

X[A g~(/. , J+-,')e ~, ) (—x, J+'2)], {16)

1' S. Mandelstam, Ann. Phys. (N. V.}19, 254 (1962}.
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W11C1'C a SuIIHnatjon OVC1 0'=+ ls 1IllpllCd. Uslllg (15) WC COIIlbllle pR1't Of 'tllC Slllll With 'tllC ol'lglnal tC1'111 1I1 (9)
and write the result as a contour integral:

J+1
(—1)"' '~»(tz)= 2 (J+k)A'»(t)d'»(*)+2 (—1)'-"A»(t, J+-', )C l l(—z, J+-', )

1 (J+-,')dJ ~ J+1
A»(t, J)'-»(-z, -J-1)-Z (-1)»A.»(t, J+!).', v(-., J+-:). (»)

271 $ o cosgr(J —X)

Tllc contribution frolll thc infinit semlcjrclc agajn vsnjshcs for tO't0 and —1(g(+.1 Now thc con'tour R't

ReJ= X+—,
' is shifted to the left to ReJ =I., where we allow I(—2I. ~e again assume that the only sjn~jarjtjcs

of the A» (t,J) are Rcgge poles, and tllat the fixed Poles due to the normalization factors of tile rotation coefjlcjents
are cancelled by zeros in the continuation of the partial-wave amplitudes. The poles of 1/cos~(J —y) y'vc terms at
haH-integer values of J—X. Using

c'lv( —z)=(—1)" "'c' l l(z)

we partially combine these terms with the subtracted summation (16) to obts jn

(~+2)
(—1)"' "M'» (t,x) = P+» (t)~+ I,), (—*,—~—1)

a«&& cosvr(n —X)

1 z+'" dJ(J+-', )
A'lv(t, J)e' x,v(—*,—J—1)

2zi I, ; cosz(J—X)

(—1)~-l'
+ Z (J+1)A'lv(t, —J—$)e+ l, I (—z, J+-', )

J—m(L, )—r/2

( 1)J'—l
(J+1)A'lv(t, J+g)~ x, v(—*,J+-', )

-+II,I—y (J+1)(-»'-"& ",-'(-*,J+!)I:A"'(t,J+-:)-(-1)"-'A - (t, -J--;»
+e-., ~ {—*,J+-:)LA-» (t, J+-', )—(—1)"-"'A+».(t —J——,')j) (19)

Where E(I.) is the smallest half-integer (or integer) greater than I.if X and X' are integer (or half-integer), and the
upper and lover signs are for X and ) ' either integer or half-integer.

&he ].ast terlns are zero if the partial-@rave amplitudes are symmetric under the interchange J+-+ —J—t for
half Integer (unphysical) values of J—X, which is obviously a generalization of the Mandelstam symmetry for po-
tential scattering:

A+» (t, J+~)= (—1)" "'X
A+» (t, —J—23) for J', X, X' integer

A+» (t, —J'—$) for J, X, Y half-integer.

If this is true, the first summation in (19) can be shown to be zero also. The final form for the helicity amplitudes is

(~+4)
(—1)v-liV„.(t,z)= p — p+». (t)e+ l,v(—z, n 1)——

n«&z cos7r(Q —X)

1 +'" dJ(J+ )
A»(t, J)c' ),v(—*,—J-1)

2zi I;„cosz(J—X)

(J+1)
(—1)' "A» (t, J+k)s ~.-~ (—*,J+2) (21)

J'—&(L)—&/2
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Using the large-J behavior of A+),). and e+),), , we see
that the in6nite sum converges for t& to, independent of
x, since ImJ=O for all terms. The integral along the
line ReJ= I also converges independently of x, as did
the previous integral for 1.= ——,'. Thus {21) is an
appropriate form of the helicity a,mplitude to continue
to large x.

The region of interest is x —& —~ with t negative.
The extension of (21) to negative t will be assumed valid

just as for (12). Here we examine the large-x behavior.
For x real, the Regge-pole terms give a contribution
proportional to xa' for all a. The integral term contains
8 ~ ~ for Re1=I, so that it ls bounded bp x~. The sum
has terms which are bounded by x ~ '~', where J takes
on values —E(L)—~~ to ~. Since E(L) is the largest
half-integer (or integer) greater than I, the largest
power of x entering the sum will be less than J. Since
the Regge-pole terms have Ren&L, they will dominate
the amplitude for large x, even for negative values of
Reo.. The effect of moving the contour to the left is to
cancel the part of the d~),),. function which was pro-
portional to x-R'~ for negative ReJ, provided that the
generalized Mandelstam syrnrnetry (20) is true.

In calculating cross sections from the helicity ampli-
tudes, it is convenient to factor out a term which is
independent of helicity. This is done by expressing the
rotation coefBcients in terms of hypergeometric func-
tions and using various relations for their manipula-
tion. The results are tabulated in the Appendix. Here
we give the form of the result appropriate for x real
and less than —1, for integer helicities. If +&0, we
use (21) and write

e+ ~,, (—x, —n—1) [1+a-'.~--'~j

cos~(n —X) 2 sins (n—X)

I'(~+5)
(—2x) F» (n,x), (22)

s'i'I'(a+1)

where the helicity-dependent terms F),),. are expressed
as polynomialo in 1/x and n, a hypergeometric function
F(—n/2, (1 n)/2, —', ——e, 1/x'), and its erst derivative
with respect to 1/x'. This form is convenient for high-

energy approximations, since as x —+ —~, E~q. ap-
proaches a constant, so that the only energy dependence
left is contained in the (—2x) term. If n) 0, we use

(12) and write again

—z.d+), g. (—x a) [1+i, ' &

g
sine(n —X) 2 sins (n—X)

as for 0.&0, but also some additional terms. These
terms involve polynomials in iz and 1/x, plus the
hypergeometric function F(1+a/2, ~+iz, iz+$, 1/x')
and its 6rst derivative, a11 multiplied by a factor
tanya( —2x) '~~. It is this factor which makes (12)
unsuitable for trajectory values less than —~~, but for
n) 0 it is a small correction as x~ —op. Using (22) or
(23), the Regge-pole terms in the helicity amplitudes
can be written in the same form for aB n, remembering
that F» (n,x) is dined differently for positive and
negative n:

—kgqg
p+»'(/) =

(MzMriMoMg))'I'

W Q

&+» (&), (25)

where the square root of the product of the masses is an
arbitrary but conventional scale factor. %e can com-
bine this factor with x and write

2x&,q, =s—~o(&),

P(ie+ e) [1~e-ie(e—x)j
~( 1)x-v

Regge poles g I'(a+1) 2 sinn (a—g)

XP+» (~)(—2x)-«V„.(,x).

