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The theory of Regge trajectory exchange is applied to the high-energy production of meson and baryon
resonances. The helicity representation is used for the production amplitudes. The predictions are compared
with experimental data on production of the N*(1238) nucleon resonance by pions and kaons, and also
the production of the f° and p mesons by pions. The energy dependence of the differential cross sections is
found to be consistent with the Regge-pole exchange model. Values for the p, A5, and = trajectories are de-
termined. The p and A values are compared with those determined by analysis of elastic and charge-
exchange scattering data. The = trajectory values have not been determined in other reactions, but they
are consistent with the known general properties of Regge trajectories. The spin density matrix elements
are not strongly restricted by the theory, but the predictions that can be made are also consistent with

experiment.

1. INTRODUCTION AND SUMMARY
OF RESULTS

HE predictions of the Regge-pole exchange model
have been compared with data on elastic scat-
tering of strongly interacting particles at high ener-
gies.1:2 The success of these predictions does not provide
a very stringent test of the theory, however, since at
least five poles are needed, and there are a large num-
ber of free parameters to be determined. A better test is
provided by meson-nucleon charge-exchange scat-
tering,1:3~5 in which conservation laws severely limit
the number of poles which can be exchanged. Successful
predictions are also made for 5 production by pions,®
meson-nucleon and nucleon-nucleon total cross sec-
tions,” and pion-nucleon backward scattering.® Another
class of reactions in which the number of exchanged
poles is restricted is the production of meson and baryon
resonances in quasi-two-body events.

A large quantity of data is becoming available on
resonance production cross sections at laboratory
energies from 2 to 10 GeV. There are two features which
characterize almost all of these reactions. The first is a
diffraction peak in the differential cross section, favoring
small momentum transfer between the incoming meson
and meson resonance, and the target baryon and baryon
resonance. The second general feature is the energy
variation of the production cross section, which rises
from zero at threshold to a maximum at about 1-3
GeV, and then decreases with energy above this point.
The object of this paper is to compare these data with
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the predictions of the Regge-pole exchange model, and
to determine the Regge trajectory parameters where
possible. A comparison of these parameters with those
determined from elastic and charge-exchange scattering
provides a further test of the Regge-pole model.

Section II is devoted to the Regge-pole formalism for
particles with arbitrary spin. Using the helicity repre-
sentation, the high-energy behavior of production
amplitudes is deduced, and the dominance of the Regge-
pole terms is established. In Sec. ITI, data on the reac-
tions wt+4p— w'+N* K+4p— KHN* 7+p—
f*+n, and 7t4-p — pt+4-p are compared with the pre-
dictions of Regge-pole exchange. Values for the p, 45,
and = Regge trajectories are determined. Some useful
kinematical relationships, along with properties of
helicity amplitudes and Regge-pole terms, are presented
in an appendix.

The main conclusion of this analysis is that the energy
dependence of the differential cross sections for meson
and baryon resonances in a quasi-two-body reaction is
consistent with the exchange of a small number of
Regge trajectories. The trajectory parameters can be
determined from the experimental data, and the values
obtained are consistent with those found by analysis of
elastic and charge-exchange scattering. The require-
ments imposed on the spin density matrix elements are
not as stringent as those imposed by single-particle
exchange, but their energy variation (or lack of it) is
well reproduced, and their values are consistent with
those restrictions. The main assumptions and results are
summarized below.

Assumptions

(1) The helicity amplitudes for resonance production
can be written as single dispersion relations in either
energy or momentum transfer.

(2) The partial-wave amplitudes have simple poles
which move with energy in the complex angular mo-
mentum plane.

(3) There are no fixed poles in angular momentum.

(4) If cuts in angular momentum occur, their con-
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tribution to high-energy cross sections is either negligible
or indistinguishable from that of a single pole at some
position.

(5) The partial-wave amplitudes satisfy a certain
symmetry relation (the Mandelstam symmetry) which
allows the pole terms to dominate the high-energy
amplitudes for all trajectory values.

Results

(1) The production of N*(1238) by pions can be ex-
plained by p Regge trajectory exchange. The trajectory
values obtained are consistent with those found by
analysis of elastic and charge-exchange 7p scattering.
Since the helicity amplitudes all have the same phase,
a relationship is predicted for the spin density matrix
elements, and this is in agreement with experiment. The
energy variation of the matrix elements is small, also
in agreement with the Regge trajectory exchange
theory.

(2) The production of N* by kaons can be explained
by a combination of p and R trajectory exchange, with
the R exchange contributing the major part. To separ-
ate the p contribution, exact SU(3) symmetry was
assumed for the prm and pKK couplings. The trajectory
values determined for the R agree with those from elastic
and charge-exchange scattering results, except in the
small momentum transfer region, where the kinematical
approximations are less accurate. The spin density
matrix element predictions are the same as above, in the
approximation of R trajectory dominance, and are
consistent with experimental values.

(3) The production of the f°by pions can be explained
by the exchange of a = Regge trajectory alone. The tra-
jectory values obtained are negative and can easily be
extrapolated to go through the square of the pion mass
at zero angular momentum. There are no other values
with which to compare these, since the small trajectory
value indicates that pion exchange may be neglected in
elastic scattering. An extrapolation of the pion residue
function reveals that a rapid variation is necessary for
agreement of the Regge exchange amplitude with the
field-theoretic amplitude at the physical pion pole. The
spin density matrix elements are in agreement with the
limited data available.

(4) The production of p mesons by pions can be ex-
plained by a combination of = and w trajectory ex-
change with the = contribution dominant at low ener-

12\ OFN)/2 11— g\ A=A /2
() ()]
2 2

9 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
10 M. Andrews and J. Gunson, J. Math. Phys. 5, 1391 (1964).
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gies, but the w contribution growing in importance as
the energy increases. The model is also supported by the
results for p° production, due to 7 exchange alone. The
extrapolation of the pion residue function to the physi-
cal pion pole again requires rapid variation. The values
and energy variation of the spin density matrix ele-
ments are in agreement with experiment.

II. REGGE-POLE FORMALISM

The starting point for the examination of the high-
energy behavior of the s-channel reaction 4+4+B—
C+D is the partial-wave expansion of the amplitudes
for the ¢-channel reaction A+C — B-+D. In the helicity
representation of Jacob and Wick,? this is

My peamo(t,x)

=(=1D¥> i +AN oz mp®dw(x), (1)

J=\

where the N’s are the particle helicities, A=X\4—N\g,
N'=\g—M\p, tis the square of the center-of-mass energy,
x is the cosine of the angle between particles 4 and C,
A% oot is the partial-wave amplitude, and
d’y (%) 1s the rotation coefficient for total angular mo-
mentum J. The factor (—1)* is taken out so that the
d’» functions agree with the phase convention of
Andrews and Gunson.!® It is assumed in the following
that A>|)\’|, but the results can easily be extended to
other values by using symmetry properties of the rota-
tion coefficients.’ The next step is the continuation of
the A7 and d” functions to complex values of J, and the
use of the Sommerfeld-Watson transformation to con-
vert the J sum into an integral in the complex J plane.
This development is essentially the same as that of
Calogero, Charap, and Squires.!

The d7)\ functions can be continued through their
connection with the hypergeometric function (see
Appendix). The continuation of the partial-wave ampli-
tudes is defined in analogy with the Froissart-Gribov
continuation.'® The orthogonality of the d7 . is
used to invert (1). For simplicity, we abbreviate
M4Mg by N and Agh\p by N

1
AT\ (t) = My (t,x)d")\y (x)dx .

-1

2

We now put in analyticity through the assumption

J £

© Ao(s(z) 1 2 Anw(tu(—2))
—_—dzt+— —_—dz

2+x

0 32— T J a*
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When (3) is inserted into (2), the integral over x can be done immediately, and yields

2 142\ OFV/2 /1 o\ O=A)]2
A== / A*’w(t,s(z))(——) (—~) e (&)ds
™ J 20° 2 2

2 o 12\ AM)12 /] oy OFAD 2
(1) / A“th(—z))(—;—) (—;) @z, (4)
T J 2%

where the e’y are rotation coefficients of the second kind, and we have used
eMw(—2)=—(=1)""e’y - (2) (52)

for J—N\ integer. If the dispersion integrals are to converge with a finite number of subtractions, M (¢,x) must be

bounded by a power of x as |x| — o,
]M)‘)‘r (t,x)x‘“] I-:I::: 0. (Sb)

