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According to the Goldstone theorem, any manifestly covariant broken-symmetry theory must exhibit
massless particles. However, it is known from previous work that such particles need not appear in a rela-
tivistic theory such as radiation-gauge electrodynamics, which lacks manifest covariance. Higgs has shown
how the massless Goldstone particles may be eliminated from a theory with broken U (1) symmetry by
coupling in the electromagnetic field. The primary purpose of this paper is to discuss the analogous problem
for the case of broken non-Abelian gauge symmetries. In particular, a model is exhibited which shows how
the number of massless particles in a theory of this type is determined, and the possibility of having a
broken non-Abelian gauge symmetry with no massless particles whatever is established. A secondary
purpose is to investigate the relationship between the radiation-gauge and Lorentz-gauge formalisms.
The Abelian-gauge case is reexamined, in order to show that, contrary to some previous assertions, the
Lorentz-gauge formalism, properly handled, is perfectly consistent, and leads to physical conclusions
identical with those reached using the radiation gauge.

I. INTRODUCTION

HEORIES with spontaneous symmetry breaking

(in which the Hamiltonian but not the ground

state is symmetric) have played an important role in
our understanding of nonrelativistic phenomena like
superconductivity and ferromagnetism. Many authors,
beginning with Nambu,' have discussed the possibility
that some at least of the observed approximate sym-
metries of relativistic particle physics might be inter-
preted in a similar way. The most serious obstacle has
been the appearance in such theories of unwanted mass-
less particles, as predicted by the Goldstone theorem.?
In nonrelativistic theories such as the BCS model, the
corresponding zero-energy-gap excitation modes may
be eliminated by the introduction of long-range forces.
The first indication of a similar effect in relativistic
theories was provided by the work of Anderson,® who
showed that the introduction of a long-range field, like
the electromagnetic field, might serve to eliminate
massless particles from the theory. More recently,
Higgs* has exhibited a model which shows explicitly
how the massless Goldstone bosons are eliminated by
coupling the current associated with the broken sym-
metry to a gauge field. The reasons for the breakdown
of the Goldstone theorem in this case have been
analyzed by Guralnik, Hagen, and Kibble.® The situ-
ation is identical with that in the nonrelativistic domain.

* The research reported in this document has been sponsored
in part by the U. S. Air Force Office of Scientific Research OAR
through the European Office Aerospace Research, U. S. Air Force.
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In either case the theorem is inapplicable in the presence
of long-range forces, essentially because the continuity
equation d,7*=0 no longer implies the time indepen-
dence of expressions like JS'd*x [1°(x),¢(0)], since the
relevant surface integrals do not vanish in the limit of
infinite volume. (In the relativistic case, the theorem
does apply if we use the Lorentz gauge; but then it tells
us nothing about whether the massless particles are
physical.) It should be noted that the extension or
corollary of the Goldstone theorem discussed by
Streater® also fails in precisely this case. If long-range
fields are introduced, spontaneous symmetry breaking
can lead to mass splitting.

As has been emphasized recently by Higgs,” it thus
appears that the only way of reconciling spontaneous
symmetry breaking in relativistic theories with the
absence of massless particles is to couple in gauge fields.
Another possibility is that Goldstone bosons may turn
out to be completely uncoupled and therefore physically
irrelevant. In this case, however, the Hilbert space
decomposes into the direct product of a physical Hilbert
space and a free-particle Fock space for the Goldstone
bosons. The broken symmetry appears only in the
latter, and no trace of it remains in any physical
quantities. In most simple cases, the symmetry trans-
formations leave the physical Hilbert space completely
invariant; and in any case they act unitarily on it. Such
theories cannot therefore explain observed approximate
symmetries. This decoupling of Goldstone modes does
occur in the Lorentz-gauge treatment of models like
that discussed by Higgs, in which in fact no trace of the
original U(1) symmetry remains in the physical states.
However it does not occur in corresponding non-Abelian
gauge theories, to which the conventional (i.e., Gupta-
Bleuler) Lorentz-gauge formation is inapplicable.