There are two more simpli6cations to make before
using the helicity amplitudes to calculate cross sections.
One is to make the signature factor [1+@ 'e'e "&)/
2 sins(n —X) independent of helicity. For integer X,
it can be written as [i,' ' &(—1)"g/2 sinn+. Recall
that the functions p+» (t) are residues of partial-wave
amplitudes which were continued from even or odd
values of J—X. It is convenient to rede6ne these ampli-
tudes so that the ~ refers to continuation from even or
odd J values, independent of helicity. This is accom-
plished by leaving the de6nition as it is for even X,
but for odd X, redefining p+». (t) =—p+» (t). Then the
signature factor and residue function can be written as
P+»'(~)[1&~ ' j/2 sinmn for all helicities, where the
+ now refers to Regge poles occurring in partial-wave
amplitudes continued from even or odd values of J.
Then the terms due to a given Regge trajectory with
de6nite signature occur with the same factor in every
helicity amplitude.

The second simpli6cation involves absorbing the I,

dependence of the factor (—2x) into the residue func-
tion. This will exhibit the energy dependence explicitly.
We define new residue functions E+».(/) by the equation

I"(~+I)
X {—2x) F» (a,x), (23)

s'I'I'(a+1)

where now F».(n, x) for n) 0 contains the same terms

so(t) =My'+Msm

(i+Md' —Mo') (t+Mii' Mgg)—
(27)

2f
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The helicity amplitudes then become G(t), and write

I'((r+-,s) 1ae '

&egge po)es )r t P((r+ 1) 2 sin)ra

s ss(t) ~ (o
X&+rv(t)F) ), (~,~)I (28)

k(3fgMrrMoMr)) ')'

s—s()(t) (()

{M M M Mn)'ts/

do G(t)
r

dt '-" (s M—g' M~—')'—4M~'Mr)'

(31)

The amplitudes are now in a form suitable for the
derivation of the differential cross section for the
s-channel reaction. Trueman and Kick'~ have formu-
lated crossing relations for helicity amplitudes. The
crossing matrix involves products of rotation coefB-
cients, but because of their orthogonality and complete-
ness, they do not appear in the spin-averaged di6eren-
tial cross section. With the normalization factors
included, the differential cross section can be written
ln terms of the f-channel hellclty amplitudes Rs

80' ru2M)
dt 16rrf(s M~' Mn—s)' 4M—g'Mr)'7—

2 IM~»-. , ),»n(t, &) I

' (2~)
(2gg+1)(2'+ 1) ve

where the product of masses appears for fermions only,
Rnd Sg Rnd Sg Rre the splns of lnltlR1 particles 3 Rnd B.

If one Regge-pole term dominates the amplitude, we
can use (28) and (29) and write the differential cross
section as

rr;(2M;)do

dt 64L(s—M~' —M))')' —4M''M))'7

(rl'{n+-,s))' cot'
xI — —

I 1+ -',~n
Er(~+1)) tarP

s ss(t)—l 2a(t)

xI
((M~)r )rc)ra)") (25~+))(2s +))

XQ I (—1)"-"'R+),), (t)J'),), ((r,x) I
', (30)

where cot2 or tan' is used for even or odd signature,
and we must remember that. the )X' indices on the resi-
due functions actually indicate dependence on the
llldlvlduRl particle helicities, XgXgXgA~.

We can examine the high-energy limit of the cross
section from (30). This region is reached by letting
s —+~, x —+ —~, t 6nite and negative. I'rom the
Appendix, we see that as x ~ —~, the functions Fqq
become approximately independent of x, and only de-

pend on f, through their 0. dependence. We can then
combine RD of the t-dependent factors into one function

'" T. L. Trneman an(i G. C. Wick, Ann. Phys. (N. Y.) 26, 322
(I9M).

The energy dependence of the diGerential cross section
is determined by the trajectory value n(t) in the high-

energy limit. The validity of the one-Regge-pole
approximation can be checked and the trajectory values
can be determined from the experimental values
of d(r/dt.

The single-pole formula (31) predicts that the de-

pendence of in{I (s—M~' —Ms')' —4M~'Mn'7d(r/dt}
on lnLs —s,(t)7 at constant t shouM be linear with a
slope 2n(t). This method will be used in the next section
to check the Regge-pole hypothesis and determine tra-
jectory values for some resonance production reactions.
However, it must be remembered that (31) holds only
in. the limiting case where IxI is sufficiently large to
allow the energy dependence of the Pq), . functions to be
neglected. Calculations for various reactions show that
for the presently available energies most of the x values
for resonance production reactions are not large. Also,

I xI =1 in the forward direction for all resonance pro-
duction reactions, independent of energy, so that there
is a region around the forward direction which must be
excluded from consideration if the approximate formula

{31) is to be used. For these reasons, the exact form

(30) must be used in most applications.
There have been some objections to using the Regge-

pole formula when x is not large. '8 The argument is
that when x is not large enough to use high-energy
approximations, then it is not valid to assume the
dominance of the Regge pole with the largest trajectory
value over other Regge-pole terms and the background
integral. However, it has become obvious that even in
elastic scattering, where the high-energy approxima-
tions are certainly valid for the individual Regge-pole
terms, all known poles must be included to get reasona-
ble agreement vrith experiment at the presently availa-
ble energies. %e therefore do not assume the dominance
of one pole in the resonance production reactions, but
consider contributions from all poles which may be
exchanged. A simpb6cation occurs, since conservation
laws (isospin, G parity, parity, strangeness, etc.) limit
the number of poles which can be exchanged, and for
resonance production reactions, this sometimes reduces
the number of poles to just one or two. As for the back-
ground integral, if we assume the generalized Mandel-
stam symmetry (20), the contour integral may be
pushed as far to the left as desired in the complex J
plane. Then, its contribution may be made as small as

rs V. Barger and D. Atkinson, Nnovo Cimento 38, 634 (1965).



~«) g) ~,Xgm, ~~& X~Xg&, Xgm'
XgXB'Aa

PtR9$

) gX~XgXD

4

(
il'f xiii', xgig )

(32)

From this, we can see that the diagonal elements p
give the fractional contribution of certain helicity ampli-
tudes to the differential cross section. The experimental
values are used to determine the ratios of the residue
functions, and the energy dependence of the differential
cross section then only depends on the trajectory value.
Note that the density matrix value is needed only at one

"D.Z. Freedman and J.-M. Wang, Phys. Rev, Letters 17, 5N
(1966)."K. Gottfried and J. D. Jackson, Nuovo Cimento 33, 309
(1964).

desiied for any Izl)1, if all Regge poles inside this
larger contour are included.

