
MESON DECAYS IN BROKEN SU(3l

similar to (4) and gives the coupling as'o Therefore the ratios of decay widths,

If both the tensor meson and the vector meson belong
to octets, then C conservation requires that only the
antisymmetric coupling is present. VVe then see that
keeping i Axed but varying j and k, the coupling con-
stant (11) transforms like an SU(3) symmetric quan-
tity. Thus there is no renormalization for the ratio" of
coupling constants

g(A zpsr) g (E**pE)'
(12)

g(E**K*rr) g(K**cosK)
1 Note that there is only one pion to disperse.
'1 This result is similar to the one obtained in Ref. 5 for meson

couplings with two baryons.

r(z**~ px')

r(Z**~Z*n) r(x**~~z)

are the same as those calculated by Glashovr and
Socolow, ' even after including first-order breaking in the
coupling constants. The experimental information about
the second ratio is scanty but the 6rst ratio is in good
agreement' arith the experimental number.
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A model is proposed in which a baryon consists of a boson and fermion deeply bound in a potential. The
fermion can be regarded as a quark and the boson as a bound state of two quarks. In the model, the mass
splitting of the different isospin multiplets among the baryons arises partly from mass splittings within the
boson and fermion multiplets and partly from a symmetry-breaking interaction. The isospin-conserving
mass splittings within the boson and fermion multiplets, as well as the symmetry-breaking interaction, are
assumed to be proportional to the hypercharge. Under the assumption that these mass splittings and sym-
metry-breaking interactions are small, it is found that the seven baryon mass splittings which conserve
isospin are given in terms of four parameters, and that the Gell-Mann —Okubo mass formula holds. Some
effects of representation mixing are considered.

l. INTRODUCTION

A NUMBER of authors have considered models in
which a baryon is assumed to be a bound state of

three quarks. In particular, Morpurgo' discussed the
possibility that the quark-quark interaction might be
described by a nonrelativistic potential, even though
the binding energies are comparable to the tiuark
masses. At 6rst glance, it is attractive to add to this
hypothesis the assumption that the mass differences

among the baryon isospin multiplets arise solely from
an intrinsic mass splitting of the quark masses them-
selves, and that the quark-quark interaction is in-
variant under SUB. However, this point of view leads

~ Work supported in part by the U. S.National Science Founda-
tion.' G. Morpurgo, Physics 1, 95 (1965).

to two predictions in contradiction to experiment, as
remarked by Dalitz2 and others. The 6rst of these
predictions is that the Z-A mass splitting is zero, and
the second is that the 0-E~ mass difference is 23times
the ™-Xmass difference. Dalitz, ' I'ederman, Rubin-
stein, and Talmi, ' and others therefore assumed that
the quark-quark interaction must break the symmetry.

In this paper, we propose an alternative model which
gives the seven mass splittings (neglecting electro-
magnetic effects) of the baryon octet and decuplet in
terms of four parameters. In this model a baryon of the
octet or decuplet is a bound state of a boson of spin i

s R. H. Dalitz, itt Proceedings of the Oxford International Con
ference on Elementary Particles, i%65 (Rutherford High Energy
Laboratory, Berkshire, England, 1966), p. 157.

3 P. Federman, H. R. Rubinstein, and I. Talmi, Phys. Letters
$2, 208 (1966).
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and SU3 multiplicity 6, and a fermion of spin 2 and
SU3 multiplicity 3. The boson and fermion each are
assumed to have strong-interaction mass splittings pro-
portional to the hypercharge. We obtain the Gell-
Mann —Okubo octet mass formula and the decuplet
equal-spacing rule by assuming that the interaction
breaks the symmetry in a simple way: namely, the
symmetry-breaking term is proportional to the hyper-
charge. Thus, all SU3 symmetry-breaking effects which
conserve isospin are taken to be proportional to the
hypercharge.

