
PH YSI CAL R EV IEW VOLUM E 155, NUMBER 25 MARCH 1967
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The possible contribution of a cut in the angular-momentum plane to pion-proton total cross sections
is investigated. Forward dispersion relations are used to derive a sum rule. The resulting predictions are
compared with experimental data. Several models in which a Regge cut gives a large contribution to the
total cross section are found to be indistinguishable in their predictions from the conventional model based
on Regge poles.

I. INTRODUCTION

~ROM the time when high-energy cross-section da, ta
were first analyzed in terms of Regge poles, the

phenomenology of high-energy physics has been haunted
by the fear that branch-point singularities of the scatter-
ing amplitude in the complex angular-momentum plane
might have to be considered. Despite a great deal of
effort, it has not so far been possible either to prove or to
disprove the necessity for Regge cuts from the basic
analyticity postulates of 5-matrix theory. The generally
accepted view, ' however, is that there should be cuts in
the angular-momentum plane; this belief is customarily
tempered by a hope that the contribution from a cut
might be so small as to be negligible compared to the
contribution from Regge poles. Such optimism is not,
of course based on any wholly conclusive theoretical
argument' —rather it is adopted as a rationalization for
the amount of effort which has been invested in ever
more sophisticated fitting of the experimental data using
poles alone.

Indeed the very great success which has been
achieved, especially recently, in fitting high-energy cross
sections with models using a limited number of Regge
poles' ' might be taken as empirical evidence favoring
the view that if cuts exist, they do not contribute
significantly to the scattering amplitudes which have
been analyzed so far. However, this argument is con-
vincing only if it can be shown that similarly good fits
cannot be obtained using a cut with reasonable assump-
tions about the discontinuity across it. The purpose of
this paper is to present the results of a preliminary
investigation of this point.

The effect of a cut in the angular-momentum plane on
the asymptotic form of the total cross section in the
crossed channel has been discussed by a number of
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authors. ' "In this paper we follow the approach of Igi"
which leads to a slightly more general asymptotic form
for the total cross section than has normally been used
by other workers. The research reported here also divers
from previous work by imposing a sum rule" derived
from the forward dispersion relations.

In this exploratory investigation we confine attention
to the total cross sections for pion-proton scattering,
which are related to the forward scattering amplitudes
through the optical theorem. This process was selected
because of the existence of accurate data, the existence
of well-established dispersion relations which allow the
elimination of one parameter through use of a sum rule, "
and because pion-proton scattering has already been
thoroughly and successfully analyzed with a Regge-pole
model.

As is well known, the total pion-proton cross sections
can be fitted extremely well in the energy range from
5 to 20 GeV using a three-pole model. Two of the poles,
P and P', have vacuum quantum numbers, while the
third has the quantum numbers of the p meson. The
parameters of the p pole appear to be very well deter-
mined; however, the parameters of the P and P' poles
appear to be more sensitive to the details of the analysis.
When nonforward scattering is analyzed, the trajec-
tories of the three poles have been determined as func-
tions of the invariant momentum transfer. When these
trajectories are extrapolated into the physical region for
the crossed channel, the extrapolated P' and p trajec-
tories pass close to the positions of the fo' and p mesons,
respectively; however, the P trajectory does not pass
close to any known spin-2 particle with the correct
quantum numbers. "

In this paper we accept the empirical evidence that
the p trajectory is truly a Regge-pole trajectory. Con-
sequently, we consider the sum 0++a of the total ~+p
and ~ p cross sections. As is well known, the p trajectory
does not contribute to this combination of cross sections.
Since the P and P' parameters appear to be fairly
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Qexible, and since these parameters change quite
significantly if an extra pole is included, vre consider that
the empirical fit of the data by a model using P and P'
could be merely simulating the eBect of a cut. It is clear
that a model based on the poles P, P' and a cut will give
no reliable information concerning the existence of a cut
contribution, since the data can be very adequately
fitted vrith P and P' alone. Consequently, in our in-
vestigation vre attempt to replace one of these by a cut.
Since the contribution of a pole to the high-energy cross
section depends on only two parameters, it is unreason-
able to assume a cut contribution depending on more
than two parameters —this criterion vrill guide our
assumptions concerning the discontinuity across the cut.

