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A hierarchy of sum rules on scattering cross sections are derived under much less restriction than pre-
viously assumed. New sum rules and real parts are discussed.

ECENTLY, sum rules on scattering cross sections!
and electromagnetic mass differences? have been
derived from an additive quark model and seem to
agree very well with experiment. In particular, there
seems to exist a ‘“hierarchy” of scattering sum rules,
i.e., certain equalities are more valid than others,
although the reason for such behavior is not completely
clear from their manner of derivation. For example, it
is rather mysterious that, under the same assumptions,
the mean of the two Johnson-Treiman relations should
be more accurate than the Johnson-Treiman relations
themselves. While the cross-section sum rules are
concerned with the imaginary part of the forward
scattering amplitudes, relatively little attention has
been given to the real parts.® The real parts of the scat-
tering amplitudes are of particular interest in connection
with the additive quark model, since the validity of
sum rules for the real parts would confirm that the
cross-section relations are obtained from a consideration
of scattering amplitudes and the model is not just a
convenient method of parametrizing total cross sections.
In this paper, we shall present a generalization of the
additive quark model of Lipkin in which we shall focus
our attention on the following features:

(a) It will be shown that, in the present model, no
discrepancy in the relation between meson-baryon and
baryon-baryon cross sections will arise. And, as we
increase the restrictions on the quark-quark amplitudes,
the sum rules that emerge are less well satisfied, so that
a “hierarchy’” of sum rules is formed.

(b) The present model yields predictions on the real
parts of #N, NN, and NN amplitudes which can be
made consistent with the present data.

The central dynamical assumption is the statement
of additivity which can be written
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where (- - -+) is a state of physical particles made
up of qualks or antiquarks x;=@®, 9N, or A\. By this
assumption, all the meson-baryon and baryon-baryon
elastic scattering amplitudes are then related to the
quark amplitudes (®®), (®N), (MN), (\®), (AN,
@®), (FN), BN), (F®), (A®), and (AN), where we
use (4B) to denote the amplitude for the process
A+B— A+B.

First of all, we note that if we restrict ourselves to
presently observable elastic scattering amplitudes, the
assumption of additivity alone does not give any rela-
tions, since we have 11 quark amplitudes and 10
physical amplitudes, namely, (pp), (5p), (n), (pn),
(mtp); (x7p), (K¥p), (K™p), (K*n), and (K~n). How-
ever, if we supplement additivity with SU(2) symmetry
for the quark amplitudes, we have the following non-
trivial sum rules,!

@)+ (pp)=3L(z*p)+(np) ]
+3[(EFp)+ (K—p)— (Ktn)— (Kn) ],

sLEp)+ ()4 (Ktn) =3[ (K*+p)+ (== p)+ (K1) ].

It is clear that a hierarchy of sum rules can be ob-
tained by adding SU (3) symmetry to the basic assump-
tion. This has been investigated by Lipkin and Scheck.!
However, examination of the above sum rules shows
that while the second, i.e., the antisymmetric sum rule,
is in excellent agreement with experiment, the first has
a large discrepancy of about 15-20 mb.* This situation
is rather embarrassing, since SU(2) symmetry is not
badly broken.

There are at least two ways out of such a dilemma.
The first alternative is to regard all relations between
meson-baryon and baryon-baryon amplitudes as having
an intrinsic discrepancy, and proceed to consider
the consequences of assuming SU(3) symmetry on
the quark-quark amplitudes. This is generally done in
the literature.! A second approach is to suppose that the
additivity assumption alone is inadequate, and thus
must be supplemented by additional dynamical assump-
tions. Such an approach must therefore yield a relation
between meson-baryon and baryon-baryon amplitudes
which is of comparable accuracy to the antisymmetric
sum rule. In this paper, we shall consider a model
which, although SU(2) invariance is assumed, never-
theless gives rise systematically to a hierarchy of sum

4 All of the data on cross sections in this paper are taken from
W. Galbraith, E. Jenkins, T. Kycia, B. Leontic, R. Phillips, A
Read, and R. Rubinstein, Phys. Rev. 138, B913 (1965).
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rules in terms of the severity of asymptotic restrictions
on quark amplitudes.