This implies that the weight functions in (3) must be bounded by x>, and since e’y (x) is bounded by x—/—1,
we see that the integrals in (4) converge for J>a. Subtraction terms in the dispersion relation (3) do not contribute
to A7\ (f) for J>a. Of interest for the Sommerfeld-Watson transformation is the large J behavior of the partial-
wave amplitudes. Asymptotically, e’y (x)~e//JY2 as | J| — o0, where >0 for > 1. In terms of s and £, x can

be written as
2t(8- M 42— M3p%)+ (H—MAZ‘— Mc2) (If+MBz—MD2)

x= . 6)
[(t_~ MA2__MC2)2__4MA2M02]1/2[(t_MB2__MD2)2__ 4MB2MD2:|1/2 (

For 1>1y (f-channel threshold), it can be shown that #>1 for s>0, x<—1 for #<0, provided that (M 42— M ¢?)
X (M p2— M p?) > 0. This last condition, by our convention (1), is true for elastic scattering and resonance produc-
tion, so that the partial-wave amplitudes A7 (f) are bounded by a decreasing exponential for large |J|. The
factor (—1)7~ is not convergent as ImJ — <, so that two separate continuations must be defined, and the con-
cept of signature is introduced. If we define A%\, (3,J) by Eq. (4) with the factor (—1)7—> replaced by ==, then

At J)=A7(F) for J—X even integer, (7a)
and
AWt J)=A%\(@#) for J—X\ odd integer. (7b)
It is then convenient to define two functions d¥,) (x,J) by the relation
dEawe (@, ) =3[d7w (2)£d7 s v (—%) ] 8)

The partial-wave expansion (1) can then be written
My (tx)= (=1 2 (J+3)[AHw @G)d e (6, ])+ A7 () d e (v,) ] ©)
T=\
The A% and d* functions are in a form suitable for the Sommerfeld-Watson transformation:

M (tx)= (=1 JZI:")‘(J +35A 7w @)d e (x)

(=1 dJ (437
- /c sinzr(J—N\)

omi EA+)\)\’ (tyj)d+7\.—)\'(—x: ])+A_)\)\’(t7])d_)\,—)\’(_x: J):I ’ (10)
™

where N—1<a< N, with a defined by (5b), and the contour C consists of the line ReJ=N-+3% and an infinite semi-
circle in the right-half J plane. The 4%.(4,J) have no singularities in J for J>a, and the d*\\(—x, J) have no
singularities in J except for branch points in the region —A<J<\—1, which is outside the contour. For large
[T], 7\ (x)~eflimil/J12 where cosf=x. Since A (4,J) is bounded by e~¢//J'/2 we see that the integral is
bounded by a decreasing exponential as |J| —, in the region 0<6< and #>f,, the physical {-channel region.
Thus the semicircular part of the contour integral vanishes, and the only contribution is along ReJ=N+3%. Next,
the contour is pushed to the left in the J plane to ReJ=—%. We assume that in the region ReJ<e, the partial-
wave amplitudes A%,,.(¢,J) have only simple poles in J which move with energy, the Regge poles. The position of a
pole is denoted by a(f), and the residue by S+ (f). The factor 1/sinw(J—N\) has poles at integer J—A\. The terms
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from J =X\ to J= N cancel the first part of the original partial-wave sum. The remaining terms from J=0to J=A—1
give terms proportional to d7»y (x). However, for integer J—A in the range N'<J<A—1, d/,»=0, so that only the
terms from J=0 to J=X\'—1 remain. The branch points in the d”,,, functions are now included in the contour of
integration. However, these occur only in the normalization factors (see Appendix), and the same factors appear in
the partial-wave amplitudes due to the e function. These branch points cancel, and the only singularities left
are fixed poles in J for integer J—N\, at positions J=—n=\—1, where % is zero or a positive integer. Since, by
assumption, fixed poles are not permitted, restrictions must be placed on the continuation of the partial-wave

amplitudes. These are of the form

o 123\ QN2 /1 g\ OFN) /2
[ () () enmtusmo. 1)
20 2 2
With the above assumptions, the helicity amplitudes may be written as
, B () N1
(VMo (tr)=—7 2 (atg)———d5 v(—x,0)— X (J+5HAT W (0)d (%)
Regge poles smﬂ-(a— A J=0
Rea>—3%
1 e gr(J+1)
—— [Atw (@ T)d v (=, I+ A (G D)d v (=, J)]. (12)

21 ) i sinw(J—N)

The region of interest is the high-energy region of the
s channel, which corresponds to large negative x and
small negative ¢ Since the representation (12) was
proved valid only in the physical {-channel region, it
must be continued to negative £. This can be done either
by dispersion relations!* or by using a slightly different
representation for the partial-wave series.’® The result
is that the Regge-pole terms have the same form in the
negative ¢ region, while the remaining terms are slightly
different.

The representation (12) is suitable for continuation to
large = cosf also. As ¥ becomes large, cosf acquires an
imaginary part which enters in the integral term of
(12) as expIm@|ReJ|, and since ReJ=—3% and fixed,
the integral converges independently of Imé, or x. The
large-x behavior of the d7,\ function is

d7w (%) l—l—) xlReJHH—4 (13)
unless J is real and satisfies —\'+i+4|J+3|=—n, in
which case

d7 v (x) g xR (14)

For the terms in (12), the Regge-pole terms are bounded
by xR®e, the integral term by x~'/2, and the sum by
x7V, where M>1. The Regge-pole terms will then
dominate over the other terms for large values of |x|,
with the terms with largest Rea the most important.

An examination of (13) reveals why the contour
integral was stopped at ReJ= —1, rather than at some
more negative value. For ReJ<—1, we have

dJ)‘)\, (x) —_— x~—ReJ’
|z] >0

( & H) Cheng and R. Nunez-Lagos, Nuovo Cimento 26, 177
1962).
1% A. Q. Sarker, Nuovo Cimento 30, 1298 (1963).

which grows larger as ReJ decreases. In this region, the
integral term becomes more important and cannot be
neglected compared to the Regge-pole terms, since
Rea>ReJ. The point at which the integral term is
bounded by the smallest power of x is precisely at
ReJ=—1. However, the values of some Regge tra-
jectories are certainly less than zero in physical regions
of interest, and the approximation of neglecting the
integral term becomes worse and worse as « decreases,
no matter what the value of #. Hence it is desirable to
find a representation for the helicity amplitudes for
which the Regge-pole terms will dominate for all values
of a. Such a method has been devised by Mandelstam?!6
for spinless particles, subject to a symmetry property
in J of the partial-wave scattering amplitudes, which he
proved for potential scattering. We propose to extend
this method to particles with arbitrary spin.
We use the relation between the e/y» and d7y

functions:

a7 (x) _ 1
sinzr(J—\) o cosw(J—N\)
X[eMw @) —e 7 v (®)].

(15)

The e/y\(x) function has an asymptotic behavior of
x~7~1 for all J, so it is useful to use it rather than d7\\
in the contour integral. We define a function ety (x,J)
in an analogous manner to the d+.(x,J). We start
with (9) for the helicity amplitudes, and add and sub-
tract the expression

v J+1
ORISRV

J———()\ T
X[A a')\)\,(t, J+%)eﬂ)\,—)\’(_— X, J+%):| ’

16 S, Mandelstam, Ann. Phys. (N. Y.) 19, 254 (1962).

(16)
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where a summation over o= is implied. Using (15), we combine part of the sum with the original term in (9)
and write the result as a contour integral:

N N J4+1
(= VMM ()= JZ;(J +3) AT (Od (%) + Zx ——(=1)72 (@, T+3)eN v (—x, J+3)
= B

1 (J+3)dJ » J+1
—— | —————Awt e an(—x, —T—=1)— 2 ——(=1)" Mo\ (t, T+3)er v (—=, T+3). (17)
271 J ¢ cosw(J—X) J=\ T

The contribution from the infinite semicircle again vanishes for i># and —1<x<-41. Now the contour at
ReJ=N-13 is shifted to the left to ReJ =L, where we allow L< —1. We again assume that the only singularities
of the A% (1,J) are Regge poles, and that the fixed poles due to the normalization factors of the rotation coefficients
are cancelled by zeros in the continuation of the partial-wave amplitudes. The poles of 1/cosw(J—X\) give terms at

half-integer values of J—A\. Using
ehw(—2)= (=15, n(2), (18)

we partially combine these terms with the subtracted summation (16) to obtain

(a+3)
(=DM MOw ()= 2 ———BhaDetan(—x, —a—1)
Ree>L cosT(a— A

1 Lt gr(J+3)
+— ———— AW ()" A (—x, —T—1)
271 J 1—iw cOST(J—N)

1 (—1)77V
+ T DA, — T~ Dot (5, TH)
J=—A\—1 b
) (— 1)'[—)‘

(+DAw(E, T+3es v (—2, T+3)

J=—N(L)-1/2 T

N3 (J+1)
= (=1)7Neb o (=, THDLADw (, THD) = (= 1PV A, =T =)

Fenn v (=x, JHDAW(E TH)— (D VATW (@, —T =T}, (19)

J=\ T

where N(L) is the smallest half-integer (or integer) greater than L if A and N’ are integer (or half-integer), and the
upper and lower signs are for N and )\ either integer or half-integer.