In Sec. II vre establish our formalism and derive a
sum rule analogous to that of Igi."Sections III and IV
compare several models with the experimental data,
while the results obtained are fully discussed in Sec. V.

In comparing an asymptotic cross-section formula
with experimental data, we are faced with the vexed
question of guessing an energy beyond which the
asymptotic form may be assumed to be reliable. Some-
what related to this is the choice of experimental data.
While a full statistical analysis is desirable, vre feel this
is unnecessary to an exploratory investigation such as
that reported here. Our judgment in this respect is fully
supported by the discussion to be presented in Sec. V.
We choose to consider only the data of Citron et al."in
the momentum region from 2.6 to 6.8 BeV/c and the
data of Galbraith et a/. "from 8 to 20 BeV/c. These are
selected because the quoted errors are smaller than in
most other experiments, and because the two sets of
data are in reasonable agreement where they overlap in
the neighborhood of 6 BeV/c. The two sets of data do
not appear to be completely consistent with each other,
however, since the most natural extrapolation of the
points of Citron et al. would fall below the points
obtained by Galbraith et a/. It is also worth noting that
cross sections obtained by other workers tend to lie
higher than either of the sets of data vre have used in the
energy range between 5 and 8 BeV. With these com-
ments in mind, it appears to us most reasonable to
assume that the onset of the asymptotic region occurs
somewhere between 5 and 6 BeV/c.

Since the Pomeranchuk trajectory is so thoroughly
entrenched in the high-energy folklore, our first attempt
to fit the cross-section data assumed a Pomeranchuk
pole together with a cut. In Sec. III it is shown that this
is possible only if the Pomeranchuk pole is completely
dominated by the cut contribution, and then only if the
asymptotic region does not begin until E=6 BeU. This
suggests that if one believes in the Pomeranchuk trajec-
tory, then one must also believe in the P' trajectory
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'4%'. Galbriath, K. W. Jenkins, T. F. Kycia, 3.A. Leontic, R.
H. Phillips, A. L. Read, and R. Rubinstein, Phys, Rev. 138, 8913
(1965).

and reject the cut as being unimportant. However, this
conclusion depends strongly on the assumptions we
have made about the discontinuity across the cut, and
cannot therefore be regarded as completely certain.

Another possibility is to replace the Pomeranchuk
pole vrith a cut. Although this vrould con6ict vrith
currently accepted opinion, and although many strong
arguments have been advanced for believing in the
Pomeranchuk pole, we do not know of any completely
compelling reason for retaining it. If it should be
possible to replace the Pomeranchuk trajectory by a cut,
one vrould at least have an explanation for the absence
of any spin-2 boson associated vrith this trajectory. In
Sec. IV we show that it is possible to obtain an ac-
ceptable 6t to the data assuming a model using P' and
a cut, for quite a vride range of the cut and pole param-
eters. Of course this conclusion must be regarded as
very tentative —it may not be possible to fit other data
such as nonforward scattering and polarization sects
with the model, or to fit data for other processes using
a cut with the same parameters. Our results are dis-
cussed more fully in Sec. V.

II. BASIC FORMALISM

T~(E)=ALT-(E)+T+(E)j
T2(E)=sP'-(E)-T+(E)j. (2)

T~(E) and T2(E) correspond to I=O and I= 1 in the
crossed channel, respectively. Each amplitude is split
into real and imaginary parts by

T;(E)=D;(E)+iA;(E), J=1,2, +, —.
With these notations, the forvrard dispersion relations
are

f' k'
Di(E) =Di(u)+-

M E'—(w/2&V)'

Ag E' (4)k"(k"—k')

Dg(E) Dg(p, ) f' k'

E p p' E' (p'/2M)'—
k' "A2(EI)

. (5)
0 E' k"(k"—k')

We shall deal with amplitudes T~(E) related to the
~+p and s p cross sections 0+ by the optical theorem

a+(E) = (4s-/k) ImT~(E),

where E is the total energy of the pion in the laboratory
frame and k = (E'—p')'~', p =pion mass in energy units.