. Recently, Freedman and Wang" have resolved the
problem of the Reggc expansion for backward scat-
tering of unequal-mass particles, , in which the cosine
of the crossed-channel scattering angle is bounded by
unity for all energies. They found that the correct
expression is given by the leading term alone, propor-
tional to s, and that the remaining terms are cancelled
by contributions from a family of "daughter tra-
jectories, " whose zero intercepts occur at n(0) —1,
n(0) —2, etc. A natural extension of this idea to
1Mllclty Rmplltudes ls to I'ctaln 'thc klncIDRtlc fRctoI's
&(1+x)/2]"+'&~', but replace the hypergeometric func-
tion in the d i,i (x) by the leading term, proportional
to s ".This still has the s dependence in the limit of
large x, but for small x it will diRer from the exact
form of (30).However, for the reactions considered here,
'this dlRcI'cncc ls not vcI'y slgnlficant. It will bc dis-
cussed along v|tith the individual reactions.

When the exact form (30) for the cross section is
used, the determination of the trajectory values from
experiment is not as easy as before, since now there is
additional energy dependence in the F),), functions.
Each of these functions is multiplied by an unknown
residue function Rii,.(t), so that for the energy de-
pendence to be known, the relative magnitudes of the
residue functions for diRerent helicity values must be
determined. The relative magnitudes of the residue
functions for diRerent helicities determine the state of
polarization of the final particles, and this polarization
is measured in resonance production by observing the
angular distribution of the decay products. The ex-
perimentally determined quantities are the elements of
the spin density matrix for the resonance, p

Thc useful rclRtlon foI' Rcggc-pole RppllcRtlons %as
derived by Gottfried and Jackson, "who found that if
the spin density matrix is measured. in the rest frame of
the produced resonance, it can be simply expressed in
terms of the helicity amplitudes for the crossed-channel
reaction. If the resonance is particle C, then the con-
nectloIl ls

energy, since the residue functions are independent of
energy. Once they are fixed and the trajectory values
determined from the differential cross section, the energy
dependence of the spin density matrix elements is
predicted.

The actual method used to determine the trajectory
values from experiment is the same as in the case where
the approximate form was valid, except for the com-
plications arising from thc 0! dependence of tlM Fgy~

functions. To get around this, an iteration technique
is used, in which 0, is first determined from the approxi-
mate formula (31).This value is 'then used in the Fyij
function, and a ncw value is determined from the energy
variation of the differential cross section due to the
(—2x) factor. This new value is used in the Fii, func-
tion, and the procedure repeated until the trajectory
values converge. Since the main energy variation is in
the (—2x) factor, and the Fi,i functions are correc-
tions for small x, this procedure converges rapidly,
usually requiring less than ten iterations for a 1/o agree-
ment between input and output trajectory values.

ir++ p —+ ir'+ )V*~+,

K~+p ~K'+S*~+.
(33a)

The distribution of the xo or Eo is peaked in the for-
ward direction, indicating the dominance of a peripheral
interaction. We examine the crossed-channel reaction
to determine what particles might be exchanged:

ir+(K+)+m'(K') ~p+E*++. (34)

For reaction (33a), we note that the m+ir' system has
isospin I=o, 1, or 2, zero baryon number and strange-
ness, and positive 6 parity. The E+Eo system has
isospin I=0 or 1, zero baryon number and strangeness,
but arbitrary 6 paritv. The pE* system has isospin
I= 1 or 2, which rules out isospin zero exchange.

For parity considerations, we write the helicity
state of the pX system as

~
JXihn), where Xi is the p

helicity (+-,') and X~ is the X* helicity (&i~, —,'). From
the Appendix, we see that the parity operation produces

y~g), )i,} PsP~, ( 1)z s,—s~
~

J ), ),}
= —(—1)~~Z—)„—),}.

For the two-pion or two-kaon states, all helicities are
zero, so that

P
i

27r }= (—1)~
i
2ir),

E)KK}=(—1)~~KZ),

(36a)

(36b)

III. COMPAMSON WITH EXPEMMENTS

Baryon Resonance Production

Thc best know'n bRlyon resonance ls 'thc 3—3 plon-
nucleon resonance X*(1238).It is produced in a large
flRctloIl of thc slnglc-pion production events jIl x' Rnd E
meson-nucleon reactions wraith lab momentum from
2—8 GeV/c:
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p trajectory values ~p ( t ) vs t

0i'+

The exchanged particle must have quantum num-
bers I=1 (or 2), B=S=O, I'= (—1), and G=+1 for
reaction (33a). Among the well-known particles, only
the p meson satisfies these restrictions. For reaction
(33b), the G parity can. either be + or —.From the
Appendix, for the EE state to couple to a particle and
conserve G parity, we must have G= (—1)r+s. This is
satisfied by the p and also the A2 resonance, which is
presumed to lie on the E. trajectory.

Assume now that the partial-wave helicity ampli-
tudes have poles at the positions of these trajectories,
and denote the residues by R21,1,1212(t). For reaction
(33a), only the p is exchanged, so we have

s2—

From rr'+ p rr' + N" analysis

F3'p ( t ) = (.62 + . I I ) + (,56 + .55) t

Phillips 8 Rarita
vip charge exchange

o Logan

dg' 3f3f*

dt 16[(s—M' —ps) '—4Mspsj

/~(-, +l) '
[1+t '( ./2)3

I'(u, +1)

-.5
I

4
l

.2
t (GeV/c)~

FIG. i. p trajectory values. where

ps —&2——',(M2+M*'—~)q
2- &o

xI I x„(3s)
p(MMe) '~2

and if parity is to be conserved, the intermediate par-
ticle must have parity P=(—1)s. If we denote the
t-channel helicity amplitudes by ()114IMsIi), where i
is the initial 27'- or EEstate, parity conservation requires

()tr)t2IMsii)= —(—)tr —X2IM I
2). (37)

This reduces the number of independent amplitudes
from 8 to 4.

&0=&112I&00I '
+(~1,—1 +~13 ) I

F10 I ++1,—3
I Fsoi ~ (39)

In these formulas, M is the nucleon mass, p, the pion
mass, M* the Ã* mass, cr, (t) the p trajectory value, and
the F),), are functions of n, and s defined in the Appendix.

The spin density matrix elements for the S* de-
cay are

p33=
2~»2I ~101 2+2&1.-32I F»

I

'
(40)

—
—2,%3&1, 1I&10I'+-2'&1, &11IF20IIFooi

Rep3 (41)

2+13+11+0(&10Foo) 2+1,—3+1,—1+e(F10 F20)
Repag —— (42)

Data on reaction (33a) exist at pion, lab momenta of
1.6,"2.75,"3.5,"4.0, ' and 8.0"GeV/c. Analysis of the
values of the cosine of the t-channel scattering angle for
this reaction shows that the functions are independent of

"A. Daudin, M. A. Jabriol, C. Kochowski, C. Lewin, S.
Mongelli, A. Romano, and P. Waloschek, Phys. Letters 7, 125
(j.963).

22 Saclay-Orsay-Bari-Bologna Collaboration, Phys. Letters 13,
34& (&964).

"M. Abolins, D. Carmony, D. N. Hoa, R. L. Lander, C.
Rindgfleisch, and N. H. Xuong, Phys. Rev. 136, B195 (1964).