The last terms are zero if the partial-wave amplitudes are symmetric under the interchange J <> —J—1 for
half-integer (unphysical) values of J—\, which is obviously a generalization of the Mandelstam symmetry for po-
tential scattering:

Axn (@, —J—%) for J, A N integer
Al T+ = (-1 | 20)
AF s (t, —J—3) for J, A\ N half-integer.

If this is true, the first summation in (19) can be shown to be zero also. The final form for the helicity amplitudes is

(atd)
(VMM ()= 2 *'—(i—ﬂiw Betanv(—x, —a—1)
Rea>L COST (@— A

1 r+e dT(J+3)

+— ————A (@) e v (—x, —T—1)
2w L—ic0 COS7I'(] -_ )\)
© J+1)
- (=174t T+Derr-v(—2, J+3). (21)

J=—N(L)—1/2 T
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Using the large-J behavior of A*\\ and e, we see
that the infinite sum converges for ¢> {,, independent of
%, since ImJ=0 for all terms. The integral along the
line ReJ=L also converges independently of #, as did
the previous integral for L=—%. Thus (21) is an
appropriate form of the helicity amplitude to continue
to large ».

The region of interest is x — — o with ¢ negative.
The extension of (21) to negative ¢ will be assumed valid
just as for (12). Here we examine the large-x behavior.
For x real, the Regge-pole terms give a contribution
proportional to x®e# for all . The integral term contains
e~J~1for ReJ =1L, so that it is bounded by #L. The sum
has terms which are bounded by x~7—3/2, where J takes
on values —N(L)—% to «. Since N(L) is the largest
half-integer (or integer) greater than L, the largest
power of x entering the sum will be less than L. Since
the Regge-pole terms have Rea> L, they will dominate
the amplitude for large x, even for negative values of
Rea. The effect of moving the contour to the left is to
cancel the part of the d7/y\ function which was pro-
portional to x~ReJ for negative ReJ, provided that the
generalized Mandelstam symmetry (20) is true.

In calculating cross sections from the helicity ampli-
tudes, it is convenient to factor out a term which is
independent of helicity. This is done by expressing the
rotation coefficients in terms of hypergeometric func-
tions and using various relations for their manipula-
tion. The results are tabulated in the Appendix. Here
we give the form of the result appropriate for & real
and less than —1, for integer helicities. If <0, we
use (21) and write

[1£eim@N]

et av(—x, —a—1)

cosm(a—\) i 2 sinz(@—N\)
Kt ePala), (22)
—(—2x)* \@,X) ,
72T (a1) s

where the helicity-dependent terms Fy are expressed
as polynomials in 1/x and e, a hypergeometric function
F(—a/2, (1—a)/2, 3—a, 1/x?), and its first derivative
with respect to 1/x2 This form is convenient for high-
energy approximations, since as x— —o, v ap-
proaches a constant, so that the only energy dependence
left is contained in the (—2x)* term. If @>0, we use
(12) and write again

—wdEN v (— X, a) [1:I:e"""(“""):|

sinm(a—X\) " sinr(a—X\)
I(at3)
2 (—2x)eFa(r), (23
X1r1/2I‘(a+1)( %) Faw(ex), (23)

where now Fyv(e,x) for >0 contains the same terms
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as for <0, but also some additional terms. These
terms involve polynomials in @ and 1/x, plus the
hypergeometric function F(14a/2,i+a, a2, 1/x?)
and its first derivative, all multiplied by a factor
tanmo(—2x)~2«1, It is this factor which makes (12)
unsuitable for trajectory values less than —%, but for
a>0 it is a small correction as ¥ — — . Using (22) or
(23), the Regge-pole terms in the helicity amplitudes
can be written in the same form for all @, remembering
that Fyw(eyx) is defined differently for positive and
negative a:

M (tx)
T(at3) [ldeirlN]

= —m(—1)
Regge poles 7r1/21‘(a+ 1) 2 sinw-(a—— )\)

XBEaw (O)(—22)*OFay (apx) . (24)

There are two more simplifications to make before
using the helicity amplitudes to calculate cross sections.
One is to make the signature factor [1d=e~ir(e=N7/
2 sinm(@—N\) independent of helicity. For integer A,
it can be written as [e~*"24(—1)"]/2 sinre. Recall
that the functions %) (f) are residues of partial-wave
amplitudes which were continued from even or odd
values of J—A\. It is convenient to redefine these ampli-
tudes so that the 2= refers to continuation from even or
odd J values, independent of helicity. This is accom-
plished by leaving the definition as it is for even A,
but for odd \, redefining Bty ()= — B\ (f). Then the
signature factor and residue function can be written as
BEW(@[1e]/2 sinwa for all helicities, where the
= now refers to Regge poles occurring in partial-wave
amplitudes continued from even or odd values of J.
Then the terms due to a given Regge trajectory with
definite signature occur with the same factor in every
helicity amplitude.

The second simplification involves absorbing the ¢
dependence of the factor (—2x)* into the residue func-
tion. This will exhibit the energy dependence explicitly.
We define new residue functions Ry () by the equation

_ktgt
(M aMpM cMp)'/2

ﬁiw(t)=[ ]azeiw(t), (25)

where the square root of the product of the masses is an
arbitrary but conventional scale factor. We can com-
bine this factor with # and write

2xk,qi=s—s0(t) , (26)

where
so(t) =M 4*+M5?

(t+M 42— M ) (t+Mp*~Mp?)
2t

@7
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The helicity amplitudes then become

M () )
Tla+3) 1teime
=—g(=1)»V
Regge poles 1r1\/2r(a+ 1) 2 sinra
s—s0(f) ()
XREW () Fav (Ol,x)< ) . (28)
(M aM M cMp)''?

The amplitudes are now in a form suitable for the
derivation of the differential cross section for the
s-channel reaction. Trueman and Wick!” have formu-
lated crossing relations for helicity amplitudes. The
crossing matrix involves products of rotation coeffi-
cients, but because of their orthogonality and complete-
ness, they do not appear in the spin-averaged differen-
tial cross section. With the normalization factors
included, the differential cross section can be written
in terms of the ¢{-channel helicity amplitudes as

do I1:(2015)

dt 16a[(s— M 42— M52)2—AM 42M 5%]

X Mypeamntr)|2,
@Sa s 1) 3 el

where the product of masses appears for fermions only,
and S4 and Sp are the spins of initial particles 4 and B.

If one Regge-pole term dominates the amplitude, we
can use (28) and (29) and write the differential cross
section as

do II.(2Mm)
At O4[(s— M 42— M 52)°—AM 42M 5?]

T(a+3)\2 cot?
X (P(oz+ 1)) [1+ (tan2>%ﬂ-ai’
S— So(t) 2a(t) 1
((MAMBMCMD)”2> (2Sa+1)(255+1)
X% [ (= IVREw () Faw ()2, (30)

(29)

where cot? or tan? is used for even or odd signature,
and we must remember that the A\’ indices on the resi-
due functions actually indicate dependence on the
individual particle helicities, AsJAzAcAp.

We can examine the high-energy limit of the cross
section from (30). This region is reached by letting
s—w, x— —oo, ¢ finite and negative. From the
Appendix, we see that as £ — — o, the functions Fyy
become approximately independent of x, and only de-
pend on ¢, through their o dependence. We can then
combine all of the {-dependent factors into one function

17T, L. Trueman and G. C. Wick, Ann. Phys. (N. Y.) 26, 322
(1964).
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G(t), and write

do G@®)

di =% (S-MA2'*MBZ)2——4MA2MB2

M )hm (31)
((MAMBMCMD)1/2 '

The energy dependence of the differential cross section
is determined by the trajectory value «(f) in the high-
energy limit. The wvalidity of the one-Regge-pole
approximation can be checked and the trajectory values
can be determined from the experimental values
of da/dt.

The single-pole formula (31) predicts that the de-
pendence of In{[(s—M 42— M5?)?—4M 42M p*]do/dt}
on In[s—so(t)] at constant ¢ should be linear with a
slope 2a(f). This method will be used in the next section
to check the Regge-pole hypothesis and determine tra-
jectory values for some resonance production reactions.
However, it must be remembered that (31) holds only
in the limiting case where |x| is sufficiently large to
allow the energy dependence of the Fyy functions to be
neglected. Calculations for various reactions show that
for the presently available energies most of the x values
for resonance production reactions are not large. Also,
|#| =1 in the forward direction for all resonance pro-
duction reactions, independent of energy, so that there
is a region around the forward direction which must be
excluded from consideration if the approximate formula
(31) is to be used. For these reasons, the exact form
(30) must be used in most applications.