One reason for our taking a boson-fermion model
rather than a quark model is a desire to obtain a baryon
as a bound state of two particles rather than three.
Although a boson-fermion model is conceptually more
complicated than the three-quark model, it is simpler
from a computational standpoint, and we can explore
in more detail the effects of symmetry breaking.
Specifically, we include effects of symmetry breaking on
the purity of the SU3 octet and decuplet representa-
tions. It turns out that the particular representation-
mixing we have considered does not improve the agree-
ment with experiment, and that therefore, with respect
to this mixing, the physical baryon states are relatively
pure.

In short, we obtain essentially the same results for
the isospin-conserving baryon mass splittings with the
boson-fermion model as have been obtained with the
quark model. Other predictions, however, are different.
For example, the level density of higher mass states is
smaller in the two-particle model. However, we shall
not treat the higher-mass states in this paper, since our
primary purpose is to introduce the model and to
illustrate its use by calculating baryon mass splittings.

We do not discuss the problem of saturation of the
forces. The question of why a boson and two fermions
are not deeply bound is analogous to the problem of
why four quarks are not deeply bound, which has been
discussed by Morpurgo. 4 Also, we do not discuss the
mesons in any detail. The reason is that to obtain
agreement with experiment, it is simplest to assume
that a meson corresponds to a bound fermion-anti-
fermion state. (The boson-antiboson states are assumed
to be higher in energy. ) Such a model is indistinguishable
from the usual quark model in its predictions of low-

energy meson states. However, if a multiplet of 27
mesons should be discovered, the situation will change.
This is because such a multiplet would be contained in
a four-particle state of two quarks and two antiquarks.

2. PROPERTIES OF THE BOSON AND FERMION

A boson-fermion model of baryons can be considered
as inspired by the quark model. In this case the fermion
triplet has the quantum numbers of a quark triplet,
and the boson sextet has the quantum numbers of a
bound state of two quarks. From SU3, ~e obtain that

4 G, Morpurgo, Phys, Letters 20, 684 (1966),

TABLE I. Quantum numbers of a boson sextet b; and fermion
triplet f; in a quark-inspired model. Here I and I3 are the isospin
and third component, Y is the hypercharge, Q the charge, J the
spin and 8 the baryon number.

Symbol Mass I3

f1
f2
fs

b1

b2

b3

b4

b5

b6

1Ãf

8$f

mf+8

mb

fSb

1Ãb

mb+6
mb+6
mb+25

1
2
1
2

1
2
1
2

1
3
1
3
2
3

2
3
2
3
2
3
1
3
1
3

3

2
3
1
3
1
3

3
1
3
2
3
1
3
2
3
2
3

If we add the assumption that in the spin-one state of
the two quarks the potential is attractive in the sextet
representation, we have the boson sextet. The boson
triplet, belonging to the 3 representation, can be as-
sumed to be somewhat higher in energy. It will there-
fore contribute to baryon states of higher mass, but not
to the baryon octet and decuplet. The quantum numbers
of the boson and fermion in the quark-inspired model
are given in Table I.Note from the table that we assume
that the masses of the particles have a term propor-
tional to the hypercharge. However, because of the
effects of binding, we do not assume that the boson
mass m~ is twice the fermion mass m~, or that the boson
mass splitting parameter 6 is equal to the fermion mass

splliting parameter 5.
An alternative and perhaps less-attractive description

of the model is in terms of two different fields, as dis-

cussed in a different connection by Gursey, Lee, and
Nauenberg' and others. In this case, we do not need

particles with fractional charge, hypercharge, and
baryon number. Possible quantum numbers of the
boson and fermion in this model are given in Table II.
Here the quantum numbers of the fermion triplet,
except for masses, are taken to be the same as those of
the proton, neutron, and A. The quantum numbers of
the first five members of the boson sextet, except for
the masses, are taken to be the same as those of the p and
X* mesons, but there is no known meson with the
quantum numbers of b6 (F= —2, I=0),

Table II gives only one, of many possibilities for the
quantum numbers of the boson and fermion in a two-

6eld model. In general, if the boson has baryon number

8, the fermion has baryon number 1—B. Likewise, if
the isospin triplet of the boson has hypercharge V, the
boson isospin doublet and singlet have hypercharge

' F. Gursey, T. D. Lee, and M. Nauenberg, Phys. Rev. 135,
3467 (1964).

the nine quark-quark states reduce to the direct sum of
a six- and a three-dimensional representation:

383=60+3.
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I'—1 and I'—2, respectively. Then the fermion isospin
doublet has hypercharge —Y+1 and the isospin
singlet has hypercharge —F. Here 8 and I' are arbi-
trary. The charge of any boson or fermion state is
given by the usual Gell-Mann —Nishijima formula
Q=I2+ Y/2.