'4 German-British Collaboration, Nuovo Cimento 34, 495 (1964).
~' Aachen-Berlin-CERN Collaboration, Phys. Letters 19, 608

(1965);D.R.O. Morrison and S. Novrak (private communication).

s to a good approximation. Then the function E„is only
a function of t, and a simple analysis to test the Regge-
pole hypothesis is possible.

From (38), we see that the dependence of
ln[(s —M' —p')' —4M'p'] on ln[s —iu' —-'(M'+M*' —1)j
at constant t should be linear with a slope of 2n, (t'j.
This method was applied to the data, and the trajectory
values found by the least-squares fit of a straight line.
The linear formula was found to fit the data at all
energies except the lowest (1.6 GeV/c), which evidently
is too low for the Regge-pole theory to be valid. The
trajectory values were determined as a function of t
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FIG. 2. Differential cross sections for the reaction m++P ~ m'+E*.

for —0.5&/& —0.05 (GeV/c)', and the results are
shown in Fig. 1.The error bars were computed from the
statistical uncertainty of a straight-line 6t to the data,
and do not take into account possible errors in the data
itself. The trajectory can be paranMterized by a linear

formula,

u, (t) =0.62+0.11+(0.56+0.35)&.

The p trajectory values have also been determined
from an analysis of s p charge-exchange scattering, and
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I'j:G. 3. Differential cross section for (a)—(d): 7I-++P ~ ~'+lv* (e)—{g):E++P ~ E'+E*.

the results of Phillips and Rarita' and Logan' are shown
in Fig. 1 for comparison. It is seen that the trajectory
values agree quite well. However, the more recent re-
sults of Hohler et u/. 4 indicate that the slope of the p
trajectory is larger. Their linear fit gives n, (t) =0.57
+0.91t, which agrees with the 1V* results in the small t
region but disagrees for t) 0.3 (GeV/c)-'. This—dif-
ference can be reconciled by including the statistical
errors for the E~ production data in the error limits for
the trajectory values. Since the data points for this t
region are due to events which number typically less
than ten Lsee Figs. 2 and 3(a)], the error limits on the
trajectory values can be expanded enough to be com-
patible with the new charge-exchange results.

The unknown function of t, E„is determined by
fitting the angular distribution at 8.0 GeV/c. Within
experimental errors, it is found to be consistent with a
constant, for —t&0.05 (GeV/c)'.

$,(t) = 2.3a0.3 mb. («)

The observed dip in the forward direction requires a
decrease in the residue function. However, in this
region the asymptotic form of the Fq),. function is not
valid. From (39) and the Appendix, we see that three
of the four independent helicity amplitudes vanish in
the forward direction, so that a minimum in this
region can easily be produced with constant residue
functions. These same three amplitudes also vanish
when the trajectory value is zero, and should produce
another minimum at this point. ' "There is some evi-
dence of this minimum for the low-energy data at
t= —0.5 (GeV/c)', which is in the region where the p
trajectory seems to go through zero.

The calculated differential cross section is compared
with the data in Fig. 2, and again on a logarithmic scale
with the experimental errors indicated in Fig. 3(a). It
is seen that the calculated values are within the ex-
perimental error limits for all cases, with the worst fIt

"L.-L. Wang, Phys. Rev. Letters 16, 756 (1966).



being at 3.5 GeV/e, where they are consistently higher
than the data points. This is due to the relative dip in
the production cross section at this energy. The re-
ported value is 0.20~0.04 mb, compared with the
2.75 GeV/c value of 0.30+0.03 mb and the 0.29+0.03
mb value at 4.0 GeV/e. If the cross ~ection actually does
have this structure, rather than decreasing with in-

creasing energy everywhere, a one-Regge-pole 6t with
its smooth s' energy variation cannot be expected to
fit the curve. However, this dip could easily be due
merely to a systematic diGerence in normalization for
the diferent experiments, and more accurate data are
necessary to determine the precise energy variation of
the cross section.

Thc lndlvldual I'cslduc functions must bc dctclmined
in order to calculate the spin density matrix elements.
However, since Fqo is imaginary and F00 and F20 real,
(42) reduces to

4—

&R

.2—

Repay=0. (45)

This property is not a unique prediction of Regge-pole
exchange, but depends only on parity conservation and
the fact that all helicity amplitudes have the same phase,
which is true only for a single trajectory exchange.
Combining (40) and (41) leads to the restriction

(Reps, -r)'& s p»(1 —2p»)/2.

Data at 4 and 8 GeV/c indicate that Repsi ——0&0.15,
pss=0. 2—0.4, and Reps, i——0—0.2, so that (45) and

(46) are satisfied. The energy variation is the only
unique prediction of the Regge theory. For this reac-
tion, the functions F),), are approximately independent
of energy, so that the p ~ are predicted to be energy-
independent also, which is in agreement with the limited
data available. 2~

For the reaction (33b), the differential cross section
and spin density matrix elements are given by the same
formulas as for reaction (33a) for a single Regge tra-
jectory exchange, but if two trajectories are exchanged,
the interference term must also be considered. Data on
this reaction exist at lab momenta of $ gQ '8 30"
3.5, 's s,nd 5.0" GeV/c. Examination of the kinematics
reveals that the F),), functions are approximately inde-

pendent of energy in this reaction for lab momentum
greater than 3 GeV/e and for 1(—0.1 (GeV/c)'. A
one-pole analysis was tried for data from the highest
three energies. A fairly good 6t was obtained, but the
trajectory values did not agree with the p values,
starting at about the same value in the forward direc-
tion, but decreasing with t much faster. The p trajectory

"N. Schmitz, CERN Report No. 65-24, Vol. I (unpublished).
8 S. Goldhaber, Athens Topical Conference on Recently Dis-

covered Resonant I'arHctes, edited by B. A. Munirt, and L. S.
Gallagher (Ohio University Press, Athens, Ohio, 1963), p. 92.

M. Ferro-Luzzi, R. George, Y. Goldschmidt-Clermont, V. P.
Henri, B.Jongejans, D. W. G. Leith, G. R. Lynch, F. Muller, and
J. M. Perreau, Nuovo Cimento 36, 1101 (1965)."Preliminary data on E+p interactions at 3.5 and 5.0 GeV/c.
Y, Goldschmidt-Clermont (private communication).

I I

-.2
t (GeV/c)~

FIG. 4. A& trajectory values nz(t) versus t: Data points taken
from E++p~ E0+E~ analysis. Solid line: ag(t) =0.80+3.5t
+3.5t; dashed line: Philips and Rarita, &p elastic and charge
exchange.

exchange alone cannot explain reaction (33b), and As
exchange must also be considered.