It has been suggested by Fuchs® that in the case of
non-Abelian gauges the massless particles may persist

8 R. F. Streater, Phys. Rev. Letters 15, 475 (1965).
7P. W. Higgs, Phys. Rev. 145, 1156 (1966).
8 N. Fuchs, Phys. Rev. 140, B911, (1965).
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even after the introduction of gauge fields. His argu-
ment is based on the use of the Lorentz gauge, and
Schwinger’s extended-operator formalism.? His con-
clusions disagree with those reached by Higgs?, using
the radiation gauge. However, Fuchs has already re-
marked that his method leads to considerable difficulties
of interpretation inasmuch as the energy spectrum is
not bounded below. This is not the only difficulty which
the method encounters.

In order to bring out clearly the relationships be-
tween the Lorentz-gauge and radiation-gauge treat-
ments, we shall begin by re-examining, in Secs. IT and
III, the simple Abelian-gauge case. The Coulomb-gauge
treatment given in Sec. II contains a summary of some
of Higgs’s results, re-expressed in a form appropriate to
the comparison with the Lorentz-gauge treatment given
in Sec. III. In particular, we aim to show that the
correct treatment of U(1l) symmetry breaking in
Schwinger’s extended-operator formalism does not
involve any alteration in the ‘“subsidiary condition”
which selects the gauge-invariant physical states. (This
condition is changed in the method proposed by Fuchs.)

In Sec. IV we go on to discuss the generalization of the
model treated by Higgs to an arbitrary non-Abelian
group. Our aim here is not to give a complete discussion
of this model but mainly to show how the number of
massless fields in the theory is determined, in terms of
the “canonical number” introduced by Bludman and
Klein.?® Finally, in Sec. V, we exhibit a model involving
spontaneously broken U (2) symmetry which is entirely
free of massless particles, and moreover, in which the
physical states retain clear indications of the underlying
symmetry. As in all such theories, the most obvious
indication of symmetry breaking is the appearance of
an incomplete multiplet of massive scalar particles.

Our results lead to the following conclusion: If all the
currents associated with a broken non-Abelian sym-
metry group are coupled to gauge-vector fields, the
number of massless vector bosons remaining in the
theory is just the dimensionality of the subgroup of
unbroken symmetry transformations. In particular, if
there are no unbroken components of the symmetry
group, then no massless particles remain.

II. COULOMB GAUGE

It will be useful to begin by summarizing in rather
different language some of the results obtained by
Higgs.”

We start with the Goldstone model: a complex scalar
field ¢ described by the Lagrangian

L=¢**3,p+¢3,0*—¢**¢,—V (¢*9). (1)

This is clearly invariant under the constant gauge
transformations

¢(x) — e (x). )

9 J. Schwinger, Phys. Rev. 125, 1043 (1962); 130, 402 (1963).
105, A. Bludman and A. Klein, Phys. Rev. 131, 2364 (1963).
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Consequently, the current
o= (@ g— %) )
satisfies
8,j+=0. 4

If V(¢*¢) has a maximum at ¢*¢=0 and a minimum
elsewhere, then we may expect that the expectation
value of ¢ in the vacuum (or ground state) is nonzero.
From the equations of motion we obtain the consistency

condition
(aV/a¢*)=(sV'(¢*¢))=0, (5)

which serves to determine the magnitude of (). If
(¢)=n is a possible solution, then so is {¢)=ne*. There
is, therefore, an infinitely degenerate set of vacuum
states, parametrized by the phase o. Formally, trans-
formations from one to another are generated by the
“unitary operator” ¢*¢ with

Q=/ﬁxf@% ©)

However, when (¢)0 the integral here is divergent,
and the various degenerate vacuums belong to unitarily
inequivalent representations.

The Goldstone theorem requires the existence of
massless particles in this theory. They may be exhibited
by making the polar decomposition

§=271tpe, ™

introduced by Higgs. (We shall ignore problems of
operator ordering.) The canonically conjugate variables
are the time components of the vectors

= 212 ket g0
and (8)
Or=2"1 ﬂip (¢"*ei" - ¢“e"’") = — e—ljﬂt .

It should be noted that p, p#, and #* are all invariant
under the transformations (2) while ¢ transforms
according to

3 (x) > 3 (x)+en(x). 9)

This shows, incidentally, that there is no fundamental
distinction between transformations expressible as
rotations or translations of the field variables, since one
may be converted into the other by a change of variables.