In all subsequent considerations of this paper, it is
irrelevant whether we start from the quark-inspired or
the two-field model. In either case, the baryons will
have the same quantum numbers.

With six bosons and three fermions, we have 18
states, which are just suQicient to treat the baryon
octet and decuplet. The SU3 numerology is

Symbol Mass

fl
f2
f3

~l

b2

b3

$4

~6

tÃf

mf
mf+5

mf2

mb

mQ

mb+4
my+5
mb+26

1
2
L
2

0
—1

2

0

0
0
0

—1

—2

0
—1

0
—1

TABLE II. Possible quantum numbers of a boson sextent b; and
fermion triplet f; in a two-Geld model.

683= 100+8. (2)

We shall treat higher-energy baryon states, arising
either from 6L33 or 33, in a subsequent paper.

3. THE POTENTIAL MODEL

In our model we assume that the potential between
boson and fermion has a large term which is SU3-
invariant plus a small term which is proportional to the
hypercharge. The large term V2g" is allowed to depend
on both the total spin J of the system and the particular
representation e of SU3 in which the particles find
themselves. We write the small term I'e~~" to show
explicitly that it is proportional to the hypercharge. It
also depends on J and m, and is the same for all states
with a given J, e, and I'. Such a potential is most
easily treated using eigenstates of SU3. We denote
these states by X"(I,I8,Y).

However, the masses and kinetic energies of the
boson and fermion are not necessarily diagonal in a
representation in which the states are eigenstates of
SU3. Rather, they are diagonal in the product states,
which we denote by b;f, (i =1,2, ,6; j=1,2,3). If we
use the states b,f;, the potential energy is not diagonal.

We 6nd it preferable to consider the problem with
the mass and kinetic energy terms diagonal and the
potential not diagonal, rather than the other way
around. Therefore, in those cases in which the kinetic
energy is not diagonal in the SU3 eigenstates, we expand
our wave functions in the states b,f,, or rather in linear
combinations of such states corresponding to definite
values of the boson mass, the fermion mass, and the
isospin. We denote these states by X(I&,I~,I,I8,Y). The
relations between the product states b,f, , the SU8
eigenstates X"(I,I8,Y), and the isospin eigenstates
X(I8 If I I8 Y) are given in the Appendix.

Since angular momentum is conserved, there is no
coupling between the members of the baryon octet
(1=2) and members of the decuplet (1=82). However,
for a given J there may be coupling between the mem-
bers of an 8 and a 10 representation. Thus, for example,
the physical baryons may not be purely members of an
octet, but may have some small admixture of a spin- —',

decuplet which lies much higher in energy.

With our assumptions, we can write down the poten-
tial between a boson and fermion as follows:

V= (V2J1 +Y22J10)P10+(Y2J8+Ys2J8)p8 (3)

where P" and P' are projection operators on the ten-
and eight-dimensional representations, respectively.

4. EQUATIONS FOR THE BARYON MASSES

We assume that the baryon masses are given by
solutions to a Schrodinger equation with the potentials
described in the previous section. Although later we
shall assume that the kinetic energy is small, we shall
use the Klein-Gordon equation to describe the motion. '
Then the Hamiltonian Ho without interaction is given

by

II —[(p2+222 2)1/2+ (p2+222 2) 1/2jp

+[(p2+ (2/2 +A)2)1/2+ (p2+222 2)1/2gp

+[(p2+ (2/2 +2+)2)1/2+ (p2+212 2)1/2jp

+[(p2+2N 2)1/2+(p2+(2/2 +b)2)1/2)p

+[(p2+ (222 +A) 2)1/2+(p2+ (222 +b)2)1/2)p

+[(p2+ (2226+2+) 2)1/2+(p2+ (2/2~+ b) 2)1/2jp6 (4)