A partial separation of the two contributions may be
accomplished if we assume SU(3) symmetry for the
pm. 7r and pEE couplings. In order to preserve charge
conjugation invariance, the coupling of the p octet to
the mz and EE octets must be pure F type. "Then there
is a unique relation between the coupling strengths:

gp~~ = 2gpxlt." ~
2=') 2

The residue functions for p exchange in reaction (33b)
can then be calculated from those determined for (33a).
The squared term in the cross section was calculated
from Jtr, (1), and found to contribute only 2 to 20%%u~ of
the experimental cross section. The smallness is due in

part to the factor of 2 in (47), and the remainder to the
diGerence in cose values arising from the x-E mass
dlGerence.

Thc lntcl fcI'cncc tcIm dcpcnds on pI oducts of
individual residue functions, and hence cannot be cal-
culated directly. An upper limit can be calculated, using
the Schwarz inequality and the phase difference of the
amplitudes. Since the p and A2 trajectories have opposite
signature, the interference term will be proportional to

Re(1—e+'~~p)(1+e ' s) sin(trAn/2), (48)

where An=o, p
—0,~. Using the trajectory value of the

A2 from charge-exchange scattering, the interference

"H, Lipkin, Phys. Letters 7, 221 (1963).
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term was estimated, resulting in an upper limit of 15%
of the experimental cross section. Thus if Regge-pole
exchange is to explain reaction (33b), the main con-
tribution must come from the E. trajectory.

The single-pole analysis was redone, with the con-
tribution from p exchange subtracted out and the inter-
ference term neglected, and again a fairly good 6t
obtained. The trajectory values are shown in Fig. 4,
along with the R trajectory from charge-exchange

scattering. ' The two agree quite well, except at small
momentum transfer. In this region, however, the z
values are the smallest, and the high-energy approxima-
tion the least accurate. The sum of the squares of the
residue functions Eg(t) Lthe analog of E, for reaction
(33a)], was determined by 6tting the angular distribu-
tion at 3.5 GeV/c. It has a sharp minimum around
t= —0.35 (GeV/c)'. This is due to the "ghost" pole of
the even-signature 8 trajectory at o;=0, which must be
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Meson Resonance Production

Here we consider the production of the 2m resonances
p and fo by pion-nucleon interactions. The f' is pro-
duced in the equivalent reactions

and
or +p~ fo+n, (soa)

or++n —& f'+ p. (50b)

In the crossed reaction, or+ f~p+n, the intermediate
particle must have isospin I=1, negative G parity, and
zero strangeness and baryon number. Of the known
mesons, only the A2 and the or (also the A1 if it exists)
have these quantum numbers.

Let the orf state be represented by IP), where P is the
helicity of the f, and the pn state represented by I X1X2),
where Xl is the p helicity and) 2 the e helicity. Then the
requirement of parity conservation for the t-channel
helicity amplitudes asserts

&».IM'IP&=-& —~ —~.IM'I-P&. (»)
If we further specialize to intermediate states with
parity P= (—1)s (the R trajectory), we have

(~,~, IMs IP)= —(~,~, IM'I —P), (s2)

which means that all P=o amplitudes are zero. From
the Appendix, we see that G parity conservation at the
p e vertex brings in no additional restrictions.

For the other case, P= —(—1)~, and we have

P&= &~1~2IM'I —
P& (53)

compensated by the vanishing of the residue function
at this point. The function 1Va'(t) =Ps(t)/(na(t))2 is a
much more slowly varying function:

S12'(t) = (5.0&0.3)X10'—(9.1&0.9)X10't mb. (49)

The calculated differential cross sections are com-
pared with the data in Fig. 5, and again on a logarithmic
scale with error bars on. the data in Fig. 3(b). The cal-
culated values fit the data within errors, except at the
lowest energy and at low momentum transfer as ex-
pected, where the approximate Regge formula is not
valid. It is seen that the disagreement of the trajectory
values at low momentum transfer is caused by the
flattening of the 3. 0- GeV/ cdifferential cross section in
the forward direction, which makes the trajectory
values rise rapidly. It is possible that this effect is due
merely to the high-energy approximation, but without
the knowledge of the individual residue functions, an
exact calculation cannot be performed. A determination
of the forward differential cross section at higher
energies is necessary to resolve this point.

The relations for the spin density matrix elements (45)
and (46) are now only approximate, since with two-
trajectory exchange, the phases of the individual residue
funcI;ions vary with the relative contribution of each
trajectory. However, the limited data available'~ are
consistent with these restrictions.

(a) or Trajectory Exchange

8I (s M2 p2)2 4M2p2)

F(+-,') '
X — L1+COto(orco/2)]

I"(n+1)

t
s—M2 —-', (t 2+m&2 —t)~'. tn

jV, (56)
M(t1mf) "'

+w R2, 11 I P20I +Rl, ll I Plol +2R0 11 I Pool '~ (5&)

poo= 2R0,11'IPool '/&~,

p11= 2R1,11'I P»l '/&~ ~

p22=-', (1—2p11—poo),

Pl,—1 Pll p

Rep10 ——2R1,11'R0,11' Re(E10*P00)/& .

(58a)

(58b)

(58c)

(58d)

(58e)

(h) A1 Trajectory Exchange

do M2

8L(s M2 p2) 2 4M2p2]

I'(~+2)) '
X

I
L1+tan'( /2) j

I'(n+1))

(
s M' ,'(t12+—mr 2 —t)-—

M (t1mr) '12

&~=2R2, 1 1'(I&2, rl'+ IP21I')+2R0, 11'IProl'

+2R1,1 1'(I&1,-1I '+ I Prrl '),
(61a)poo= 2Ro1 1 IP101 /&, &—~

From the Appendix, we see that G parity conservation
at the p n vertex requires that for even I values (or

trajectory)

&l l IM'lP&= —
&
—l, —l IM'lP& (54)

&l
—llM'IP&=& —

2 -'IM'IP&=o

and for odd J values (A1 trajectory?)

(l, —llM'lP&= —
&
——:,llM'IP&

(-,'-,'IMslP&=( —',, —-,'IMslP&=0.

For these cases, the requirements of parity and G parity
conservation reduce the number of independent helicity
amplitudes from 20 to 3.

We can write the differential cross section and spin
density matrix elements for Regge-pole exchange in
terms of the trajectory values and the residue functions
for the helicity amplitudes, which we denote by
Re, 21,212(t). There are three cases to consider.
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FIG. 6. Pi trajectory valueso'. (t) versus t, from x +P ~ f'+n
analysis, n (t) = —0.08&0.07+ (0.69&0.29)t.

cannot be considered a general result. This brings in
additional complications in determining the trajectory
values from the data, since the F~), , which have different
energy dependence, are multiplied by the unknown resi-
due functions. The additional information on the ratios
of these residue functions can be obtained from the spin
density matrix elements ppo and p&r through Eqs. (58)
or (61).