The basic additional assumption introduced is that
the quark amplitudes are already approaching the
Pomeranchuk limit. We shall state our parametrization
as follows:

(CN) = (NEP) = (PP) = (NIN) =P,

@)= ()=,
\®)=(\N)=P—-S,
A\®)=(AN)=P'—5',

(@@)= () =P"+4,

©)

where P, P’, S, S’, and 4 are to be complex functions
of energy. There is no obvious justification for such a
parametrization, except that P is heuristically the
Pomeranchuk amplitude for nonstrange quarks. S
measures the correction due to SU(3) breaking. 4 is
the correction due to singlet annihilation channels that
arises because the amplitudes (®®) and (9197) may not
be asymptotic enough. The quantities P’ and S’ are
analogs of P and S, except that they are for quark-
antiquark scattering. Since the (gq) and (gg) channels
have different baryon numbers, they are, in general,
distinct, except in the asymptotic limit. Indeed, the
real parts of (¢g) and (§g) may behave rather differently,
even in the asymptotic limit. It is interesting to note,
however, that if P=P’ and S=.S’, and if we apply the
relations to scattering cross sections only, then we have
Lipkin’s additive quark model. As we shall see, the
hierarchy of sum rules is partially due to distinctions
between P, P’, S, and S'.

Finally, since the quarks bound in mesons may
behave differently from those bound in baryons, we
shall add corrections B and B’ to each (gq) and (gq)
amplitude coming from baryon-baryon and meson-
baryon scattering, respectively.

Before we continue, there are several relevant re-
marks to be made.

(1) From Egs. (2), it is obvious that we have not
assumed quark-quark and quark-antiquark amplitudes
to approach the same Pomeranchuk limit. Physically,
there is every reason to do so for moderate energies,
since both singlet and triplet annihilation channels may
still be important.

(ii) Because of the introduction of the Pomeranchuk
limits, SU(2) invariance has been introduced auto-
matically. It is perhaps somewhat unfortunate that the
supplementary assumptions, Eqs. (2), do not allow us
to discuss the distinction between additivity alone and
additivity plus SU(2). This is not really a disadvantage,
however, since the hierarchy of sum rules will arise as
a result of the degree to which the quark amplitudes
approach the asymptotic limit.

(ili) No SU(3) symmetry is introduced initially. Note
that in our model, SU(3) symmetry is also treated as
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an asymptotic limit, namely, when the SU (3)-breaking
terms S and S’ are taken to be zero.

Now, with the use of (2), we parametrize the meson-
baryon and baryon-baryon amplitudes as follows:

(pp)=(np)=9P+9B,

(pn) =9P'+44+9B,

(pp)=9P'+54+9B,
(x+p)=3P+3P'+A+6B,
(—p)=3P~+3P'+24+6B,
(K+p)= (K+n)=3P+3P'—38'+6B,
(K—n)=3P+3P'—3S+A+6B',
(K—p)=3P+3P"—3S+24+6B'.

3)

In what follows, we shall discuss our hierarchy of
sum rules, decreasing in accuracy, which arise system-
atically as we impose progressively more severe
asymptotic restrictions on the quark amplitudes,
namely, additivity plus the conditions numbered 1 to
5 below.

1. The parametrization of Egs. (2): From these we
can read off the sum rules

(pp)=(np), (4a)
(K+p)=(K*n), (4b)
LK)+ (rtp)+(Ktn) ]
=3[ (K+p)+(x=p)+(K™n)], (40)
L@+ (np)+ (wtp)1=3L(pP)+ () +(x=p)].  (4d)

Since these sum rules are derived with the least
restrictive assumptions, we should expect them to be
very well satisfied. This is indeed the case. The relations
(4b) and (4c) have been discussed by Lipkin, and are
found to be satisfied within the small errors of meson-
baryon scattering cross sections. Any discrepancy is
less than 29%,. The relation (4a) is also satisfied well
within the experimental errors.*

Relation (4d) is mew, and is particularly interesting
in that it directly relates baryon-baryon and meson-
baryon cross sections. Table I shows that agreement
with experiment* is indeed excellent—again all dis-
crepancy is well within the error limits of about 3%,
while all previous sum rules of this type have systematic
errors of 15-209,.

TaBLE I. Test of relation (4d).

Momentum Left-hand side Right-hand side
(BeV/e) (mb) (mb)
6 42.74+0.68 42.84+1.3
8 41.240.33 41.61.3
12 38.8+0.33 39.7+1.25
14 38.24-0.34 39.3:1.25
16 37.6£0.33 38.841.25
18 377417 36.1+£3.0
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The remarkable accuracy of the set of sum rules (4)
is rather significant in that, irrespective of whether the
present quark model possesses meaning, sum rules of
such accuracy, similar to the Gell-Mann—-Okubo sum
rule, are probably not accidental. Relations (4a) and
(4b) are also obtainable from Regge-pole theory with
exchange degeneracy.® Relations (4c) and (4d) are so
far obtainable from the additive quark model only, and
thus constitute support for the additivity assumption
as a dynamical principle. Furthermore, we note that
the Johnson-Treiman relations of SU(3) and the
Freund relations of U (6,6), being less accurate, are not
obtainable in the present model unless further restric-
tions are placed on the quark amplitudes. It may bear
repeating here that no bad relations are obtained in the
present model, in contrast to previous models.