There have been some objections to using the Regge-
pole formula when % is not large.’® The argument is
that when x is not large enough to use high-energy
approximations, then it is not valid to assume the
dominance of the Regge pole with the largest trajectory
value over other Regge-pole terms and the background
integral. However, it has become obvious that even in
elastic scattering, where the high-energy approxima-
tions are certainly valid for the individual Regge-pole
terms, all known poles must be included to get reasona-
ble agreement with experiment at the presently availa-
ble energies. We therefore do not assume the dominance
of one pole in the resonance production reactions, but
consider contributions from all poles which may be
exchanged. A simplification occurs, since conservation
laws (isospin, G parity, parity, strangeness, etc.) limit
the number of poles which can be exchanged, and for
resonance production reactions, this sometimes reduces
the number of poles to just one or two. As for the back-
ground integral, if we assume the generalized Mandel-
stam symmetry (20), the contour integral may be
pushed as far to the left as desired in the complex J
plane. Then, its contribution may be made as small as

18y, Barger and D. Atkinson, Nuovo Cimento 38, 634 (1965).
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desired for any |x|>1, if all Regge poles inside this
larger contour are included.

Recently, Freedman and Wang!® have resolved the
problem of the Regge expansion for backward scat-
tering of unequal-mass particles, in which the cosine
of the crossed-channel scattering angle is bounded by
unity for all energies. They found that the correct
expression is given by the leading term alone, propor-
tional to s%, and that the remaining terms are cancelled
by contributions from a family of ‘“daughter tra-
jectories,” whose zero intercepts occur at «(0)—1,
a(0)—2, etc. A natural extension of this idea to
helicity amplitudes is to retain the kinematic factors
[(1=x)/2]3+M)/2 but replace the hypergeometric func-
tion in the d%(x) by the leading term, proportional
to s« This still has the s* dependence in the limit of
large x, but for small « it will differ from the exact
form of (30). However, for the reactions considered here,
this difference is not very significant. It will be dis-
cussed along with the individual reactions.

When the exact form (30) for the cross section is
used, the determination of the trajectory values from
experiment is not as easy as before, since now there is
additional energy dependence in the F)) functions.
Each of these functions is multiplied by an unknown
residue function Ry (¢), so that for the energy de-
pendence to be known, the relative magnitudes of the
residue functions for different helicity values must be
determined. The relative magnitudes of the residue
functions for different helicities determine the state of
polarization of the final particles, and this polarization
is measured in resonance production by observing the
angular distribution of the decay products. The ex-
perimentally determined quantities are the elements of
the spin density matrix for the resonance, pmm.

The useful relation for Regge-pole applications was
derived by Gottfried and Jackson,* who found that if
the spin density matrix is measured in the rest frame of
the produced resonance, it can be simply expressed in
terms of the helicity amplitudes for the crossed-channel
reaction. If the resonance is particle C, then the con-
nection is

> Mmoo Moirp aam
AANBAD

Pmm' = 2:

NAMBACAD

(32)

| Mz aang)?

From this, we can see that the diagonal elements pyum
give the fractional contribution of certain helicity ampli-
tudes to the differential cross section. The experimental
values are used to determine the ratios of the residue
functions, and the energy dependence of the differential
cross section then only depends on the trajectory value.
Note that the density matrix value is needed only at one

19D. Z. Freedman and J.-M. Wang, Phys. Rev. Letters 17, 569
(1966).
( 20 K. Gottfried and J. D. Jackson, Nuovo Cimento 33, 309
1964).
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energy, since the residue functions are independent of
energy. Once they are fixed and the trajectory values
determined from the differential cross section, the energy
dependence of the spin density matrix elements is
predicted.

The actual method used to determine the trajectory
values from experiment is the same as in the case where
the approximate form was valid, except for the com-
plications arising from the « dependence of the Fjy
functions. To get around this, an iteration technique
is used, in which « is first determined from the approxi-
mate formula (31). This value is then used in the Fy
function, and a new value is determined from the energy
variation of the differential cross section due to the
(—2x)= factor. This new value is used in the Fyy func-
tion, and the procedure repeated until the trajectory
values converge. Since the main energy variation is in
the (—2x)* factor, and the Fy) functions are correc-
tions for small #, this procedure converges rapidly,
usually requiring less than ten iterations for a 19}, agree-
ment between input and output trajectory values.

III. COMPARISON WITH EXPERIMENTS
Baryon Resonance Production

The best known baryon resonance is the “3-3” pion-
nucleon resonance N*(1238). It is produced in a large
fraction of the single-pion production events in 7 and K
meson-nucleon reactions with lab momentum from
2-8 GeV/e:

mtdp— w04 N¥++] (33a)

Kt+p— KO- N*++, (33b)

The distribution of the #° or K¢ is peaked in the for-
ward direction, indicating the dominance of a peripheral
interaction. We examine the crossed-channel reaction
to determine what particles might be exchanged:

mHE ) 470K — pN*++, (34)

For reaction (33a), we note that the =tr® system has
isospin I=0, 1, or 2, zero baryon number and strange-
ness, and positive G parity. The K+K° system has
isospin I=0 or 1, zero baryon number and strangeness,
but arbitrary G parity. The pN* system has isospin
I=1 or 2, which rules out isospin zero exchange.

For parity considerations, we write the helicity
state of the PN system as |J\i\o), where \; is the P
helicity (£3) and Ap is the N* helicity (&1, 2). From
the Appendix, we see that the parity operation produces

Pl])\1>\2>=P5PN*(— 1)J_SP—SN*IJ—>\1—>\2>
=—(=1)7|T—=A1—Ne). (3%5)

For the two-pion or two-kaon states, all helicities are
zero, so that
Pl2m)=(=1)|2x),

P|KK)=(—1)'|KK),

(36a)
(36b)
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p trajectory values =p (t) vs t
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f From 7m*+p — 7° +N* analysis
— op(t) =(.62%.11) +(.56 +.35) t

— — Phillips & Rarita

} 7p charge exchange
Logan .

- o
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Fi1G. 1. p trajectory values.

and if parity is to be conserved, the intermediate par-
ticle must have parity P=(—1)7. If we denote the
t-channel helicity amplitudes by (A\2|M7|4), where 7
is the initial 27 or KK state, parity conservation requires

()\1)\2|M‘7|’i)=—(—M—MlM"[i). 37

This reduces the number of independent amplitudes
from 8 to 4.
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The exchanged particle must have quantum num-
bers I=1 (or 2), B=S=0, P=(—1)’, and G=-1 for
reaction (33a). Among the well-known particles, only
the p meson satisfies these restrictions. For reaction
(33b), the G parity can either be + or —. From the
Appendix, for the KK state to couple to a particle and
conserve G parity, we must have G=(—1)™+J, This is
satisfied by the p and also the A resonance, which is
presumed to lie on the R trajectory.

Assume now that the partial-wave helicity ampli-
tudes have poles at the positions of these trajectories,
and denote the residues by Ra,a,(f). For reaction
(33a), only the p is exchanged, so we have

do MM*

dt 16[(s— M2—p2)2— 4M%?]

F(“p""%) 2 2
X(m) [14-tan¥(re,/2)]

(s—uz—%(Mz-l-M*’-t)
wQUFy2

20p(t)
) N,, (39

where

Np=R112|F00l 2
+R1,124+R1s?) | F1o| >4+ R1,—5%| Fao| 2. (39)
In these formulas, M is the nucleon mass, u the pion
mass, M* the N* mass, ,(¢) the p trajectory value, and
the v are functions of o, and z defined in the Appendix.
The spin density matrix elements for the N* de-
cay are

$R132| F1o| 2+ 5Ry, 32| Faol 2

p33= ’ (40)
3 s
—3R1sRy,—1| F10| *+5R1,—3R11| Faol| Fool
Reps,—1= ’ (41)
N, ,
—3R13R11Re(F10*Foo) —3R1,—3R1,—1Re(F10*Fa0)
Reps1= . (42)

Data on reaction (33a) exist at pion lab momenta of
1.6,212.75,22 3.5,2 4.0,2¢ and 8.0% GeV/c. Analysis of the
values of the cosine of the i-channel scattering angle for
this reaction shows that the functions are independent of

21 A, Daudin, M. A. Jabriol, C. Kochowski, C. Lewin, S.
%\Jong)elli, A. Romano, and P. Waloschek, Phys. Letters 7, 125
1963).