In terms of the new wvariables, the Lagrangian
becomes

L= pdup+39,9—5p"pu—349,/20*— V (3% .  (10)

The broken-symmetry condition is expressed by setting
p=lnl+o", (")=0. (11)

Clearly, the p’ field describes particles whose mass is
determined (to lowest order) by the second derivative
of V at p=|n|, while the ¢ field describes massless
particles.
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Now let us consider the coupling of the current (3)
to the electromagnetic field. We have"

L=—Fw3,A,+1FwF,,
+¢+*(dutied,)p+¢+ (9. —ied,)p*
—¢*e—V(g*), (12)

which is invariant not only under (2) but also under the
gauge transformations

$(x) = @ (x)

A, (%) = Au(x)— N (x). (13)

In terms of the polar variables introduced in (7) and
(8), this Lagrangian becomes

= —Fwd,4,+1FwF,,+ 09,0+ 049,0— Lo,

—98,/20'— V (o) Fed 5. (14)

We now wish to investigate the relationship between
the Coulomb-gauge and Lorentz-gauge treatments of
this Lagrangian. Let us consider first the Coulomb
gauge. To preserve the analogy with our later treatment
of the Lorentz gauge, it will be convenient to impose the
Coulomb-gauge condition by adding to L a Lagrange
multiplier term

(15)

This destroys the invariance under (13), but not that
under the constant gauge transformations (2).
It is now convenient to introduce new variables

—Coard*.

By=A,+¢19,9. (16)
Then, using the equation
du=ep’B,
to eliminate ¢, from the Lagrangian, we obtain
L= —Fw3,ByA- 1P, +- 36 B,Bo- 00,0
—30%0,—V (3p7)—Cox(BF—e10%3). (17)

This Lagrangian is still invariant under (2), or its
equivalent

3 (x) >3 (x)+e\, (18)

but in a completely trivial way. In fact, ¢ is determined

by
V2= —ed) Bt (19)

and (18) represents merely the arbitrariness in the
solution of this equation. (Explicit dependence on the
coordinates is ruled out by the requirement of transla-

11 This model, or a closely related one, has been discussed in
Refs. 4, 5, and 7 and also by F. Englert and R. Brout, Phys. Rev.
Letters, 13, 321 (1964).

12 This is permissible since it is an algebraic equation for ¢,. One
is not allowed to solve an equation of motion and substitute the
results in the Lagrangian, but one is allowed to substitute explicit
solutions obtained without integration. See, for example, T. W. B.
Kibble and J. C. Polkinghorne, Nuovo Cimento 8, 74 (1958).
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tional invariance.) It may be noted that the equation
obtained by variation of ¢, namely

ViC=0,

shows similarly that C is at most a constant.

From the structure of (17) we see that no massless
particles remain in the theory. The mass of the scalar
particles described by p’ is as before determined to
lowest order by the second derivative of V at p=|g].
Now, however, the massless particles described by &
have become the longitudinal modes of the vector field
d]es[cribed by B,, whose mass is to a first approximation
eln|.

It may be worth recalling the reasons for the failure
of the Goldstone theorem to apply in this case. The
essential point is that the continuity equation (4) no
longer implies the time independence of the commutator

(20)

f ([ 7°(x),¢(0)]) (1)

because the relevant surface integral fails to vanish in
the limit of infinite volume. Although the operator (6)
does not exist, its commutators do exist in a formal
sense provided we perform the space integration after
the evaluation of the commutator. In the absence of
long-range fields Q is time-independent (in the sense
that these commutators are so), but, as was pointed out
by Guralnik, Hagen, and Kibble,® this is no longer true
when gauge fields are present. This is easy to verify for
our particular model. We have

j#= —engBuv

(22)

whence

([#(),8(0)])=—e*(1/v*)ax([p*B4(x),B*(0)]).  (23)

This form clearly exhibits the nonlocal structure of
([§%,97). Inserting a Lehmann spectral form on the
right-hand side of this equation, it is easy to see that
([#°9]) is causal but that its space integral is not time-
independent. Indeed in lowest order it is —e cos(e| 7| «?).