where p is the relative momentum of the boson and
fermion and the P,(i= 1, ,6) are projection opera, tors.
The projector P, is for the states b;f; (i = 1, 2, 3; j=1,2)
or any linear combination of such states; likewise P2
is the projector for any combination of the states
(i=4,5; j=1,2); P2 for (i=6; j=1,2); P6 for (i=1,2,3;
j=3); P6 for (i=4,5; j=3); and P6 for (i=6, j=3).
The states b,f, and X(I6,Ir,I,I8,Y) are always eigen-
states of II6. If a state X"(I,I8,Y) happens also to be
an eigenstate of Ho, we treat the problem with this
state, but if not, we expand the wave function in the
states X(I6,Ir,I,I2,Y).

We let the space wave function of the system be
denoted by the symbol f Then, if X"(I,.I6,Y) is an
eigenstate of Ho, the total wave function 4, including
unitary spin indices, is given by

4'=1PX"(I,I8,Y) .
' L. J.Tassie and D. B.Lichtenberg, Australian J.Phys. 19, 599

{1966).
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On the other hand, if X"(I,IS,F) is not an eigenstate of
P0, the problem is not diagonal in either the states
X"(I,IS,F) or the states x(IS,Ir,I,IS,Y). We then
expand in the states X(I SIr,I,I SF), obtaining for 4'

The equations for ™are

L(p+( +~) } +(p+( +~) }
+8V1"+8 V18—8»"—S»'l4'
+-'v2(V1"—V18 »1—0+»8)1'= 1', (14a)

11 = Q 1p &(IS,Ir,I,IS,Y). (6)

We have written only two terms, since it turns out that
is thc maximum numbcl needed ln our consldclatioIls.

The eigenvalue probleIn to be solved is

(IIS+V)4= I3%', (7)

where the eigenvalue J3 is the mass of the appropriate
baryon. (We use the symbol for a baryon to denote its
mass. )

It can be seen from the wave functions in the Appen-
dix and the mass values of the boson and. fermion
(Table I or II) that IIS is diagonal in the X"(I,IS,F)
representation for E, h. , X*,and Q.

Substituting (3), (4), and (5) in (7), and taking the
scalar product of the result with the appropriate
X"(I,IS,F), we obtain

Dp'+~ ')'"+(p+~r ) "+V"+ "7~=~~,

L(p'+( +~)')'"+(p'+ i')'"+V"]&=IV, (9)

L(p2+2N 2)1/2+ (p2+2/2 2)1/2+ V 10+s 10]p—I|7@f (10)

L(p'+(~0+»)')"'+(p'+(~/+&)')'"
+V"—2 "&a=«

Equations (8), (9), (10), and (11) must be solved to
give the masses of E, A, E~, and 0, respectively.

To obtain the equations for Z, , V*, and ™*,
we substitute (3}, (4), and (6), in (7). The states
X(IS,Ir,I,IS,Y) are eigenfunctions of the kinetic energy
projectors I';(2=1, ,6). To carry out the projection
operations in the expression for the potential, we write
the X(IS,Ir,I,IS,F) states in terms of the states
X"(I,IS,F) which are eigenstates of the potential pro-
jectors P' and E".After operating with these projection
operators, we re-express the X"(I,IS,F) in terms of the
X(IS,Ir,I,IS,F). Finally we take the scalar product of
the result with the X(ISp,Irp, I,IS,F},where p=1, 2, in
turn. Ke obtain two coupled equations each for Z,

, I'~, and
For Z the equations are

[(p2+2/2 2)1/2+(p2+ (2/2 +/i)2)1/2+XV 10+2 V 8]p
+V&(V1"—V1')~tp=~4-~ (12a)

L(p'+(~ +~)')"+(p'+~ ')'"+-'V "+-'V']4
+-s'v2(V1"—V18)1'=21'. (12b)