22 Saclay-Orsay-Bari-Bologna Collaboration, Phys. Letters 13,
341 (1964).

2 M. Abolins, D. Carmony, D. N. Hoa, R. L. Lander, C.
Rindgfleisch, and N. H. Xuong, Phys. Rev. 136, B195 (1964).

24 German-British Collaboration, Nuovo Cimento 34, 495 (1964).

25 Aachen-Berlin-CERN Collaboration, Phys. Letters 19, 608
(1965) ; D.R. 0. Morrison and S. Nowak (private communication).

N,

% to a good approximation. Then the function NV, is only
a function of ¢, and a simple analysis to test the Regge-
pole hypothesis is possible.

From (38), we see that the -dependence of
In[(s— M?—p2)2— 4AM2%u?] on In[ s—u2— 3 (M24+-M*2—1)]
at constant. ¢ should be linear with a slope of 2a,(?).
This method was applied to the data, and the trajectory
values found by the least-squares fit of a straight line.
The linear formula was found to fit the data at all
energies except the lowest (1.6 GeV/c), which evidently
is too low for the Regge-pole theory to be valid. The
trajectory values were determined as a function of ¢
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F1c. 2. Differential cross sections for the reaction 7#*—+p — 704+N*,
for —0.5<i<—0.05 (GeV/c)?, and the results are formula,
shown in Fig. 1. The error bars were computed from the a,(1)=0.6240.114(0.5640.35)¢. (43)

statistical uncertainty of a straight-line fit to the data,

The p trajectory values have also been determined
from an analysis of 7p charge-exchange scattering, and

and do not take into account possible errors in the data
itself. The trajectory can be parameterized by a linear
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F16. 3. Differential cross section for (a)-(d): #t+p — 79+ N*; (e)-(g): K*+p— K'+N*

the results of Phillips and Rarita! and Logan? are shown
in Fig. 1 for comparison. It is seen that the trajectory
values agree quite well. However, the more recent re-
sults of Hohler ef al.* indicate that the slope of the p
trajectory is larger. Their linear fit gives a,(f)=0.57
+0.91¢, which agrees with the N* results in the small ¢
region but disagrees for —¢>0.3 (GeV/c)2% This dif-
ference can be reconciled by including the statistical
errors for the V* production data in the error limits for
the trajectory values. Since the data points for this ¢
region are due to events which number typically less
than ten [see Figs. 2 and 3(a)], the error limits on the
trajectory values can be expanded enough to be com-
patible with the new charge-exchange results.

The unknown function of #, N, is determined by
fitting the angular distribution at 8.0 GeV/¢. Within
experimental errors, it is found to be consistent with a
constant, for —¢>0.05 (GeV/c)?%:

N,({)=2.320.3 mb. (44)

The observed dip in the forward direction requires a
decrease in the residue function. However, in this
region the asymptotic form of the Fy, function is not
valid. From (39) and the Appendix, we see that three
of the four independent helicity amplitudes vanish in
the forward direction, so that ‘a minimum in this
region can easily be produced with constant residue
functions. These same three amplitudes also vanish
when the trajectory value is zero, and should produce
another minimum at this point.>26 There is some evi-
dence of this minimum for the low-energy data at
t=—0.5 (GeV/c)? which is in the region where the p
trajectory seems to go through zero.

The calculated differential cross section is compared
with the data in Fig. 2, and again on a logarithmic scale
with the experimental errors indicated in Fig. 3(a). It
is seen that the calculated values are within the ex-
perimental error limits for all cases, with the worst fit

% L.-L. Wang, Phys. Rev. Letters 16, 756 (1966).
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being at 3.5 GeV/c, where they are consistently higher
than the data points. This is due to the relative dip in
the production cross section at this energy. The re-
ported value is 0.202=0.04 mb, compared with the
2.75 GeV/¢ value of 0.3040.03 mb and the 0.2940.03
mb value at 4.0 GeV/c. If the cross section actually does
have this structure, rather than decreasing with in-
creasing energy everywhere, a one-Regge-pole fit with
its smooth s?2~2 energy variation cannot be expected to
fit the curve. However, this dip could easily be due
merely to a systematic difference in normalization for
the different experiments, and more accurate data are
necessary to determine the precise energy variation of
the cross section.

The individual residue functions must be determined
in order to calculate the spin density matrix elements.
However, since Fyy is imaginary and Fg and Fa real,
(42) reduces to

R6p31= 0. (4-‘5)

This property is not a unique prediction of Regge-pole
exchange, but depends only on parity conservation and
the fact that all helicity amplitudes have the same phase,
which is true only for a single trajectory exchange.
Combining (40) and (41) leads to the restriction

(Reps,—1)2<3ps3(1—2p33)/2. (46)

Data at 4 and 8 GeV/c indicate that Reps;=040.15,
p33=0.2—0.4, and Rep;_1=0—0.2, so that (45) and
(46) are satisfied. The energy variation is the only
unique prediction of the Regge theory. For this reac-
tion, the functions Fy) are approximately independent
of energy, so that the p,. are predicted to be energy-
independent also, which is in agreement with the limited
data available.?”

For the reaction (33b), the differential cross section
and spin density matrix elements are given by the same
formulas as for reaction (33a) for a single Regge tra-
jectory exchange, but if two trajectories are exchanged,
the interference term must also be considered. Data on
this reaction exist at lab momenta of 1.96,% 3.0,2
3.5,30 and 5.0% GeV/c. Examination of the kinematics
reveals that the Fy functions are approximately inde-
pendent of energy in this reaction for lab momentum
greater than 3 GeV/c and for i<—0.1 (GeV/c)% A
one-pole analysis was tried for data from the highest
three energies. A fairly good fit was obtained, but the
trajectory values did not agree with the p values,
starting at about the same value in the forward direc-
tion, but decreasing with # much faster. The p trajectory

27 N. Schmitz, CERN Report No. 65-24, Vol. I (unpublished).

28 S. Goldhaber, Athens Topical Conference on Recently Dis-
covered Resomant Particles, edited by B. A. Munirt, and L. S.
Gallagher (Ohio University Press, Athens, Ohio, 1963), p. 92.

2 M. Ferro-Luzzi, R. George, Y. Goldschmidt-Clermont, V. P.
Henri, B. Jongejans, D. W. G. Leith, G. R. Lynch, F. Muller, and
J. M. Perreau, Nuovo Cimento 36, 1101 (1965).

30 Preliminary data on K*p interactions at 3.5 and 5.0 GeV/ec.
Y, Goldschmidt-Clermont (private communication).
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I | | 1
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Fic. 4. A» trajectory values ar(f) versus #: Data points taken
from K*+p— K'+N* analysis. Solid line: ag(f)=0.80+3.5¢
-+3.5¢2; dashed line: Philips and Rarita, Kp elastic and charge
exchange.

exchange alone cannot explain reaction (33b), and 4.
exchange must also be considered.

A partial separation of the two contributions may be
accomplished if we assume SU(3) symmetry for the
prm and pKK couplings. In order to preserve charge
conjugation invariance, the coupling of the p octet to
the 7= and KK octets must be pure F type.3! Then there
is a unique relation between the coupling strengths:

(47

The residue functions for p exchange in reaction (33b)
can then be calculated from those determined for (33a).
The squared term in the cross section was calculated
from N ,(¢), and found to contribute only 2 to 20%, of
the experimental cross section. The smallness is due in
part to the factor of 2 in (47), and the remainder to the
difference in cosf values arising from the #-K mass
difference.

The interference term depends on products of
individual residue functions, and hence cannot be cal-
culated directly. An upper limit can be calculated, using
the Schwarz inequality and the phase difference of the
amplitudes. Since the p and 4, trajectories have opposite
signature, the interference term will be proportional to

Re(1—etime)(14-e—"2R)~sin(rAa/2) , (48)

Zorn"=2g,kK".

where Aa=a,—ar. Using the trajectory value of the
A, from charge-exchange scattering, the interference

31 H, Lipkin, Phys. Letters 7, 221 (1963).
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term was estimated, resulting in an upper limit of 159,
of the experimental cross section. Thus if Regge-pole
exchange is to explain reaction (33b), the main con-
tribution must come from the R trajectory.