III. LORENTZ GAUGE

Now let us turn to the description of this model in
terms of the Lorentz gauge. Following Schwinger,® we
may impose the Lorentz-gauge condition by adding to
L a Lagrange multiplier term

—G9,4"+1aGG, (24)

where a is an arbitrary constant introduced to allow
direct comparison both with Schwinger’s formalism
(@=0) and with the more conventional formalism
(e=1) adopted by Fuchs. Note that in second-order

form (24) is equivalent to
—3a71(0,4%), (25)

so that a=1 corresponds to the usual Fermi Lagrangian.
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The advantage of the first-order form (24) lies precisely
in the possibility of taking a=0.

The generator of the gauge transformations (13) is

G\ = / d*x [\ (%)9°G (x) — G (x) 3\ (%) ]

= / & [N (70— 9,FO%) — GO ].

In Schwinger’s extended-operator formalism the phys-
ical states are distinguished by the gauge-invariance
requirement

G(\)T=0, (26)

or equivalently,
G¥=0, (j°—0F*%)¥=0. @n

On the other hand, in the more familiar Gupta-Bleuler
formalism,® only the positive frequency components of
G are required to annihilate the physical states. Both
these formalisms will be considered in the sequel.

The important difference between the Coulomb and
Lorentz gauges lies of course in the number of degrees
of freedom. Since (15) involves no time derivatives, C
is not a dynamical variable. However, in the Lorentz
gauge, the canonically conjugate pairs of variables are
(4:,F%), (G,4%, (0,0%, and (3,9%. The p-field excita-
tions are essentially irrelevant to our discussion. So for
simplicity we shall make the approximation of replacing
p by |n|. This should be a good first approximation if
the mass determined by the second derivative of V is
large. Thus we have to consider the Lagrangian

L= —F»3,4,+3FwF ,+0:0,9

—343,/2|n|*+ed 94— G, Ab+3eGG.  (28)

Since this Lagrangian is only quadratic in the field
variables, the resulting theory is exactly soluble.

As before, it is convenient to introduce new variables.
We write
(29)

and make a canonical transformation to the pairs
(BZ)F M)y (G,GO), and (¢’¢0), where

mi=elnl?

1 1
Bi=44-085+—0G,
e m?

1
GO=A04—§,Fok (30)
m2

y=|nlo,

1 1
YO =— 0 — 9, FO%
ln| ~m
13 See, for example, J. M. Jauch and F. Rohrlich, Tke Theory of

Photons and Electrons (Addison-Wesley Publishing Company,
Inc., Reading, Massachusetts, 1955), Chap. 2.
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To exhibit the covariance of the Lagrangian it is
convenient to introduce also new dependent field
variables By, G%, and 7, so that we may write

L=—Fw9,B,+1F»F,,+im*BB,
+GHO,GHyHoup— 3t mPrGut30GG . (31)

Clearly, we have a vector field describing particles of
mass m, and two scalar fields (in addition to field p’
corresponding to the suppressed modes). The vector
particles are, of course, precisely those found earlier in
the Coulomb gauge.

To discuss the physical significance of the scalar fields
in (31), we have to be more precise about the conditions
on physical states. Let us first consider Schwinger’s
extended-operator formalism. Here the fields are not to
be regarded as operators in a Hilbert space; they are
extended operators acting on a more general space of
functionals in which no scalar product is defined. The
states are labeled by the eigenvalues of, for example,
¥, G°% and By, all at one time /p:

V= <¢,7G0”Bi’| )- (32)

The canonically conjugate variables ¢°, G, and F% are
represented as functional derivatives with respect to the
appropriate variables. Then the functionals representing
physical states are distinguished by the gauge-in-
variance requirement (26) or (27), which may now be
written
G¥=1(5/6G)¥=0,

: (33)
— =i (3/8¢/) T =0.

It follows that ¥ is actually independent of the two
scalar fields, and may be represented by a functional of
B/ alone. This is, of course, in conformity with the
conclusion reached in the Coulomb-gauge treatment,
that only vector particles appear in the physical states.

It should be remarked that the symmetry breaking
corresponds to having a nonzero value of # and therefore
of the vector particle mass m, and has nothing what-
soever to do with the conditions (33) which should be
imposed whether or not the symmetry is broken. The
physical states are still gauge invariant in the sense
described by (33) even when the original symmetry (2)
is broken. Indeed, in this formalism, the local-gauge
transformations (13) do not act on the physical states
at all, although of course the global transformations (2)
do. This is associated with the well-known fact that
while the one-parameter group of gauge transformations
(2) yields a conservation law for the electric charge, the
infinite-parameter group of local transformations (13)
does not yield an infinite set of physical conservation
laws.