It is more convenient to use the amplitudes



o(~)L~—«t( /2)3(—) d

(,.(1—h)h~e- "('»&C i—tan(irh/2) jA

E I'(y+1) y+1 q='K—
~ Dn(&/i )j'+' »(&/a)&

By using these dispersion relations in conjunction The cut integral may now be vrrjttell
with a Regge-pole model, Sertorio and Toiler' were able
to derive a simple form for the sum rule. Since in our Z, (g)
model wc shall assume that T2 is dominated by the p -I/2
trajectory, we shall add nothing to their results for this
amplitude. For Tg, however, we shall derive a sum rule

assuming that at suQiciently large energies Tj is p
dominated by a series of Regge poles together with a
Regge cut.

For Ti(E) we take the form

n E j
Ti(E)=g a(i—cot(ira/2}j-

j I p

h&(1—h)(,-*' ixi» tan{~h/2)Ch

Hence the real and imaginary parts of 2'i(Z), according
to our hypotheses, are

1 CC

+ (.)
+0(~')+OP "') (6) '= ' ~i3

The slgnRturc fRctoI's Rrc RIl csscntlRl conscqucQcc of thc
relativistic treatment of the problem. 9 The cut is
assumed to be along the real axis up to I. For the
derivation of the sum rule to be valid, it is necessary to
take the lower limit of the cut integral to be negative;
for convenience we shall take it to be ——,

' in what follow s
although this is not strictly necessary.

The discontinuity P(n) across the cut is of course un-

known. However, in order that the cut integral shouM
converge near a=0, we assume that P (n) has a factor n.
Otherwisc, we expect the high-energy amplitude to be
dominated by the contribution of the cut near n=i,
together with the poles. Following Igi, '0 we write
x=1—e Rnd

p(n) =cnr&p(h) =a{1—h)h&p(h), 7)—1 (7)

where $(0)=1.We assume that g (h) can be expanded
Rs a pow'cl '&ries convex'gent for 0+%+ 2. Slncc %'c wRQt,

a two-parameter contribution from the cut, and since
me expect the cut contribution to be dominated by
h=O (i.e., +=1) at high energies, we make the further
approximation of retaining only the 6rst term in the
power series for p(h), and take

P(a) =c(1—h)h&, h=1 —n, y) —1.

3/2

h7(1—h)(,-.'i'I» tan(~h/2)dh
p

+0(E 'i'), (10)
n 8 "j

~i(~)=Z a. —
y,

1(&+1} &+1

~ Dn(~/~)l +' »(~/~)
+o(~'") (11)

Fol' sufBclcntly lRl gc encl glcs, thc second tcI'In ln
the cut contribution to AI Inay be ignored, while
{1—h) tan(7)-h/2) may be approximated by —,'mh to yield

'e CLg

Di(E) = —P a cot(ira/2)—
p

Z 1 (~+2)--', ere — . (12)
Dn(&/~)1'+'

In this limit, our results agree with these obtained by
Igj 10

The next step is to insert (6) into the dispersion
relation (4). The dispersion integral is divided into two
ranges, from 0 to X and from Z to ~. For E)E, the
asymptotic form (6) is assumed valid, while for E&E
experimental data will be used. We obtain

dk" k2 ~

Ai(E') — -+—Q a;I'
k"(0"—k') 7r ~'=)

p pa p Zn

Di%) =Bi{)+——— +—
M E' (p'/2M)' m— 8' & dk'2

g~ p 0"(k"—)i.")