The single-pole analysis was redone, with the con-
tribution from p exchange subtracted out and the inter-
ference term neglected, and again a fairly good fit
obtained. The trajectory values are shown in Fig. 4,
along with the R trajectory from charge-exchange
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Fic. 5. Differential cross sections for the
reaction K*+p — K'+N*,

scattering.! The two agree quite well, except at small
momentum transfer. In this region, however, the z
values are the smallest, and the high-energy approxima-
tion the least accurate. The sum of the squares of the
residue functions Ng(f) [the analog of N, for reaction
(33a)], was determined by fitting the angular distribu-
tion at 3.5 GeV/c. It has a sharp minimum around
t=—0.35 (GeV/c)% This is due to the “ghost” pole of
the even-signature R trajectory at a=0, which must be
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compensated by the vanishing of the residue function
at this point. The function Nz'({)=Nr(f)/(@r(f)? is a
much more slowly varying function:

Nz ()= (5.040.3)X103—(9.12£0.9) X 10% mb. (49)

The calculated differential cross sections are com-
pared with the data in Fig. 5, and again on a logarithmic
scale with error bars on the data in Fig. 3(b). The cal-
culated values fit the data within errors, except at the
lowest energy and at low momentum transfer as ex-
pected, where the approximate Regge formula is not
valid. It is seen that the disagreement of the trajectory
values at low momentum transfer is caused by the
flattening of the 3.0-GeV/c differential cross section in
the forward direction, which makes the trajectory
values rise rapidly. It is possible that this effect is due
merely to the high-energy approximation, but without
the knowledge of the individual residue functions, an
exact calculation cannot be performed. A determination
of the forward differential cross section at higher
energies is necessary to resolve this point.

The relations for the spin density matrix elements (45)
and (46) are now only approximate, since with two-
trajectory exchange, the phases of the individual residue
functions vary with the relative contribution of each
trajectory. However, the limited data available?” are
consistent with these restrictions.

Meson Resonance Production

Here we consider the production of the 27 resonances
p and f° by pion-nucleon interactions. The f° is pro-
duced in the equivalent reactions

m+p— fotn, (502)
7r+n— f4p. (50b)

In the crossed reaction, v+ f — P+, the intermediate
particle must have isospin =1, negative G parity, and
zero strangeness and baryon number. Of the known
mesons, only the 4, and the 7 (also the A4 if it exists)
have these quantum numbers.

Let the  f state be represented by |8), where 3 is the
helicity of the f, and the pn state represented by [AiAs),
where A; is the p helicity and \; the » helicity. Then the
requirement of parity conservation for the f-channel
helicity amplitudes asserts

Ahe| M7 |B)=—(—N—Xo| M7 | —B). (51)

If we further specialize to intermediate states with
parity P=(—1)7 (the R trajectory), we have

(ko[ MY B)=—(\he| M7 | —B), (52)

which means that all 8=0 amplitudes are zero. From
the Appendix, we see that G parity conservation at the
P n vertex brings in no additional restrictions.

For the other case, P=—(—1)”, and we have

Ao | M7 B)=(Aido| M7 | —).

and

(53)
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From the Appendix, we see that G parity conservation
at the p n vertex requires that for even J values (=
trajectory)

G M7|B)y=—(—% —3|M7|B), (59
%) _%IMJI[»:(_%;% Mjlﬁ>=01
and for odd J values (4; trajectory?)
%: —3 MJ|ﬂ>=—<—%;% MJ‘ﬁ)) (55)

G 3|M7|8)=(—3, —3|M7|B)=0.

For these cases, the requirements of parity and G parity
conservation reduce the number of independent helicity
amplitudes from 20 to 3.

We can write the differential cross section and spin
density matrix elements for Regge-pole exchange in
terms of the trajectory values and the residue functions
for the helicity amplitudes, which we denote by
Rg an2ng(f). There are three cases to consider.

(a) w Trajectory Exchange

do M2
- 8[(s— M—ut)— 4 %7]
X(P(a+%)>2[1+cot2(7m/2)]
T(at1)

(s-ML%(u“rmﬂ—t))?“'“’m’ (56)

M (ump)'?
Nz=Ro,1*| Fao| *+R1,11%| Fro| *+5Ro,12%| Fool 2, (57)
pov=HRo1i?| Fuol /s, (58a)
pu=%5R1,11*| F1o|*/ N, (58b)
p22=3(1—2p11—poo) , (58¢)
p1,-1=—p11, (58d)
Rep10=2%R1,112R0,112 Re(F10*F00) /N » . (58e)

(6) A1 Trajectory Exchange

do M2
dt 8[(s— M2—u?)2—AM%?]

T(a+3)N2

><< (“+2)> [1+tan(ra/2)]
T(a+1)
__Mz_l 2 2 ¢ 200 41(8)
(s 2(# +my )) Na, (59)
M (umy)H'?

Na=%Ro 1 1%(| Fa—1| 2+ | Fa1| )+ 3Ro,11%| F1o|
3Ry 112 F1,—1| 2+ | Ful?), (60)
poo=%3Ro,1-1%| F10|%/N 4, (61a)
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Fic. 6. Pi trajectory valuesa.(¢) versus ¢, from #=+p — o4z
analysis, ax () = —0.084-0.07+- (0.6924-0.29):.

pu1=1R111*(|F1,1| 2+ | Ful|?)/N 4, (61b)
p22=3%(1—2p11~poo) , (61c)
p1,—1=3R11-1| Ful|F1,-1| /N a. (61d)
(c) Aq Trajectory Exchange
The only result needed is the value of pgo,
poo=0. (62)

This prediction follows from the result that all helicity
amplitudes with zero f° helicity are zero. However, ex-
periment indicates®?%3 that pg is very close to its maxi-
mum value of 1, rather than being zero, so that A4,
trajectory exchange must contribute a very small frac-
tion of the total amplitude.

Data exist on f° production at pion lab momenta of
4.0,** 6.0,*2 and 10.0%* GeV/c. Examination of kine-
matics for these energies reveals that the high-energy
approximations previously used are not at all valid,
and the energy dependence of the Fy, functions must be
considered. A comparison was made of the exact values
for Fyv in this reaction with the [(1-x)/2] 0N /252
form. It was found that the difference is less than 79,
for all z values represented by the data. This is due
mainly to the range of values of the trajectory and

2 CERN-Ecole Polytechnique Collaboration, in Proceedings of
the 12th International Conference on High-Energy Physics, edited
by Ya. A. Smorodinsky (Atomizdat, Moscow, 1966), p. 442.

3 M. Wabhlig, E. Shibata, D. Goldon, D. Frisch, and I. Mannelli,
Phys. Rev. 147, 941 (1966); D. Gordon (private communication).
( 3‘;german-British Collaboration, Nuovo Cimento 31, 729

1964).
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cannot be considered a general result. This brings in
additional complications in determining the trajectory
values from the data, since the F), which have different
energy dependence, are multiplied by the unknown resi-
due functions. The additional information on the ratios
of these residue functions can be obtained from the spin
density matrix elements pg and py; through Egs. (58)
or (61).

The trajectory values are determined by the iteration
technique described in Sec. II. The final trajectory
values were found to be roughly independent of the
spin density matrix elements, as long as 0.8<pg<1.0,
which is the range indicated by experiment. The validity
of Regge-pole exchange is tested by the statistical un-
certainty in the fit of the straight lines whose slopes
determine the trajectory values. The results are: 4,
trajectory exchange converges to positive trajectory
values approximately independent of #, but with very
large errors, indicating that this exchange cannot ex-
plain the energy variation of the production cross
section.

The = trajectory exchange gives negative trajectory
values which decrease with ¢ and have relatively small
errors. These trajectory values are shown in Fig. 6,
along with the parametrization,

a, ()= —0.0824=0.07+(0.69-0.29):. (63)
The conjecture that this is actually the trajectory
associated with the = is strengthened by the closeness of
the zero intercept to the square of the pion mass. The
trajectory could easily go through this point if given a
small curvature, still consistent with the values
determined.

The residue functions are determined by fitting the
angular distribution at each energy and using the
average values. The calculated cross sections are com-
pared with the data in Fig. 7, and are seen to agree
quite well.

The residue functions are approximately linear in ¢
for the range —0.5<1<—0.05 (GeV/¢)%:

107°Ry 122(f) = (0.01=:0.05)— (0.86=£0.15)t ub,  (64)

1076Ry,112(f) = (0.1840.02) — (0.924-0.09)¢ ub.  (65)

Since the pion pole at {=pu?=0.02 (GeV/c)? is so close
to the physical region, it is tempting to try to extra-
polate the Regge formula to this point, and compare it
with the field-theoretic expression for elementary pion
exchange. In this limit, we have Fyp— 1, Fy and
Fa—0,a(f) > 0, and 1+ cot?(ra/2) — [ 2/7a’ (t—u2) P,
where o is the slope of the pion trajectory. This gives
for the extrapolated cross section

do M2Ro11%(2)
RSN .
dt 8 162 (s— M~ u)P— AM 3] (a )i i)

(66)
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F1c. 7. Differential cross sections for the reaction #=—p — f0+x.