The symmetry-breaking discussed by Fuchs? is the
breaking of the conditions (33). This means that more
states than usual are admitted as physical. This
procedure has a number of grave disadvantages, notably
the fact that when (33) is relaxed, the energy spectrum
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is no longer bounded below. It should also be noted that
(33) provides the only guarantee that the equations of
motion agree, for physical states, with those obtained
from the original gauge-invariant Lagrangian. To relax
this condition is not merely to break a symmetry but to
change the physical equations of motion. It may be that
symmetry breaking of this type has some physical
relevance, despite these difficulties. What we are con-
cerned to show here, however, is that it is not the
method which is the true Lorentz-gauge analog of the
Coulomb-gauge formalism described in the preceding
section. To achieve agreement between the two ap-
proaches it is necessary (and sufficient) to break the
symmetry under the transformations (2) while main-
taining the conditions (33) intact.

It is interesting to examine in more detail the un-
physical fields G and ¥, which satisfy the field equations

0,G=—my,, o =y,—mG,, (34)
3,G*=aG, d*=0,
whence
OG=0, Oy=—amG. (35)

From these equations and the canonical commutation
rules, we can easily derive covariant commutation
relations. The consistency of the conditions (33) for
different times is assured by the relation

[G(),G(0)]=0. (36)

We also find )
[G (@) $(0)]=—imD(x) =;i:e<x°>a<x2> TS
and finally,
[ () (0)]=iD (x)—iam{izx <x,«2>]
. aK2 “2

=0

:—2ie(x°)[6(x2)+%am20(x2)3~ (38)

In the extended-operator formalism, these relations
are not required to possess a representation in a Hilbert
space, and pose no particular problem.

However, let us now examine the formalism of Gupta
and Bleuler, in which the fields are operators in a Hilbert
space of indefinite metric, and the physical states are
selected by the condition

GH|)=0. (39)

Then, taking the vacuum expectation value of the
commutator (38), and denoting the diagonal elements
(=£1) of the metric operator by p,, we find

3 pal (n]¥(0)]0)| 227 ) [04(pn—E)—84(pnt-k) ]

2
x =0

d
= e(k%)2md (k?)— am2|:§{ e(R0)2md (k2 —«?)} :l

For k540, we can drop the second term in the square
brackets on the left-hand side of this equation, and
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replace e(k) on the right by 6(k°). However, in the
neighborhood of £=0 this is ot correct. For, although
(8/ k) (k)28 (k2 —«?)] yields a well-defined distri-
bution in the limit ¥? — 0, the corresponding symmetric
expression (9/9x®)[2wd(k2—«®)] does not.!* In fact,
integrating it over a small volume around k=0, one
finds a result which diverges like Ins? as «*— 0. To
obtain a well-defined distribution, one must subtract
off this infinite term, and consider for example the
expression

2

i} K
] 22— 22 In—
aK2[21r(3 (B—x®)]—27 lnM254(k) ,

for any constant mass M, which does possess a well-
defined limit as x? — 0. Thus, we obtain

2 pal (n]¢(0)|0)[2(27) !4 (pn—E)
d
=0 (k) 2nd (k%) — amz[———{ﬁ (B0) 276 (k2 —«?)}
Ix?

2

—72] —K—54 k . (40
- <>l2=0 (40)

The arbitrariness in the constant M arises from the fact
that division of a distribution equation by e (&%) yields
a result arbitrary to the extent of a multiple of d4(k).
This arbitrary constant may also be regarded as a
manifestation of the arbitrary additive constant in the
field ¥, since a field translation of ¥ would clearly change
the left-hand side of (40) by a multiple of 84(k).

It is evident that unless o =0, the matrix elements of
¥ must be extremely singular. The basic reason for this
may be seen from the equations of motion (35). Since
the field G has a singularity at £2=0, like 1/k%, we see
that ¥ must have an even worse singularity, like
(1/k2)2. The structure in the right side of (40) is itself
well defined (for given M) but can only be obtained
by a cancellation between infinite positive and negative
terms on the left. It is in this sense that the conventional
Lorentz-gauge treatment (which implies a=1) is
inconsistent.