2. The SU(3)-breaking parameters in the quark
amplitudes are equal, ie., S=S’. Note that SU(3)
symmetry is not yet imposed.

If we require S=.5’ with all the rest of the parameters
unchanged, then the “antisymmetric sum rule” (4c)
splits into the two Johnson-Treiman relations®:

sLEp)+2(ntp) ]=3[(K*p)+2(x"p)], (Sa)
sLEp)+2(Ktn) =3[ (Ktp)+2(Kn)].  (5b)

3. Triplet annihilation channels are unimportant,
i.e., P=P’. On the other hand, if we require P=P’ with
all the rest of the parameters unchanged, the relation
(4d) splits also into the two Freund relations’:

L@p)— (pp)1=SL(r=p)— (v*p) ]
=5/4L(pn)— (pn)]. (5¢)

Since the Johnson-Treiman relations have a systematic
error of 39, and the Freund relations have a systematic
error of 159, we have obtained a hierarchy of sum rules
which decrease in accuracy as we increase the restrictive
assumptions. It is also interesting to note that the 15%,
discrepancy seen in the Freund relations is not due to
the fact that they relate baryon-baryon to meson-
baryon cross-sections, but is due to the distinction
between nonstrange quark-quark and quark-antiquark
amplitudes.

4. The symmetry of SU(3), i.e., S=5"=0: Next let
us take the SU(3)-breaking terms .S and S’ equal to
zero. We obtain

(rtp)=(K~n), (6a)
(m=p)=(K~p), (6b)

iL@*p)+ @ p)+ (Kn)+ (Ktn) ]
=iLEp)+(E*p)], (6¢c)

which have a systematic discrepancy of 12-15%, as is
expected in relations which require SU(3).

8R. C. Arnold, Phys. Rev. Letters 14, 657 (1965).

¢ K. Johnson and S. B. Treiman, Phys. Rev. Letters 14, 189
(1965).

7P. G. O. Freund, Phys. Rev. Letters 15, 929 (1965).
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TasLE II. Test of relation (7).

Momentum (pp)+ (p) 2(xp)+ (a*p) 18(B—B’)

(BeV/e) (mb) (mb) (mb)

6 99.941.3 83.24+0.5 16.7

8 96.44-1.0 80.14-0.5 16.3

12 91.141.0 76.040.5 15.1

14 89.841.1 74.740.5 15.1

16 87.9+£1.0 73.64-0.5 14.3

18 89.0+4.1 73.540.5 15.5

5. Neglect of corrections due to difference of binding
for quarks in mesons and baryons. For this purpose,
we obtain the relation

(p9)+ (@) =2(r"p)+ (rtp)+18(B—B).  (7)

Table II shows the cross sections (pp)+(5p),
2(z=p)+ (r+p), and 18(B—B’). Since these cross sec-
tions have very small errors, and relation (7) is obtained
under the same assumptions as relations (4), the
difference (B— B’) of about 1 mb is probably reliable.
Therefore, even under the adsumption of additivity,
the effects of binding are not negligible. It is interesting
that relations (4), (5), and (6) are all obtained with
B> B’. Furthermore, (B— B’) seems to be independent
of energy, so that the uninteresting limit, ie., that
baryon-baryon cross sections approach % of meson-
baryon cross sections, may not be reached until ex-
tremely high energies. It is interesting also that (7),
with B=B’, is obtained in all previous models. Such an
inaccurate relation cannot possibly be put in the same
class as (4), even though they both were previously
obtained under the same assumptions.

Finally, we can ignore the problem of spin wave
functions, as in the case of quark models for electro-
magnetic mass splitting,? and obtain the following
relation:

(o) = (n°p)=3L(x*p)+(x=p)]. (5d)

For 6-20 BeV/c, this predicts that the p%p cross section
is between 24 and 26 mb. This is to be compared with
5045 mb obtained from diffraction dissociation models®
and 58 mb obtained from absorption-model fits to the
7~p— p'n process.’ The discrepancy may be due to
the role of spin in the quark wave functions.