The field-theoretic cross section is
do G*/4x
G (= MP— ) adf?
(=2) 40 (my)*
(=2 3 P

(67)

Jf=>2m .
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A useful quantity for the extrapolation is
Ro,1:2(2) G? (my)? (o/)? 1672
— ———;40—— —T 2. (68)
—t e Ay M2 P 3

From (65), we see that this quantity would diverge

at =0 if the linear behavior of R%,11(f) were continued
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F1c. 8.¥Values of pion residue function from /¢ production data.

to £>—0.05 (GeV/c)2. This factor of ¢ is expected to
appear, owing to the kinematical singularities of helicity
amplitudes for the 7NN coupling,® along with factors of
[t— (u+mp)2 V2 and [#— (u—m,;)? V2 The last two
factors are slowly varying in the region of extrapolation
and can be neglected. The ¢ factor should produce a
minimum in the forward direction, but if it is there, the
experimental resolution is evidently not fine enough te
see it. Figure 8 shows a plot of Ry,1:2(f)/(—¢) in the
physical region. The field-theoretic value at {=p? ex-
ceeds the residue function in the forward direction by as
much as a factor of 10. The result is that even though the
residue function is a slowly varying function of ¢ in the
physical region, its extrapolation even a small distance
outside this region is extremely uncertain. Of course, an
exponential behavior can always be factored out of the
residue function by changing the scale factor for the
energy expansion, (s/sg)*. This introduces a factor
exp[ 2e’ In(so/s0") ({—u?)]. However, to make the varia-
tion of the extrapolated function negligible between
t=p? and t=—0.1 (GeV/c)?, the scale factor must be
changed by a factor of about 1800, which corresponds
to so="700 (GeV)2 This then spoils the slowly varying
nature of the residue function in the physical region.

, Now we turn to the reaction 7w+ p — p*+p. Since
the isospin of the p is one, we can now have isospin zero
exchanged particles, such as the w, as well as those
allowed for f° production. Since the parity of the p and
/0 both satisfy P=(—1)7, we see from the derivation
for f° production, that the expressions for = and A4,
trajectory exchange can be taken over directly to p

8 L.-L. Wang, Phys. Rev. 142, 1187 (1966).
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production by neglecting the states with helicity 4-2.
The contribution of the 4, or w trajectory can be cal-
culated by using the parity conservation requirements
on the f-channel helicity amplitudes for an inter-
mediate particle with parity (—1)7:

(ke M7 [B)=—(—M—No| M7|B),

(ke M7 [B)=—(\ho| M7 | =),
which reduces the number of independent amplitudes
from 12 to 2. The contribution to the cross section is

do M2 /I‘(a+%))2

(69)

i 8[(s— M?—p?)*—AM%?\I'(a+1)
[ cot(wagr/2N /s—M*—F(u2+m,2— 1)\ 22 ®
X{ 1+ )( ) Ny,

tan?(ra,/2) M (um,)1?
(70)
where

No=Ri1u?|Fro| *+3R1,1-*(|Fu| >+ | F1,]?).  (71)

The spin density matrix elements are
p00=0, (72a)
pu=7%, (72b)
p1,-1= (3R1,11%| F1o| 2= 5R1,112| Fia||Fu1|)/No, (72¢)
and Repro=0. (72d)

Experimental data exist for this reaction at pion lab
momenta of 1.6, 2.75% 4.0,%* and 8.0%:% GeV/c.
Measurements of pg indicate that it is in the range
0.5-0.8. This indicates that a large part of the ampli-
tude must come from 7 or A; exchange, since w or A»
exchange gives ppo="0.

A single trajectory fit was performed for the data,
similar to that described for the f° case. The ratio of the
residue functions was determined by the poo values at
4.0 GeV/c, and the same iteration technique was used
to determine the trajectory values. The results are
similar to those for the f° case. The 4 trajectory values
obtained had large statistical errors, indicating that
they do not adequately represent the energy variation.
The = trajectory values had more reasonable errors,
but they did not agree with those obtained from the f°
reaction. They were consistently higher over the entire
range of momentum transfer, even being positive for
small momentum transfer. It seems that the amplitude
must contain contributions from the w or 4, trajectories
as well as the .

The expression for the cross section including the =
trajectory and either the w or the A4, is just the sum of

36 Saclay-Orsay-Bari-Bologna Collaboration, Nuovo Cimento
29, 515 (1963).

37 Saclay-Orsay-Bari-Bologna Collaboration, Nuove Cimento
37, 361 (1965).
( 38 Aachen-Berlin-CERN Collaboration, Phys. Letters 18, 351
1965).
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(2)

Fic. 9. Differential cross sections for the reaction #*-p — pt-5.

the two separate contributions, since the interference
term is zero. (See Appendix.) The poo values at 4 GeV/¢
can be used to determine one of the = residue functions
Ry,11%(?), since this function gives the only contribution.
[See 58(a).]

The = trajectory values from f° production were used
with this residue function to calculate the contribution
of 7 trajectory exchange. It was found to be about 80
to 909% of the experimental values for the low-energy
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data, dropping to about 509, for the 8-GeV/c data. Thus
the relative contribution from w or 4, exchange must
increase with increasing energy, which is to be ex-
pected, since the largest trajectory values should
dominate at high energy.

The second residue function for = exchange, Ry,1:2(),
must be small, since at low energies the contribution of
the first function accounts for almost the total experi-
mental value. An upper limit was calculated from data
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Fi1c. 10. Spin density matrix element pgo for 7t+p — p*+p.

at 2.75 GeV/c, and the contribution to the cross sec-
tion at higher energies was found to be very small
(<5%)- The contribution due to = trajectory exchange
was subtracted from the experimental values, and the
remainder was used in another single-Regge-pole
calculation.

Since the difference is small, the percentage errors
due to the experimental uncertainties are large, and no
attempt was made to determine trajectory values from
the data. Instead, trajectory values for the w and A,
were taken from the elastic and charge-exchange scat-
tering analysis of Phillips and Rarita.! The two residue
functions were determined by fitting the data at 4
GeV/c, and the results compared with the data at other
energies through the Regge energy dependence. It was
found that the w exchange gives a contribution whose
energy dependence fits the data better than that for 4,
exchange. The residue functions obtained were con-
sistent with Ry 1-1(£)=0 for the » exchange.

A calculation of the exact versus s* form of the
Fy functions again shows that they differ by less than

2,75 GeV/c 4.0 GeV/c

30-3.5 GeV/c

60 1 2 3 4 5 6
-t (Gev/e)?

Fic. 11. Spin density matrix element py,—; for 7¥4p — pT+p.
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F16. 12. Values of pion residue function from p* production data.

7%, but that the difference for those w and 4, ampli-
tudes which were assumed to be consistent with zero is
as great as a factor of two in some cases. In any event,
the energy dependence of do/df needs a contribution
with () >0, and the v is taken as representative of this
contribution.

6000 T +p —+ p°+n
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4000\ —
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o
~
>
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23000
EY -
8s
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1000—
! | 1
% . K 2 3 4
-t (Gev/c)®

Fi1c. 13. Differential cross section for the reaction 7*+p — p04-n.



155

The o trajectory values used were parametrized by
a,(£)=0.5240.60¢. The comparison of the two-Regge-
pole calculation (7 and w) with the data is shown in Fig.
9. The dashed lines indicate the « contribution alone.
The spin density matrix elements are shown in Figs.
10 and 11. The only values which were adjusted to fit
the data were poo at 4 GeV/c; all other values are pre-
dicted by the Regge formula. The dashed lines for
p1,—1 are due to the inclusion of the small residue func-
tion Ry 11(f). If it is not included, the solid lines are
predicted. The element Repyo is predicted to be zero
from (58e) and (72d), and is in rough agreement with
experiment, although a small nonzero value seems to be
preferred. The measured values are —0.074--0.070 at
4.0 GeV/c,2t and —0.084-0.05 at 8.0 GeV/c.2

The residue functions are again compared with the
field-theoretic expression at the pion pole. The same type
of derivation as for the f° case gives

Ro,11%(@) G? (m,)? (a')?
—
P T O

(73)

7T2Fp—->27r .

The values are shown in Fig. 12, and again it is seen
that the function must be rapidly varying in the for-
ward direction, and the extrapolation is necessarily
very inaccurate.

One additional prediction of the Regge-pole theory is
that for the differential cross section for #~=p — p%t-#.
The w trajectory cannot be exchanged in this reaction,
and isospin invariance requires that the = trajectory
contribution is twice that for the charged rho produc-
tion. Data on p° production are available at 4.0 GeV/c,%*
and are compared with the predicted values in Fig. 13.
The agreement supports the previous conclusion that
7 exchange is predominant at this energy.
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APPENDIX
Helicity Amplitudes

The helicity states of Jacob and Wick® are eigen-
states of total angular momentum J and the helicities
of the individual particles A; and \;. The parity opera-
tor acting on these states gives

P[])\1)\2>=P1P2('—'I)J_Sl_szl]: —)‘1—>‘2> ’ (Al)

where Pj, P,, S1, and S, are the parities and spins of the
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TABLE I. Restrictions on helicity amplitudes
from G parity conservation.