The trajectory values are determined by the iteration
technique described in Sec. II. The final trajectory
values were found to be roughly independent of the
spin density matrix elements, as long as 0.8(ppp(1. 0,
which is the range indicated by experiment. The validity
of Regge-pole exchange is tested by the statistical un-
certainty in the Qt of the straight lines whose slopes
determine the trajectory values. The results are: A&

trajectory exchange converges to positive trajectory
values approximately independent of t, but with very
large errors, indicating that this exchange cannot ex-
plain the energy variation of the production cross
section.

The m trajectory exchange gives negative trajectory
values which decrease with t and have relatively small
errors. These trajectory values are shown in Fig. 6,
along with the parametrization,

»r = 4&~,r-~'(I Fr,-r I
'+ IF» I

')/&'~

p22 2 (1—2pll poo) i

(61b)

(61c)
n (t) = —0.08&0.07+ (0.69&0.29)t. (63)

».-r =k~r, r-r IF»IIFr, -r I/~'~ (61d)

(c) A& Trajectory Exchartge

The only result needed is the value of ppp,

poo=o. (62)

This prediction follows from the result that all helicity
amplitudes with zero f' helicity are zero. However, ex-
periment indicates" "that ppp is very close to its maxi-
mum value of 1, rather than being zero, so that A2
trajectory exchange must contribute a very small. frac-
tion of the total amplitude.

Data exist on f' production at pion lab momenta of
4.0, '4 6.0," and 10.0" GeV/c. Examination of kine-
matics for these energies reveals that the high-energy
approximations previously used are not at all valid,
and the energy dependence of the Fzz functions must be
considered; A comparison was made of the exact values
for Fqq. in this reaction with the L(1&x)/2]'~""' 's~~
form. It was found that the difference is less than 7%
for all s values represented by the data. This is due
mainly to the range of values of the trajectory and

32 CERN-Ecole Polytechnique Collaboration, in Proceedings of
the 12th International Conference on High-Energy Physics, edited
by Ya. A. Smorodinsky (Atomizdat, Moscow, 1966), p. 442."M. Wahlig, E. Shibata, D. Goldon, D. Frisch, and I.Mannelli,
Phys. Rev. 147, 941 (1966); D. Gordon (private communication).

'4 German-British Collaboration, Nuovo Cimento 31, 729
(&964).

10 Er,» (t)= (0.01&0.05)—(0 86&0 15).t pb, . (64)

10 6Ep, »2(t) = (0.18&0.02)—(0.92&0.09)t pb. (65)

Since the pion pole at t= p'= 0.02 (GeV/c)' is so close
to the physical region, it is tempting to try to extra-
polate the Regge formula to this point, and compare it
with the field-theoretic expression for elementary pion
exchange. In this limit, we have Fop~ 1, J'yp and
FI—& 0, o. (t) ~ 0, and 1+cot'(7m/2) ~ L2/m n'(t —p') ]',
where n' is the slope of the pion trajectory. This gives
for the extrapolated cross section

M Ro, ry (t)do
(66)

dt '"I" 16wL(s —3f'—p')' —4M'p'](n')'(t —p')'

The conjecture that this is actually the trajectory
associated with the x is strengthened by the closeness of
the zero intercept to the square of the pion mass. The
trajectory could easily go through this point if given a
small curvature, still consistent with the values
determined.

The residue functions are determined by fitting the
angular distribution at each energy and using the
average values. The calculated cross sections are com-
pared with the data in Fig. 7, and are seen to agree
quite well.

The residue functions are approximately linear in t
for the range —0.5(t& —0.05 (GeV/c)'.
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The Geld-theoreticre ic cross section is

do G2/42r

dk s- p2) 2 4~2 2p

Auuseful quantity for h . a ion isor t e extrapolation is

G' (222f)' (n') ' 162r2

4~ M2 P

From 655, we see that this
inear ehavior of E'~

iver ge
o 2,ii(t) were continued
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X
60

2
Rts, tt ( f )

VS 5 fOr 77 + P —f'+f1

90 MeV

o - I'f = 'MMeV

production by neglecting the states with helicity &2.
The contribution of the A~ or au trajectory can bc cal-
culated by using the parity conservation requirements
on t1M l-channel hellclty RIIlplltudcs fol RD Inter"
mediate particle with parity (—1)s;

(),) sIiv'Ip)= —(—),—),Its&Ip), (69)

(),),IivsIp) = —(),),ImsI —p),
vrhich reduces the number of independent amplitudes
floITI 12 to 2. Thc contI'lbutlon to thc cx'oss scctlon ls

40 Ms F(n+-,s) '

8I (s—~-'—f ')s—4~st sj 1'(~+1)

cot'(tress/2) s—Ms ——',(fis+tts ps —f) ' "'
x 1+ Ã0,

t '( /2) M(pits, )"'
(70)

O I

-.0 5 0
t

+.l +.2
-t (68V/c)'

+.4

&s-—&t,»'I &»
I
'+k~t, t-t'(IF»

I
'+ IFt,-t I

')

The spin density matrix elements are

Fio. 8.)Values of pion residue function from j' production data.

to f& —0.05 (GeV/c)'. This factor of f is expected to
appear, owing to the kinematical singularities of hclicity
RITlplltudcs foI' the mEE coupling, along with factoI's of
Lf—(1 +sr r)'?"' and Lf—(1 —~r)'1-'"- The ias«wo
factors are slowly varying in the region of extrapolation
and. can be neglected. The t factor shouM produce a
minimum in the forward direction, but if it is there, the
experimental resolution is evidently not 6DC enough to
see it. Figure 8 shows a plot of Ee, it'(f)/( —f) in the
physlcRl I'cgloD. Thc 6cld-theoretic VRluc Rt $=p ex-
ceeds the residue function in the forward direction by as
much as a factor of 10.The result is that even though the
I'cslduc fuQctlon ls R slo%'1$ varying functloD of $ In the
physical rey'. on, its extrapolation even a small distance
outside this region is extremely uncertain. Of course, a,n
exponential behavior can always be factored out of the
residue function by changing the scale factor for the
energy expansion, (s/ss) . This introduces a factor
expI 2er' ln(ss/ss')(f —ii') j.However, to make the varia-
tion of the extrapolated function negligible between
f=fis and f= —0.1 (GeV/c)s the scale factor must be
changed by a factor of about 1800, which corresponds
to ss——700 (GeV)'. This then. spoils the slowly varying
nature of the residue function in the physical region.

, Now we turn to the reaction m++p —& p++p. Since
thc Isosplll of the p ls onc, we cRD Dow hRvc lsospln zero
exchanged particles, such as the au, as well as those
allowed for f' production. Since the parity of the p and
f' both satisfy I'= (—1)s, we see from the derivation
for f' production, that the expressions for ir and At
trajectory exchange can be taken over directly to p

"L-L.Wang, Phys. Rev. 142, 1187 (1966).