e

P(a}~~I' — +O(Z-)I~). (1S)
g p k"(0"—k')
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a il 'ustified using our assumeda ion. The chan e in order of integration is rea i y j
r E—1/2

p

we~may'
""' ' ' '

i'dentif in E with k E with k We next use the resulti~

to obtain

dx= —m.y cot«+ F(1, 1+u, 2+u; X/y)
(u+1)y

C

k 2 Ei, E
k 'cot(«/2)y —

~

F 1, -'u, 1+—u;
dk"E ~P —rr (kI 2) rr/2 —i

p
'2 —k2k'~ (P2—k2)p

owers of E to obtainFinally we insert ~ ~ in o(14) 'nto (13) and expand in decreasing po

f2 2 E7

D (E)=D (E)+——
M Z p

CXgdk' ~ E ~ 2 ~

A (E') —Q a, — cot(«, /2)+ —P a, —
1 j

k' j1 p 71 &=1 p Nj

+ n dn —— cot(«/2)+ ——F(1, ~n, 1+-',n; K/k) +O(E '"). (15
—1/2

luated as before to obtain the final resultThe cut integral may be eva ua e as

f2 2 K

Di(E) =Di(E )+—— dk' E "& 2 a, E
Ai(E') —P a, — cot(«, /2)+ —P ——

k' j=1 p X'i=1 O.j p

—
(
—
) r'(1 —r)r '"' '"'rrrrr( r/2)r)r+O(E "'). (16)C

2 Dn(E/E)]"' E ~ p Dn(EIE)]'+'

Comparison of (16) with (10) now yields the sum rule

f' 2 ~ dk' 2
Di(EE)+ A i—(E') —+-

p
k'

dk' 2 2 1—u, E . 2E 1(&+2)
Ai E' + Ai E+-

jr 2

a; E ) 2 E I'(y+1)

E Dn(EIE)]"'

h
'

the as mptotic form (11) is already valid at energy E,or since by hypothesis t e asymp o
'

f2 2 x
Di(u)+ ——

M m. p

=0. (18)

As a consistency check on the summ rule we may
diBerentiate q y(18) b Z: this yields a first-order differ-

ential equation orf A (E) which is easily found to be
satisfied by the form (11).

In the sections following, the sum rule wil e use o
Fu

' t of the cut contribution in termsexpress the coeFucien o
of the pole parameters and the single remaining cu

arameter y. e i
A (E) 'll iso be related to the total ir-pam litude A1q g wi a so

~ ~

b th tical theorem. Itisconvenient tocross sections y e op ic
define

Then the sum rule yields

and

8ir I'(y+2)

E Dn(E/E)]"'
=8 Pb, —

(E)—=o+(E)+o-(E)= 2

1—n,
—-ln(E/EE)- &+'-ln(E/EE)

(21)

(o++o )dk 4~'(D, (EE)+f'/—M)

EL~+(E)+o (E)],—(19)-
»=(8~a/E)(EIE) ' ' (20)

a nus F. Oberhettinger, and F. Q. Tricomi,"A. Erdelyi, W. Magnus, . er, . m1

Inc. , New York, 1954), Vol. 2, formula

III. ATTEMPTED FIT WITH P+CUT

In this section we discuss the possibility of replacing
a cut. We thereforethe second vacuum pole I' y

assume a single vacuum pole wit n= gh n=1 to ether with a
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At the same time, we obtain from (24) and (23)cut and obtain the cross-section formula

o(E)=+(E)+a-(E) o.—o (E) ln(E/p)
Z(E) —= —1-ln(E/p) —&+'-ln (E/p)

=b+B —1, (23)
ln(E/p) y+1 1n (E-/p) &+' -ln-(E/p) —1, (30)

— »(E/v) -- 7+1

l"(E/ ) '+' l (E/ )—[Z(E)+1]( +1)
(31)

in(E/~) ln(E/„) —(~+ 1)1n(E/p)
o=o(E).=—b-+8 —1

y+1
(24)

The obvious solution &+1=0 must be rejected since by
hypothesis &+1&0. Since Z(E) & 0, it is easily seen that
there is no solution for (y+1)&In(E/p). If we choose
X=18 BeV/c, where E is the momentum corresponding
to energy E, and take a(E) =48.5&0.36 mb, we find
that for E= 5 BeV/c, Eq. (31) has a second solution in
the vicinity of &+1=0.30. This confiicts with the in-
equality (29): Clearly the best we can do to fit the data
is to choose y+1=0.562, in which case the coefFicient
b of the Pomeranchuk pole contribution to (23)
vanishes. If E=6 BeV/c, the second solution is close to
y+1 =0.609, in which case the residue of the Porneran-
chuk pole again vanishes.