L(p'+(~+»)')"'+(p'+~r')"'
+ 8 V1"+8 V1'—801"—-'»'j4'p

+-~2(V1"—V1'—»"+»')4' = 6 (14b}

These equations also hoM for *with —+ ~ and

V 10~V 10 V'S~V'8 p 10~p 10 s s~s 8 (15)

A,—E=X—y—V18, (18)
E*—X= V "—V 8+2/ "—»8 (19)

S. APPROXIMATE SOLUTIONS

In principle, Eqs. (8)—(15) can be solved for the
eight di6erent baryon masses once tnq, my, 6, 5, t/'1. ',
V18, V310, V38, v110, e1', e3", and e38 are given, However,
such a solution would not be meaningful, since there
are more parameters than masses. What we shall do,
therefore, is to obtain approximate solutions for the
mass differences which are relatively independent of
most of the parameters.

We assume that all potentials are square wells of
radius u. Furthermore, we assume that the masses
vs~ and my and the potentials V2," are large compared
with the baryon masses and compared with 6, 8, and.
~2;". Finally, we assume that the conditions of the
problem are such that it is a good approximation to
assume that the wave function vanishes at r=e. This
approximation is a good one if u))1/2220 and u))1/2Nr.
This condition also allows one to use a nonrelativistic
expression for the kinetic mergy, but we do not 6nd. it
necessary to do so.

The vanishing of the wave function at r=u means
that the momentum p is a constant which depends on
the radius o (P =2r/a in an 5 state), but is independent
of all other parameters in the problem.

Under these conditions, Eqs. (8)—(15) can be treated
as algebraic equations. In particular, assuming an
5-wave bound state, the mass of the nucleon is given by

g (PS+22202)1/2+(PS+2/2~2)1/2+ F18+»8 (16)

The mass differences A-X, S~-E, and 0-S~ are then
obtained from (9), (10},(11), and (16).We expand the
square roots in these equations to first order in the
parameters x and y defined by

2N g(p2+2/2 2)
—1/2+. 2/20g(p2+2N02)

—1/2

(17)
2y 2/Sr/i(p2+2Nr2) 1/2 2/2bg(p2+2N02) 1/2— —

The same equations hold for I * with Z —& I'* and.

P 10~ t/r 10 P' 8 ~ V' 8

O,—x*=3~—y—3~,». (20)

The masses of the Z, , I'~, and *are each obtained
(13) by diagonalizing a pair of coupled equations. Each set
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of two coupled equations has two roots. The lower one
is taken to be the mass of the baryon. We introduce the
notation

Ui= 8 (lr110 p'18) ul (0110 018)

Us=-'(Vs' —Vs") u =-'(1 '—v ") (21)

The experimental fact that the lowest J=—,
' representa-

tion is an octet and the lowest J=-', representation is a
decuplet shows that V»' and Va" are deeply attractive
(negative). Therefore, we take Ui) 0 and Us) 0. With
this notation, we obtain the following expressions for
the mass differences:

Z—h =y+Ui —Us{1—ss(y/Ui)+(y/Ui) ) I (22)

Z X=2$ y+ U1 u1 2» (U1 u1)

X {1+-,'[y/(U —u )3+Ly/(Ui —ui)38) "8, (23)

F*—iV*=x+ Us —asm

—Us{1+-'(y/Us)+(y/Us)'&'" (24)

*—E*=2X—y+ Us —us —2»10—(Us —us)

/(Us —us) j~Ly/(Us — )j') "8 (25)

It is interesting to see whether the expressions

(18)—(20) and (21)—(25) can give agreement with the
observed baryon mass splittings in the absence of a
symmetry-breaking potential. We 6nd this is not the
case, as can be seen by the following argument. If we

put v2~"——0 in the expressions for the mass differences,
we obtain the following equations (among others which
we do not need):

(26)

n —S*=3x—y, (27)

Z—A= y+ Ui —Ui{1—-', (y/Ui)+ys/Uis) 'Is (28)

Using the experimental mass differences (hE=176.—
MeV, 0—%*=440 MeV), we find from (26) and (27)
that

x=132 MeV, y= —44 MeV.