It is very interesting that the particular case a=0
does not encounter these problems. This case is interest-
ing from another point of view also. Since this theory
is manifestly covariant, the Goldstone theorem is
certainly applicable. In general, the massless bosons it
predicts are described by the field G [since 9,G is the
conserved current; note that the proof of the theorem
rests on the commutator function (37)]. However, in the
special case =0, there are two independent massless
fields corresponding to the fact that in that case the
Lagrangian is invariant (up to a divergence) not only
under the transformations (2) but also under G(x) —

G(x)+A.
14 J. Garding and S. Lions, Nuovo Cimento Suppl. 14, 9 (1959).
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We note that Schwinger’s extended-operator formal-
ism is more flexible, even in the simple Abelian-gauge
case, than that of Gupta and Bleuler, which works
properly only for a=0. In the case of non-Abelian
gauges, the Gupta-Bleuler formalism is wholly in-
applicable, because the analog to G no longer satisfies
the free wave equation, and cannot therefore be resolved
covariantly into positive and negative frequency
components, so that (39) becomes meaningless.

IV. NON-ABELIAN GAUGE MODELS

Let us now consider a model of an #-component real
scalar field ¢, which transforms according to a given
n-dimensional representation of a compact Lie group
G of dimension g,

b(x) — &7 (),
A-T=MT,.

and (41)

Here the M are g real parameters and the 74 are g real
antisymmetric #X# matrices obeying the commutation
relations of the associated Lie algebra

[T4,T5]=Tct 5.

These relations are satisfied in particular by the
matrices {4 = (#°45) of the adjoint representation.
The Lagrangian density is taken to be

L= ¢*dup— %4’"‘1’# -V (¢’) )

where ¢, transforms like ¢, and V (¢) is invariant, under
(41). (The notation implies the use of an invariant
scalar product in the #-dimensional space of the vari-
ables ¢.) From the invariance of the Lagrangian we may
infer the existence of conserved currents,

Jar=—¢*T4¢.

(42)

(43)

(44)

In any finite space-time volume, the transformation
(41) is generated by the operators

A / &x §4(x). (45)

However if ¢ has a nonvanishing expectation value so
that the symmetry is broken, then as usual the integrals
over all space do not exist, and the transformation (41)
is not unitarily implementable.

The expectation value (¢) in a translationally in-
variant (vacuum) state is restricted by the consistency
condition

(0V/9¢)=0. (46)

If (¢)=nis a consistent broken-symmetry solution then
so also is (¢p)=¢"Ty, for any A. If we choose a particular
7, then all other physically equivalent solutions may be
expressed in this form. [ There may, of course, be other
physically inequivalent disjoint solutions of (46)].
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However, not all these will be independent in general,
since there may be a subgroup G, of G which leave 7
invariant (the isofropy group of G at n'5). This is the
subgroup corresponding to symmetries which are not
broken. Let »—the “canonical number” of Bludman
and Klein>—be the number of algebraically indepen-
dent invariants constructible from 7, or equivalently
the number of algebraically independent invariant
“Hartree conditions” (46). We assume that 5 can be
brought to a canonical form in which only » of its
components are nonzero. Further, we assume that none
of these components is accidentally zero. Then the set
of equivalent solutions {(¢) forms a manifold of dimen-
sion r=n—yp. It is clear that this manifold may be
identified with the factor space G/G, (not in general a
group). In fact, we may write the representative of each
element of G in the form

e+ Ter T “n
where ¢T is an element of the (g—7)-dimensional
subgroup G,, and the remaining 7 parameters u serve to
parametrize the solutions (¢) by the identification

(py=e*Ty. (48)

Since these solutions are physically equivalent
(though, of course, unitarily inequivalent) there is no
essential loss of generality in choosing

(¢)=n.

It will be convenient to adopt a set of coordinates in
which the first » elements of 5 are zero, while the last »
elements are not. It is then useful to make a correspond-
ing “polar decomposition” of ¢, analogous to (7). We
write

(49)

p=e"Tp=e""(n+p), (50)
where ¢, like u, has # components, while the first 7
components of p are zero. We shall distinguish these
components by using indices @, b, ---=1, -+, 7 and
a,ﬂ’ ...=r+1, A X

Consider the action of the generators T4 on p. We
note that T4p=0 for those indices 4 belonging to
elements of the Lie algebra of G,. A nonzero result
occurs only for T,, a=1, - - -, . Moreover, consider the
matrix

Xob= (Tap)b; (51)

which consists of the components of these vectors in the
subspace in which p itself vanishes. We assert that this
matrix is nonsingular. For, if not, we can find some
linear combination of the generators 7, which gives
zero acting on all vectors p. But then this linear com-
bination should be an element of the Lie algebra of G,,
which it is not.