(72a)

(72b)

pi,-t=(s~t, »'IFisI' —a~i, i i'IF t ilia»I)/&s, (72c)

RepIo= 0 ~

Experimental data cxlst foI' this I'cRctloII Rt ploIl 1Rb
momenta of 1.6," 2.75", 4.0, '4 and 8.0"" GeV/c.
McasurclTlcnts of poo indicate thRt It ls in thc I'Rngc
0.5-0.8. This indicates that a large part of the ampli-
tude must come from m. or AI exchange, since ce or A2
exchange gives poo

——0.
A slnglc 'tlRjcctox'y 6t %'Rs pcx'folIncd fol thc dRtR,

similar to that described for the f' case. The ratio of the
rcslduc fuDctloDs wRs determined by thc poo vRblcs Rt.

4.0 GeV/c, and the same iteration technique was used
to determine the trajectory values. The results are
similar to those for the f' case. The A i trajectory values
obtained had large statistical errors, indicating that
theyd t dq tly p e tth gy i ti
The x trajectory values had more reasonable errors,
but they did not agree with those obtained from the f'
reaction. They were consistently higher over the entire
range of momentum transfer, even being positive for
small momentum transfer. It seems that the amplitude
must contain contributions from the ~ or A ~ trajectories
as well as the vr.

Thc expression fox' thc cIoss scctlon Including 'thc x'

trajectory and either the ~ ox the A~ is just the sum of

'6 Saclay-Orsay-Bari-Bologna Collaboration, Nuovo Cimento
29, 515 (1963)."Saclay-Orsay-Bari-Bologna Collaboration, Nuovo Cimento
37, 361 (1965).

'8 Aachen-Berlin-CERN Collaboration, Phys. Letters 18, 35j,
{1965}.
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FIG. 10. Spin denSity matrix element pp0 fOr 7r++p ~ p++p.

at 2.75 GeV/c, and the contribution to the cross sec-
tion at higher energies was found to be very small
(&5%).The contribution due to m. trajectory exchange
was subtracted from the experimental values, and the
remainder was used in another single-Re gge-pole
calculation.

Since the difference is small, the percentage errors
due to the experimental uncertainties are large, and no
attempt was made to determine trajectory values from
the data. Instead, trajectory values for the ~ and A2
were taken from the elastic and charge-exchange scat-
tering analysis of Phillips and Rarita. ' The two residue
functions were determined by 6tting the data at 4
GeV/c, and the results compared with the data at other
energies through the Regge energy dependence. It was
found that the eu exchange gives a contribution whose
energy dependence fits the data better than that for A 2

exchange. The residue functions obtained were con-
sistent with R', ' '(t) =0 for the ~ exchange.

A calculation of the exact versus s ~ form of the
Fqq functions again shows that they differ by less than

0
+05 0

I I

+2

t (GeV/c)2

FIG. 12. Values of pion residue function from p+ production data.

6000— Tr +p ~ p'+n
4.0 GeV/c

5000—

7%, but that the difference for those &o and A' ampli-
tudes which were assumed to be consistent with zero is
as great as a factor of two in some cases. In any event,
the energy dependence of da/dt needs a contribution
with a(t) &0, and the co is taken as representative of this
contribution.

4
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2.75 GeV/c 4.0 GeV/c 4000-
O

,Ol
(3

~~ 3000—

P, .,
0

3.0-3.5 GeV/c 8.0 GeV/c
2000—

,2-

"2

. I .2 .3 .4 .5 .6 0 .I .2 3
-t (GeV/c)

4 .5 .6

I000—

0
0

I

~3
I

~2
-t {GeV/c)

L-L

4

FIG. 11. Spin density matrix element p&, & for ~++p ~ p++p. FIG. 13. Differential cross section for the reaction x++p —+ p'+n.
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The ~ trajectory values used were parametrized by
cx (t) =0.52+0.60t. The comparison of the two-Regge-
pole calculation (pr and &o) with the data is shown in Fig.
9. The dashed lines indicate the m contribution alone.
The spin density matrix elements are shown in Figs.
10 and 11. The only values which were adjusted to Gt
the data were ppp at 4 GeVjc; all other values are pre-
dicted by the Regge formula. The dashed lines for
p~, ~ are due to the inclusion of the small residue func-
tion E, ii(t). If it is not included, the solid lines are
predicted. The element Repro is predicted to be zero
from (58e) and (72d), and is in rough agreement with
experiment, although a small nonzero value seems to be
preferred. The measured values are —0.074&0.070 at
4.0 GeV/c '4 and —0.08&0.05 at 8.0 GeV/c"

The residue functions are again compared with the
Geld-theoretic expression at the pion pole. The same type
of derivation as for the f' case gives

TABLE I. Restrictions on helicity amplitudes
from G parity conservation.

G(—&)'

even
oc1cl

P Restrictions

even
oclcl

oc1cI
even

0&1cl

even All M2), , 2),~
——0

X,—Z4~cV
~

—Z,—Z,)

two particles. If parity is conserved, this leads to a rela-
tion between helicity amplitudes:

Rp, ii (t) G' (m,)' (n')'
96m-'I'p g~.'-"'4~ M' I',

(73)
I'gI'2

(—1)'"'-'-' P p~. ~m
~
~,~.). (A2)

4

The values are shown in Fig. 12, and again it is seen
that the function must be rapidly varying in the for-
ward direction, and the extrapolation is necessarily
very inaccurate.

One additional prediction of the Regge pole theory is
that for the differential cross section for ir +p ~ pp+I
The co trajectory cannot be exchanged in this reaction,
and isospin invariance requires that the x trajectory
contributign is twice that for the charged rho produc-
tion. Data on p' production are available at 4.0 GeVjc,"
and are compared with the predicted values in Fig. 13.
The agreement supports the previous conclusion that
m exchange is predominant at this energy.
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APPENDIX

Helicity Amylitudes

The helicity states of Jacob and Wick' are eigen-
states of total angular momentum J and the helicities
of the individual particles X& and X2. The parity opera-
tor acting on these states gives

J)„X,) P,P,( 1)z-si-sp
I J~ X,—X,), (Al)

where P~, I'2, 5~, and S..are the parities and spins of the

If, in addition, the reaction proceeds through a one,
particle state with deGnite parity 6', we have

where
(A3)

o.= —PiPp( —1)s'+s' if (P= (—1)

o'=+PiPp( 1) z sp if tp — ( 1)J

Pip
~
JXi p) = (—1)'-"

~
Jzpzi). (A4)

The rotation in isospin space just gives a factor (—].)~
for a state with total isospin T, so the result is

G~ JXikp)= (—1)rwz —PsG,C,
~
JX,X (A5)

For a Ecosystem, this implies 'that G= (—1)r+~.
For an EE system, this relation together with parity

conservation leads to restrictions on the helicity ampli-
tudes M2)„,2) „which are presented in Table I.