Then, using Z —A=78 MeV, we obtain from Eq. (28)

has been seen. Under these conditions, we expand the
square roots in (22), (23), (24), and (25) to first order

iny/U1, y/(U1 —ui), y/Us, andy/(Us —us), respectively.
We obtain

Z—h. =gy, (30)

(31)

(32)

(33)

—X=2x—g4y —2e»',

I *—X*=x——',y—es»0,

*—X*=2x—2y—2e '0

Equations (18)—(20) and (30)—(33) give the seven mass

differences in terms of four parameters: namely, y
and the following three linear combinations of the
parameters introduced previously:

5=&—sy —»"
'g= S—'V»

p' 10 p' 8+8 10 0 8

(34)

6. DISCUSSION

Our two-particle model is somewhat more Qexible

than the quark model in that it contains two mass

splitting parameters rather than one. For this reason it
gives an intrinsic Z—A. mass splitting even in the absence
of a symmetry-breaking potential. However, in the
absence of a symmetry-breaking potential, the model
leads to Eq. (29), which cannot be satisfied with

reasonable parameters. In fact, our model calculated
in perturbation theory without symmetry breaking
leads to the following relation between the decuplet
and octet spacings:

0—1V*=8 ( —iV)+ ss (Z—A.) . (35)

1t is apparent from Eqs. (18)—(20) and (30)—(33) that
the decuplet masses satisfy the equal spacing rule and
the octet masses satisfy the Gell-Mann —Okubo relation.

Our result obtained by expanding the square root is
the same as the one we would have obtained if we had
done the calculation allowing no representation mixing
from the start. This is simply the perturbation theory
result.

122 MeV=U1 —Ui 1+8 yl Ui+ y U1' '~' 29
This result is analogous to the quark-model prediction,

But this equation cannot be satisfied for any positive
U», since the square root on the right-hand side is
greater than 1. But if U» is negative, a spin- —', baryon
decupIet will bind more deeply than the baryon octet,
in contradiction to experiment. Thus, representation
mixing in the absence of a symmetry-breaking inter-
action is not sufhcient in this model to lead to predic-
tions in agreement with experiment.

We next explore the consequences of the assumption
that U» and Ue are large compared to the symrnetry-
breaking terms x, y, I», and Na. This meatus that the
potentials V»" and V3' are not deeply attractive, a
reasonable assumption in view of the experimental fact
that no low-mass baryon spin-~~ decuplet or spin-~~ octet

0—E*=ss(™—E), (36)

because in the quark model without symmetry break-

ing, we have Z—A. =O. The boson-fermion model is

able to give a positive Z—A. mass diRerence, but the
resulting Eq. (35) disagrees with experiment even more
violently than Eq. (36). Thus, both the boson-fermion

model and the quark model appear to require a sym-
metry-breaking interaction. The symmetry-breaking
potential which destroys this unwanted relation can
depend just on the hypercharge in the two-particle
boson-fermion model, rather than also on the isospin,
as it must in the quark model to give a Z —A mass
splitting.
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We have introduced our model partly in order to
be able to calculate the effects of representation mixing
in a simple way. However, one of the results of the cal-
culation is negative: Under the assumptions of the
model, no amount of representation mixing can give
the experimental baryon mass differences in the absence
of a symmetry-breaking interaction. However, we have
neglected other possible types of mixing. For example,
we have assumed that a baryon is a bound S state of a
boson and fermion. It could equally well be a bound D
state or, more likely, a mixture of the two.

Our final result, that with a symmetry-breaking in-
teraction proportional to the hypercharge, the mass
splittings are given in terms of four parameters, is not
startling. We get the familiar decuplet equal spacing
rule and the Gell-Mann —Okubo octet mass formula, but
nothing more. The same results could have been derived
from the model with considerably less work using
perturbation theory plus group transformation pro-
perties. But we would not have been able to explore in
detail the consequences of higher-order effects.