16 See, for example, R. Hermann, Lie Groups for Physicists
(W. A. Benjamin, Inc., New York, 1966), p. 3.
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The canonically conjugate variables to ¢ and p are,
as in (8), the time components of the 4-vectors

Pt =o*e? TTypAb,, (52)
pt= (¢”e"‘T)a , (53)
where
Ay=[(1—e0)/8-£]. (54)
This follows from the relation
i) 1—e™Mit\B
e T—eT= TB< ) : (35)
o4 Nt /g4

Note, however, that we have defined A as an 7 X7 sub-
matrix of the gXg matrix appearing in (55). This is
permissible because, as we have seen, T5p=0 unless B
is one of the first 7 indices. Thus, in place of TppAZ,, we
can write TspAb,.

The currents (44) may all be expressed in terms of the
canonical variables ¢ and 9% In fact

Jra=—0H(AH) (e 8)24. (56)

In terms of the new variables the Lagrangian (43)
may be written

L=p"d,p—30"0.—V (p)
+349,9°— [ {I4 (A1) %— p*T oo} (X)) 2.

Here we have used explicitly the fact that X, as defined
by (51), is nonsingular. This Lagrangian, of course,
retains the invariance under (41). Clearly, p and p* are
invariant. The effect on# of an infinitesimal transforma-
tion may be written as

SYe= (A“)"b(e“"“) bAa)\A ,

(57)

(58)

while the effect on 9* may most easily be expressed in
the form

i}
80t = — 0 —[ (At (e 0o N, (59)
aye

The masses of the particles described by the fields p’
would be principally determined, if the interaction is
weak, by the second derivatives of ¥ near the point
p=n. Normally, these will all be positive. The absence
from (57) of any terms involving ¢, but not dJ#, is
indicative of the fact that the fields ¢ contain the
massless excitations required by the Goldstone theorem.

Now let us consider the coupling of the currents (44)
or (56) to a set of g gauge fields A4,. Thus, we now take

L=—3F (3,44~ 3,4 4,~ 145047,4°,)
—I—%FA""FA;W""P“‘?#P_ %P"PM” V(p)
+19a“6‘,0u’_ %[{00,“ (A—l)ab— pl‘pr} (X_l) bc]2

Ha (A% (€70 ad . (60)

We shall work implicitly in the Coulomb gauge, but
will not explicitly indicate the Lagrange multiplier term
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analogous to (15). It is now convenient to introduce
new variables

By (e 4474 [ (1= )3 (]410,0"
and (61)

GA;W=FB,LV(60-!)BA X

Then, elimination of the variables 9* yields the
Lagrangian

L=—1G4*(8,B4— 0,B4,—t4pcBB,BC,)
+iG 4G p*du0—30"0u— V (p)
+P'uTaPBau+% (XabB bn)2 .

It is clear from this form that g—r of the g vector
fields have zero mass and do not interact directly with
the fields p, while the remaining » have masses given in
lowest order by the mass matrix

May=— (ﬂTa)c(Tbn)c )

which is positive definite because of the antisymmetry
of the matrices 7.

We may summarize the situation as follows. Before
introducing the gauge-vector fields, we have  massless
scalar fields which may be placed in one-to-one cor-
respondence with the droken components of the sym-
metry group, and #—r=v massive scalar fields. When
the vector fields are coupled in, the » massive scalar
fields remain, but the massless scalar fields combine
with 7 of the vector fields to yield # massive vector
fields. We are left finally with g—7 massless vector
fields corresponding to the unbroken components of the
symmetry group. Thus, in order to avoid the appearance
of anmy massless particles, it is necessary to choose a
representation for which r=g; or, in other words, for
which the subgroup G, of elements of G leaving 7
invariant is trivial or at most a discrete group.

(62)

(63)

V. A SIMPLE MODEL

As an illustration of the discussion in the preceding
section, we shall consider here a simple model of broken
U(2) symmetry in which no massless particles remain.