G(—1T J P Restrictions
+1 even +1 Mu =M_1~1
—1 odd -1 M1_1=M_1,1
+1 even —1 M11=—'M_1_1
—1 odd +1 Miy=M_,,,=0
+1 Odd +1 M11=M_1_1=0
-1 even —1 Mya=—M_y;
+1 odd -1
-1 even +1 {A“l My, 2 =0

two particles. If parity is conserved, this leads to a rela-
tion between helicity amplitudes:

(== A M7 | —hi—22)
P1P2
PP,

=——(—1)SeHS=SmSa\ o\ o | M7 | Aiha).  (A2)

If, in addition, the reaction proceeds through a one,
particle state with definite parity @, we have

<)\3>\4IMJ| —‘>\1—)\2>=0'<)\3)\4IMJIA1>\2>, (A3)

where

o=—P1Py(—1)51t82 if @®=(—1)7,
and

o=-+P1Py(—1)5%8 if @p=—(—1)7,

This leads to the result that the interference term for
exchanged particles (or trajectories) of opposite J
parity does not contribute to the spin-averaged dif-
ferential cross section, in the high-energy approxi-
mation. ‘

Further restrictions on helicity amplitudes come from
G parity conservation, if one of the external states is a
particle-antiparticle system. Since G=Ce®T2, we are
interested in charge-conjugation properties. For a
particle-antiparticle system, charge conjugation is
equivalent to interchange of particles, and?®

P12|J>\1)\2>= (—1)J_2SIJ>\2>\1). (A4)
The rotation in isospin space just gives a factor (—1)7
for a state with total isospin 7, so the result is

GIJ}\1>\2>= (—1)T+J—2SC102IJ>\2>\1>. (AS)
For a KK system, this implies that G=(—1)7+7,
For an NN system, this relation together with parity

conservation leads to restrictions on the helicity ampli-
tudes May,,2n,, Which are presented in Table 1.
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Rotation Coefficients

The rotation coefficients of the first kind, d”y(3), can be continued to complex J by their relation with the
hypergeometric function®:

T(J4+A+1)T(— N+ 1)72 /1423 OB 121 — o\ 012 Fv— T, AT +1, \=N+1, (1—2)/2)
de(Z)=[ } <~——> (——) . (A6)

T(J—ADTT+N+1) 2 2 I(A\—N~+1)
A similar relation holds for the rotation coefficients of the second kind:
e 1 [TUTAADTT+N+1DIT =N+ —A+1) ]2
e \w(z)=-

W T(27+2)
12\~ OFND/2 /] g\ — M) 12 g [\ —T—N—1
><<—2—> (—2——> (——2—) FU-ML, THNHL, 2742, 2/(1=5). (A7)

The integral relation between them is

Uodt 1\ ORDI2 1\ O-A))2 142\ OFADI2 11— o\ =M)/2
e R S
12—t\ 2 2 2 2

for J>XA>|N|. The final form of the rotation coefficients used in the Regge-pole calculations is obtained by using
the relations

3z
Flabc,2)= (1——2)*"F<a, c—b,c, ———1) , (A9)
g—
d» T'(a+n)
—zot" 1 F (a,b,c,2) = 29" (a+n, b, c, 2), (A10)
dz» I'(a)
and
a 1+a 22
F(a,b,2b,3)= (1-—%2)“"F<—, , b+3, ) . (A11)
2 2 (2—2)?
The final form of the rotation coefficients is a product of (—22)* times the function Fan(,z). For a<0, the func-
tion is
al—a 1 al—a 1
F)\)\'(OZ,Z)=f)\x'l:g(l))\)\/F<““, s %_a) _”')—I'h(l))\?\’F’(_—) ) %_a) “)} 3 (A12)
2 2 72 2 2 z*
Taste II. Expansion functions for rotation coefficients.
N N v o ® I @ v ® o @)
0 0 1 1 0 1 0
[ « ( 1)}% ) 1 )
1 0 7 1—— 1 — —1—-
a+1 72 az? @ az?
-1 1 —2(1—32) 1 Qa+1)(1—3) —2(1—2)
1 1 — at- afm———— —
a1 b4 az® z az az?
1 1 2(14-2) 1 Qa41)(1+42) 2(1+32)
1 -t a—- g s
(a+1) 2 azd k4 asg az’

oI

ala—1) 4 2Q2a+1) 4
2 0 —-[—-——- ] 1 — 14
(a+1)(a+2) ala—1)z2 ala—1) ala—1)z2
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where F’ denotes the derivative of the hypergeometric function with respect to its argument. For a>0, Fxx con-

tains some additional terms which are written as

tanwra

=

a 1 a 1
[g(”)\)\rl"(l‘*-i, %-}—a, Ol-l‘%, °;>+ll(2))\)\rF/<1+—2', %-—l—a, a-l-%, —)J . (A13)
b4

22

The functions fav, g ®?, and k(42 are tabulated for some small values of X and A’ in Table II.
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Daughter Trajectories and Unequal-Mass Scattering*

DaNieL Z. FREEDMAN, C. EDWARD JONES,T AND JIUNN-MING WANG
Lawrence Radiation Laboratory, University of California, Berkeley, California
(Received 26 September 1966)

It has recently been demonstrated by Goldberger and Jones (I) and by Freedman and Wang (II) that
Regge asymptotic behavior obtains at high energy even in regions in which the crossed-channel cosg variable
is constrained by unequal-mass kinematics to remain finite. Approaches I and II differ, however, in other
important respects. In this note it is shown that method I can be adapted and used to prove the existence
and properties of the Regge daughter trajectories found in II. In this argument, an extra assumption
necessary in II is avoided, and the restriction «(0) <% found in I is eliminated.

ECENTLY two different arguments have been
given to show that the Regge asymptotic behavior
#%() is maintained in the backward scattering of
unequal-mass particles even though the cosine of the
u-channel scattering angle remains small.l'? In both
methods the persistence of the behavior #* is a
consequence of the analyticity of the full amplitude at
s=0, a property not shared by the individual Regge-
pole terms.

In I, dispersion relations are used to correct the
analyticity of the original Regge pole terms, whereas
in IT a representation of the scattering amplitude as the
Sommerfeld-Watson transform of power series in the
Mandelstam variables % and ¢, called the Khuri repre-
sentation, is employed. For the asymptotic contribution
at s=0 of the leading Regge pole ao(s), both methods
find the dominant term vy (0)%#*©® and the next domi-
nant term s~'u*©—1 which has an s! singularity not
shared by the full amplitude and which must, therefore,
be cancelled.

The main difference between 1 and II lies in the
mechanism by which this singularity is cancelled. In I
it is argued that the singularity is cancelled by the
background term of the Regge representation, and the
restriction ao(0) <3 is therefore found. In IT it is argued

* Work done under the auspices of the U. S. Atomic Energy
Commission.

t Present address: Physics Department, M.I.T., Cambridge,
Massachusetts.

1 M. L. Goldberger and C. E. Jones, Phys. Rev. 150, 1269
(1966) ; referred to as I. Also Phys. Rev. Letters 17, 105 (1966).

2D. Z. Freedman and J. M. Wang, Phys. Rev. 153, 1596
(1967); referred to as II. See also Phys. Rev. Letters 17, 569
(1966).

that the singularity is cancelled by contributions of
other Regge poles, and it is found that to effect this
cancellation there must occur daughter trajectories
ai(s), correlated with the leading or parent trajectory
by the conditions a;(0)=ae(0)—k. No restriction on
the position of the leading trajectory stronger than that
of Froissart [namely, @(0)<1] is found. Mathemati-
cally there does not seem to be any a priori reason to
prefer either mechanism, but it is found in II that the
daughter trajectory mechanism is satisfied in all Bethe-
Salpeter models which Reggeize, and empirically it is
known that the Pomeranchuk trajectory violates the
constraint a(0)<3.

The analyticity of the Khuri power-series coefficients
at s=0 is important to the argument of II. It was
made plausible there but not rigorously proved, and
was left as an extra assumption. The purpose of this
article is to show that the existence and properties of
the first daughter trajectory can be proved without
such an extra assumption by using the techniques of I
and demanding consistency between the Regge repre-
sentation and Mandelstam analyticity in the case where
there are Regge poles to the right of Rel=% for s=0.
In this way we eliminate the restriction a(0)<% and
asymptotic fixed powers larger than background (see I).

It is not clear how to take the Regge background
integral to the left of Rel=—% with this technique
because of the threshold accumulation of poles there,
and therefore the discussion of lower-lying daughter
trajectories from this point of view may be difficult.

In the treatment here we rely heavily on references
to I and II. For simplicity we follow I in assuming that