Let us now turn to the real parts of the scattering
amplitudes. Under the same assumptions (3) from
which the imaginary part relations (4) are obtained,
we have:

Re(pp)=Re(pn), (8a)
Re(Ktp)=Re(K*n), (8b)

3[Re(K~p)+Re(rtp)]=3[Re(rp)+Re(K™n)]. (&)

8 M. Ross and L. Stodolsky, Phys. Rev. 149, 1172 (1966); S. D.
I()rell ;dnd J. S. Trefil, Phys. Rev. Letters 16, 552 (1966); 16, 832E
1966).
9 J. D. Jackson ef al., Phys. Rev. 139, B428 (1965).
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Relation (8a) has been verified at 19 BeV/c.!? Rela-
tions (8b) and (8c) can be considered to be predictions
of the model. Since the relations (4) are almost exact,
relations (8) will therefore be a crucial test of the model.
By making further restrictions we may arrive at other
sum rules, but we shall not enumerate them further
except to point out the following interesting specula-
tion. To this end, we recall the following features
concerning the real parts of =7, pp, and pp amplitudes:

(a) Re(pp)/Im(pp) is constant with energy!! in the
range 7-26 BeV/c. The relation

Re(pp)  Re(pp)
Im(pp)  Im(pp)

is consistent with forward dispersion relations and data
on the imaginary parts.”? Sakurai® has recently specu-
lated that the constancy with energy and (8') follow
from vector-meson exchange with absorption.

(b) It is well known that experiment! on Re(r*p)
seems to be in direct contradiction with the predictions
of forward dispersion relations with Regge-pole asymp-
totic behavior'®; namely, Re(r~p)/Re(ztp)>1 and
rapidly varying with energy instead of Re(x™p)/
Re(xtp)=0.74 for «(0)=0.5 and slowly varying with
energy.

or §—x

(&)

It is interesting to note that, given the relation (8’)
and the constancy of Re(pp) and Re(pp), our predic-

10 G. Bellettini, G. Cocconi, A. N. Diddens, E. Lillethun, G
Matthiae, J. P. Scanlon, and A. M. Wetherell, Phys. Letters 19,
341 (1965).

1 K. J. Foley, R. S. Gilmore, R. S. Jones, S. L. Lindenbaum,
W. A. Love, S. Ozaki, E. H. Willen, R. Yamada, and L. C. L.
Yuan, Phys. Rev. Letters 14, 74 (1965).

12 A, Bialas and E. Bialas, Nuovo Cimento 37, 1686 (1965).

137, J. Sakurai, Phys. Rev. Letters 16, 1181 (1966).

14 K. J. Foley, R. S. Gilmore, R. S. Jones, S. J. Lindenbaum,
W. A. Love, S. Ozaki, E. H. Willen, R. Yamada, and L. C. Yuan,
Phys. Rev. Letters 14, 862 (1965).

( 15 G) Hohler, G. Ebel, and J. Giesecke, Z. Physik 180, 430
1964).
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TasBLE III. Test of relation (9). The values are taken directly
from Ref. 11. The upper and lower values correspond to the upper
and lower bounds given by the systematic errors quoted in the
reference. In obtaining the ratio of the real parts, or(x*p)/or(7™p)
is assumed approximately equal to 1.

M Re(ntp) Re(r™p) Re(xp)
omentum
(BeV/e) Im(rtp) Im(z~p) Re(x*p)
~0.200 0338 28
10 —0.109{_0.07 4} —0‘300{_0.206} 2.75{1.7}
—0225 —0.4280 3.6
12 —0.132{_0.095} —0.408{_0.0339} 3.10{1.9}

tions on the real parts of #*p amplitudes become con-
sistent with experiment if Re(B’) is small. This can be
seen from Eqgs. (3). Since 4 approaches zero in the
asymptotic limit, the statement Re(pp)=—Re(pp) is
equivalent to ReP=—ReP’. Applying this relation to
Re(7*p), we immediately have the relation

Re(rp)=~2 Re(rtp) —0 as S—oo. 9

The relation (9) is tested against the available data
in Table III and is in much better agreement with
experiment than is Re(rp)~0.8 Re(n*p).!® Finally,
we note that our prediction on the real parts of (7%p)
hinges on (8'). If (8’) does not hold, a different relation
may be obtained. Violation of forward dispersion rela-
tions is unlikely ; however, the input to their derivation,
i.e., the Regge-pole asymptotic behavior, may need re-
examination. On the other hand, better experimental
data are needed to confirm the relation (9).

The author is grateful for conversations with
Professor J. J. Sakurai and Dr. J. Schechter.

16 The question of whether Re(z~p) is greater or less than
Re(x*p) is important, in that it has direct bearing on the sign of
the ratio of the real to the imaginary part of the charge-exchange
amplitude. Unfortunately, no direct measurement of this sign
exists at high energies.