We notice that by virtue of the sum rule the model
based on a cut alone involves just one free parameter p
which is completely determined by fitting the theory to
one experimental point. Figure 1 shows the cut predic-
tion fitted to the Citron data at 5 BeV/c and at 6 BeV/c.
For comparison, Fig. 2 shows a conventional two-pole
model fitted at 5 BeV/c with n„=0 69 ' an.d fitted at
6 BeV/c with rr„.=0.615.e Clearly the cut model fitted
at 5 BeU/c is quite unacceptable; however, the cut
model fitted at 6 BeV/c fits the Galbraith data quite as
well as the two-pole model.

since b& 0, the only acceptable values of y must be such
that

-ln(E/p)
8 (25)

8 ln(E/ii)
v+1& (26)

We shall consider both Z = 5 BeV/c and Z =6 BeV/c.
From previous numerical work. on fitting a pole model
to the same data, ' 4 we obtain

8= 10.51+0.06 mb (27)

for both values of E. For the total cross sections at the
two energies we take

o = rr++o =5—5.98 &0.01, (/=5 BeV/c)
=54.056&0.01, (Z =6 BeV/c) .

Hence the lower limit on y+1 is

7+1&0.562, (E=5 BeV/c)
&0.609, (E=6 BeV/c) . (29)

which involves only two free parameters, b and p. It
should therefore be possible to evaluate the two param-

or
eters by a two-point fit to the data. For convenience we
choose one of these points to be at energy E. Hence, we
obtain

FxG. 1. Predictions of the model
using a cut alone. The values of y
for curves 1 and 2 are determined
by 6tting the curves to the data of
Citron et al at 5 and .6 BeV/c,
respectively. The error bars for the
data of Citron et ul. are not larger
than the circles used to denote
their points.
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64.0— TNO POLE MODEL
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Fxe. 2. Predictions of the con-
ventional Regge-pole model. Curve
1, with ~=0.69, is Gtted to the
data of Citron et al. at 5 BeV/c,
while curve 2, with a=0.615, is
6tted to the data at 6 BeV/s.
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The cross-section formula is now

I ot
-—1n(E/p) &+' 1n(E/p)

+ 8 b— ——1 . (32)
n i 1n(E/p) y+ I

It is not too surprising that the two-pole model can
represent the data reasonaMy well whether the theory
is fitted at 5 BeV/c or at 6 BeV/c, whereas the cut model
gives an adequate representation only when fitted at (g
6 BeV/c,

'

since the two-po1e mode1 contains two free
parameters whereas the cut model has only one.

Further discussion of these results is postponed until
Sec. V.

IV. ATTEMPTED FIT WITH P'+CUT

For the reasons stated in the Introduction it is
interesting to attempt to fit the data with a model in
which the Pomeranchuk pole is replaced by a cut. %e
are further encouraged to try this by the results of the
previous section, in which me saw that the attempt to
replace the second vacuum pole by a cut led to the
elimination of the Pomeranchuk pole.

It is convenient to determine b by 6tting (32) to the
experimental data at energy E. In this rvay we obtain
the formula

u—1

oP—S(~+&)3 =
E

1n(E/li) &+' y+ I
+ L(~+a)X—B] — I— —,(33)-» (Elp)- — » (Elu)-

64.0— COT kND POLK

60.0

6 56.0
I
b
+

52.0

Pro. 3. Predictions of the mode
using E' and a cut, for two sets of
cut parameters. In curve 1, the
residue at the pole is determined by
Gtting the data of Citron et al. at
5 BeV/t,", while in curve 2 this
residue is found by fItting at 6
BeV/c. Equally good 6ta to the
data may be found using a wide
range of values of the parameters.
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I

6„0
I
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I I I
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64,0
COMPARISON OF MODELS

60.0
7 =-0.59

I"10.4. Comparison of the model
based on I" and a cut, for two
diferent sets of parameters, with
the conventional two-pole model.
All curves are Gtted to the data
at 5 BeV/c.
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where

y= (7+&)/»(E/~)

If desired, 0 may be treated as a parameter to be fitted
along with n and y by a least-squares procedure, instead
of being taken from experimental data.