This leads to the result that the interference term for
exchanged particles (or trajectories) of opposite J
parity does not contribute to the spin-averaged dif-
ferential cross section, in the high-energy approxi-
mation.

Further restrictions on helicity amplitudes come from
G parity conservation, if one of the external states is a
particle-antiparticle system. Since G=ce' ~2, we are
interested in charge-conjugation properties. For a
particle-antiparticle system, charge conjugation is
equivalent to interchange of particles, and'
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Rotation CoeRcients

The rotation coeKcients of the first kind, d~q&, (s), can be continued to complex J by their relation with the
hypergeometric function'0:

I'(7+X+1)I"(J—7+1)-'/' 1+s &"+"/s 1—s " "/' F(X—J, X+J+1,X—X'+1, (1—s)//2)
d'iv(s) = (A6)

I"(J—1+1)1"(J+X'+1) 2 2 I'P, —X'+ I)

A similar relation holds for the rotation coeKcients of the second kind:

1 (I'(J+X+1)I'(J+V+1)I'(J—X'+1)I'(J—X+ 1)ji/'
s'v, (s) =-

2 1(2J+2)

p]+s -i&+x'i/2 ] s —o —v)/2 s 1
—1-v—1

x~ ) ( ) ( ) P(Jjr+1, J+5'+1, 21+2, 2/(1 —')/. (A7)

The integral relation between them is

Ch 1 t (~+&'}]' 1—t (x )'}(' 5 s ("+)'}]~ 1—z {) x'}]
d'iv(&) = 2 XX' ~ p

ys —$ 2 2 2 (2i (A8)

for J)X&
~

X'~. The final form of the rotation coefficients used in the Regge-pole calculations is obtained by using
the relations

P(abls) (1—-,) , 'P, (=s, c

I'(a+e)
Pz'+"+'F(a, b,c,s)]= s' 'F(a+a, b, c, s),

Zs I'(a)
(A10)

a 1+a s'
F(a,b, 2b, s) = (1——,'s) F —, , b+

2 2 (2—s)'

The final form of the rotation coefficients is a product of (—2s) times the function Fqq (n,s). For n&0, the func-

tion is

F&,v(a, s)= tv g"'xvF~ ——, —, s —a, —+»"'/, vF' ——, , s —~ —,

TArzz II. Expansion functions for rotation coefIicients.

j 1——

—2(1—8} 1 (2m+1) {1—z)
A+

2(1+x) (2m+1) (1+x)
C1 +

2(1+a)

cx(u —1)

(a+1){n+2)

2(2n+1}
1+

a(0.—1) a(a —1}s'
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where Ii' denotes the derivative of the hypergeometric function with respect to its argument. For 0.&O, F&,) con-
tains some additional terms which are written as

I'(u+1)- ' tann-u n 1 ) u 1 )
g~ »'F 1+ + n+ ~+a& ~»'F 1+ + +

I'(n+-', ) (n+-', ) ( 2—s)"+' 2 s'& 2 s')

The functions f», g» &"&, and hei &"& are tabulated for some small values of X and X' in Table II.
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Daughter Trajectories and Unequal-Mass Scattering*

DANIEL Z. FREEDMAN, C. EDWARD JONES, f AND JIUNN —MING WANG

Lawrence Radiation Laboratory, University of Culifornia, Berkeley, California

(Received 26 September 1966)

It has recently been demonstrated by Goldberger and Jones (I) and by Freedman and Wang (II) that
Regge asymptotic behavior obtains at high energy even in regions in which the crossed-channel cos8 variable
is constrained by unequal-mass kinematics to remain 6nite. Approaches I and II diGer, however, in other
important respects. In this note it is shown that method I can be adapted and used to prove the existence
and properties of the Regge daughter trajectories found in II. In this argument, an extra assumption
necessary in II is avoided, and the restriction o. (0) (~ found in I is eliminated.

ECENTLY two different arguments have been
given to show that the Regge asymptotic behavior

I (') is maintained in the backward scattering of
unequal-mass particles even t&ough the cosine of the
I-channel scattering angle remains small. " In both
methods the persistence of the behavior u (' is a
consequence of the analyticity of the full amplitude at
s=O, a property not shared by the individual Regge-
pole terms.

In I, dispersion relations are used to correct the
analyticity of the original Regge pole terms, whereas
in II a representation of the scattering amplitude as the
Sommerfeld-Watson transform of power series in the
Mandelstam variables I and t, called the Khuri repre-
sentation, is employed. For the asymptotic contribution
at s=0 of the leading Regge pole ap(s), both methods
find the dominant term y(0)u~P'Pi and the next domi-
nant term s 'I «" ', which has an s ' singularity not
shared by the full amplitude and which must, therefore,
be cancelled.

The main difference between I and II lies in the
mechanism by which this singularity is cancelled. In I
it is argued that the singularity is cancelled by the
background term of the Regge representation, and the
restriction np(0) & p is therefore found. In II it is argued

* Work done under the auspices of the U. S. Atomic Energy
Commission.

t Present address: Physics Department, M.I.T., Cambridge,
Massachusetts.

I M. L. Goldberger and C. E. Jones, Phys. Rev. 150, 1269
(1966); referred to as I. Also Phys. Rev. Letters 17, 105 (1966).

'D. Z. Freedman and J. M. Wang, Phys. Rev. 153, 1596
(1967); referred to as II. See also Phys. Rev. Letters 17, 569
(1966).

that the singularity is cancelled by contributions of
other Regge poles, and it is found that to eBect this
cancellation there must occur daughter trajectories
np(s), correlated with the leading or parent trajectory
by the conditions ap(0) =np(0) —k. No restriction on
the position of the leading trajectory stronger than that
of Froissart Lnamely, ap(0) &~1j is found. Mathemati-
cally there does not seem to be any u priori reason to
prefer either mechanism, but it is found in II that the
daughter trajectory mechanism is satisfied in all Bethe-
Salpeter models which Reggeize, and empirically it is
known that the Pomeranchuk trajectory violates the
constraint n(0) & p.

The analyticity of the Khuri power-series coefIicients
at s=0 is important to the argument of II. It was
made plausible there but not rigorously proved, and.
was left as an extra assumption. The purpose of this
article is to show that the existence and properties of.
the 6rst daughter trajectory can be proved without
such an extra assumption by using the techniques of I
and demanding consistency between the Regge repre-
sentation and Mandelstam analyticity in the case where
there are Regge poles to the right of Re)=~ for s=O.
In this way we eliminate the restriction n(0)&p and
asymptotic fixed powers larger than background (see I).

It is not clear how to take the Regge background
integral to the left of Rel= —

~ with this technique
because of the threshold accumulation of poles there,
and therefore the discussion of lower-lying daughter
trajectories from this point of view may be dificult.

In the treatment here we rely heavily on references
to I and II. For simplicity we follow I in assuming that