The model contains a complex three-component field
¢=(¢:) and four vector fields 4, and A,=(4,,). It is
described by the Lagrangian

L=—1Fw»(8,4,— 8,4,)+1F»F,,
—3Fw.(3,A,—9,A,—eA, XA,)+1F»-F,,
+ gt (8ﬂ¢+3A/4X ¢+13AM¢)
+¢#- (3up*+eA X ¢*— ieA,$*)
— g% g—V(¢*-9; |6]). (64)
This is invariant under infinitesimal transformations of
the form

56 =ieoNg+ed0X g,
54,=—3,0\,
0A,=edoXA,— 0,00,

06, = ied\g,+edo X d,,
0F,,=0,
oF,,=edoXF,,,
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which belong to the group U(1)X0(3)=~U(1)XSU(2)
=U(2).
We may now write
g=cidery, (69)
where
ti=(t'jc) = (eeijr)

0=2""2(g1+1ips),

and we may choose, for example, to set

P1 0
01= 0 ’ and 02= | p2| .
0 0

Then the transformation (61) leads to the equivalent
Lagrangian
L=—3G*(3,B,— 8,B,)+1G*G,
—3G»-(6,B,—9,B,—eB,XB,)+1G*-G,,
+p1#8,up1+p2Oupr— 3010 1u— 3P P2u
— V(G (p24p2),5 | pL2—p2|)
+3e[p2B#Bau+p22B1*By,
+3 (p1+p2)* (B — B3*) (B,— Bs,)
+3 (01— p2)*(B*+B3#) (By+Bsy) ]

and

(66)
If
<P1.2>=771,2,

then we have in lowest-order four vector particles of
masses

ning, and  (m=En2)?,
in addition to the two scalar particles whose masses are
determined by the second derivatives of V. Provided
that we choose the form of ¥ so that none of these
quantities vanish, no zero-mass particles remain in the
theory.

It should be remarked that this model is in no sense
unusual. Suppose we construct such a model for any
group G, with g vector fields transforming according to
the adjoint representation, and # scalar fields ¢ trans-
forming according to some other specified representa-
tion. Then, except for a few representations cor-
responding to small values of #, the number of in-
variants constructible from ¢ will be exactly v=n—g.
In that case the model will be completely free of mass-
less particles. For example, for SU(2), the only two
irreducible representations for which G, is not trivial
are the one-dimensional identity representation and the
three-dimensional adjoint representation. [The two-
dimensional (fundamental) representation must be
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complex. It therefore has four real components, (2=4),
and a single invariant (r=1).]

We note certain characteristic features of our model.
It is perfectly possible to describe it without ever
introducing the notion of symmetry breaking, merely
by writing down the Lagrangian (66). Indeed if the
physical world were really described by this model, it is
(66) rather than (64) to which we should be led by
experiment. The only advantage of (64) is that it is
easier to understand the appearance of an exact sym-
metry than of an approximate one. Experimentally, we
would discover the existence of a set of four vector
bosons with different masses but whose interactions
exhibited a remarkable degree of symmetry. We would
also discover a pair of scalar particles forming an
apparently incomplete multiplet under the group de-
scribing this symmetry. In such circumstances it would
surely be regarded as a considerable advance if we could
recast the theory, into a form described by the sym-
metric Lagrangian (64).

VI. CONCLUSIONS

In this paper we have tried to establish two main
points: Firstly, that it is possible to handle the problem
of symmetry-breaking consistently in the Lorentz gauge
as well as in the Coulomb gauge, and to reach identical
conclusions; and, secondly, that in the case of non-
Abelian gauge groups (as well as in the Abelian case)
the introduction of gauge-vector fields coupled to cur-
rents associated with a broken symmetry can serve to
eliminate massless particles completely from the theory.
The condition that there be no massless particles is also
the condition that no components of the symmetry
remain unbroken. For each unbroken component there
remains a massless vector field. This is of course pre-
cisely the physical situation in regard to groups like
SU(3). There is just one unbroken component, gener-
ated by the electric charge, and one known massless
vector boson, the photon.

Considerable difficulties still face any theory of this
type. In particular it is not so easy to give the vector
bosons a reasonable mass as to give them some nonzero
mass. However, it does at least seem worthy of further
study.
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