It proves in fact quite easy to fit the experimental
data within the experimental accuracy for quite a wide
range of the parameters. Two typical curves are shown
in Fig. 3.The possibility of such a fit is not too surprising
since the model under consideration has three free
parameters and excellent 6ts have already been found in
the last section and in previous work' 6 using only one
or two free parameters. It appears in fact that provided
the theoretical curve is chosen to fit adequately at the
ends of the 5—20 BeV/c interval it is almost certain to
6t reasonably well between these extremes. The theo-
retical curves illustrated both have O,„reasonably close

to the values obtained' ' from the two-pole model;
however, other fits are possible in which n„ is very
diferent from the two-pole value, and it is even possible
to find fits for which the residue b of the pole is negative.
Since the trajectory of the I", as obtained from the
two-pole model, passes close to the position of the fo',
we are biased in favor of fits such as those ijlustrated
in which o.~. is not too diferent from the two-pole
value.

In the previous two sections, we have shown that a
model involving a Regge cut can 6t the experimental
data for the sum of s+p and ~ p total cross sections in
the momentum range from about 6 to 20 BeV/t, . It re-
mains to discuss the signihcance of these results.

First, we should ask whether the two-pole model Inay
not give a significantly better representation of the data.
Indeed, the sum of squares of the deviations between

60.0

MOOELS

~ 0.69

OP& e 069 ye Of

&y ~ 0.892, &~-0.25

I'10. 5. Comparison of the pre-
dictioIls of the models based on a
cut alone, on I" and a cut, and on
two poles. All the curves are 6tted
to the data at 6 BeV/c.
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the theoretical predictions and the experimental points
is smaller using a two-pole model than with any of the
models using a cut. This, however, is not significant, as
is clearly shown in Figs. 4 and 5. In these, the predic-
tions of several models are plotted on the same graph,
and in each figure the theoretical models clearly cannot
be distinguished from each other in the significant
energy region.

These two plots also justify our rather arbitrary
selection of experimental data, since they show that
whatever may be the finally accepted best fit to the data
using a two-pole model, we can obtain a whole family
of essentially indistinguishable fits using the (P'+cut)
model. To resolve this question experimentally with
data at energies less than 20 BeV, it would be necessary
to obtain ~+p and ~ p total cross sections with an
accuracy considerably better than 0.05 mb for the
whole energy range up to 20 BeV.

One of the most striking consequences of eliminating
the Pomeranchuk pole in a model using a cut would be
that total cross sections should tend asymptotically to
zero rather than to a constant at very high energies.
This gives a method in principle of distinguishing
various models. Figure 6 shows the same curves as in
Fig. 5 extrapolated to 450 BeV/c. A measurement of
0++0 at 100 BeV/c would have to have an error no

greater than &0.8 mb in order to distinguish between
these three curves. At 500 BeV/c the three curves
illustrated could just be distinguished by a measurement
of 0++a accurate to 2 mb. Even a single experimental
point at 500 BeV/c with this accuracy would not decide
the question, however, since existing least-squares its
to the data for E(20 BeV/c' ' lead to predictions for
the infinite energy limit of 0++0 which differ by
miflibarns.

In conclusion, we see very little hope of distinguishing
between the various models we consider here by total
cross-section measurements on pion-proton scattering.
This preliminary investigation suggests that a model in
which a major part of the total ~-p cross section at high
energies is contributed by a Regge cut in the crossed
channel must be considered to be a live option. Of
course we cannot reject the usual Regge-pole model
which has had so much success. We must seek other
types of data which are capable of distinguishing be-
tween the different models. The most hopeful possi-
bilities appear to us to be the ratio of the real and
imaginary parts of the forward scattering amplitude,
since the real part is sensitive to the infinite energy limit
of the imaginary part through the forward dispersion
relation, and polarization effects in pion-proton scatter-
ing which in the usual theory depends on o,„—n„..