Finally, we wish to stress that we attach no funda-
mental significance to the boson and fermion of our

model. If any bound-state model of baryons makes
sense at all, the quark model appears to be preferred
because it is conceptually the simplest. From this
point of view, the predictions of the boson-fermion
model result from the quark model with the added
dynamical assumption that it is a good approximation
to consider the interaction of a quark with a bound
state of two quarks. Such might be the case if a bound
state of two quarks has a smaller mass than that of a
single quark. This is in contrast to the usual approxima-
tions made in treating a three-quark system.

ACKNOWLEDGMENTS

We should like to thank Professor Roger Newton for
valuable discussions and Professor Amos de-Shalit for
information about the quark model, especially about
work of Federman, Rubinstein, and Talmi. This work
was begun while one of us (LJT) was at Indiana
University. Part of this work was done while one of us
(DBL) was at the Summer Institute for Theoretical
Physics at the University of Washington. We are grate-
ful for the hospitality shown us at these institutions.

APPENDIX

We give here the relationship between the SUo eigenstates X"(I,Io, Y), the states X(Io,I~,I,Io, Y), and the states
b;f;. Neglecting representation mixing due to symmetry breaking, the states X"(I,Io, Y) correspond to the mem-
bers of the baryon octet and decuplet. This correspondence is also given.

+—X10(3 ~3 1) b~fq x(1 1 3 3 1)
1V*+=X"(-'—'1)=(Q ')b&fo+(Q-'-)b f =&(1 —' —' —'1)
& *'=X"(5—

2 1)= (V'o)bofo+ (V's)bof~= ~(1 o -' —
2 1)

S* =X'o(oo —oo 1)=bofo=X(1 2 —,
' —

o 1),
Y*+=X' (1 1 0) = (Q—', )byfo+ (Q-,') b f,= (Q—',)X(1 0 1 1 0 )+(Q—',)X(2 o 1 1 0),
Y*'=X"(10 0) = (Q ', )(hof,+b4f, +-b,fg) = (Q-', )X(1 0 1 00)+(Q-', )X(-', —,

' 1 00),
Y* =X"(1 —1 0) = (Q—', )bofo+ (Q—,')bofo ——(Q~)X(1 0 1 —1 0)+(Qo)&(2 o 1 —1 o),
=-*'=X"(-; —; —1)= (Q-;)b,f,+ (Q-;)bof, = (Q-;)I(-; 0 -, —, —1)+(Q-;)X(0 -', —', —', —1),
g* =X"(—' ——' —1)= (goo)bofo+(Q~~)bofo ——(Q2o)X(2 0 o

——', —1)+(Qo)X(0—', o
—

2
—1),

0 =X"(00 —2) = bofo
——X(0 0 0 0 —2),

P=X'(-', -', 1)= (Q-', )bgfo
—(Q-;)b,f,=X(1 —', —,' —', 1),

I=X'(2 —
2 1)= (V'o)bofo —(V'o)bof~= X(1 2 o

—
2 1) ~

Ao=X'(0 0 0)= (Q-', )(b4fo
—boff) = X(-', —', 0 0 0),

2+=X'(1 1 0) = (Qo') by fo—(Q-', )b4f g
——(Q-', )X(1 0 1 1 0)—(Q-,')X(-,'—,' 1 1 0),

Zo =X'(1 0 0) = (Q'o) (2b&fo—
b4 f &

—bof&) = (Q-,')X(1 0 1 0 0 )—(Q—',)X(—', o 1 0 0),
&-=X'(1 —10)= (&-;)b,f,—(&-',)b,f,= (V'-', )X(1 o 1 —1 o)—(V'-', )X(-,' -,'1 —1 o),

'=X'(-,' —,
' —1)= (Q-', )b4fo —(Q-', )boff ——(Q-', )X(-,'0 —,

' -', —1)—(Q-,')&(0 —,
' —', —', —1),

2-= X (-; ——, —1)= (Qo)b.,fo—(Q-;)hof, = (Q-;)X(-; 0-, ——, —1)—(Q-;)X(0 ~2 —, ——, —1) .


