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We have calculated the differential and total cross sections for electron-neutrino (antineutrino) scattering
accompanied by hard-photon emission. A numerical analysis of these cross sections including the radiative
corrections to order a, soft-photon emission, and neutrino (antineutrino) electromagnetic form-factor
interference terms calculated by Lee and Sirlin has been performed, and the results are given graphically.

I. INTRODUCTION

HE Feynman-Gell-Mann current-current theory
of weak interactions! predicts the existence of
electron-neutrino (antineutrino) scattering:

e+ ve— e+, 1)
e+, — e +7,. (2)

ve (7.) refers to the neutrino (antineutrino) associated
with the electron. These reactions are also expected in
a W-meson theory of weak interactions. The cross
section for these processes at energies at which reason-
able intensities of v, and 7, are available? is very small
(10-%-10—* cm?), and it is not surprising that even if
they exist they have not been observed. In this paper
we have assumed the existence of both reactions (1)
and (2).

Assuming weak interactions are mediated through
the exchange of a charged vector meson, the neutrino
can. acquire an electromagnetic current distribution®
through the virtual transition

o= e+ WH, @3)

and can therefore interact electromagnetically with
charged particles. Figure 1(a) shows reaction (1) oc-
curring via a W-meson exchange; Fig. 1(b) shows the
reaction occurring through exchange of a photon. It has
been pointed out®* that processes (1) and (2) can be
used to measure the electromagnetic form factor of the
v, or .. The interference term between the diagrams of
Figs. 1(a) and 1(b) is proportional to the electro-
magnetic form factor of the neutrino and is & times
smaller than the cross section due to the weak inter-
actions alone (a=~1/137 is the fine-structure constant).

If it were possible to make accurate enough measure-
ments, one could extract information on the electro-
magnetic form factor of the neutrino simply by observ-

* Work supported in part by the U. S. Atomic Energy Commis-
sion and the National Science Foundation.

1 Based on a thesis submitted in partial fulfillment of the re-
quirements for the degree of Doctor of Philosophy in the Faculty
of Pure Science, Columbia University.

(1;;%) P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193

2 Reasonable intensities of ». are produced by g emitters and
in K capture. 7, are available from g~ decay.

3 J. Bernstein and T. D. Lee, Phys. Rev. Letters 11, 512 (1963).

4T.D. Lee and A. Sirlin, Rev. Mod. Phys. 36, 666 (1964).
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ing this interference term. To do this, one has to know,
of course, the contributions of the other radiative cor-
rections which are also of order a. Furthermore, if
the experimental setup is such that no inner brems-
strahlung photons are detected, one has to include the
cross section for scattering with emission of hard

photons:
eFv.(or 5,)— e+ (or 7,)+. (4)

The radiative corrections to elastic electron-neutrino
(antineutrino) scattering to order & have been calculated
by Lee and Sirlin.* In the case of the inner brems-
strahlung correction they limited themselves to the
case that only soft photons are undetectable. It is
the purpose of this paper to extend their calculation to
include hard-photon emission. This correction has to
be included in all experiments in which the photon
emitted in reaction (4) remains undetected.

Section II is a summary of the formulas derived in
Ref. 4 for the cross sections for reactions (1) and (2),
including radiative corrections to order o and the soft-
photon emission contribution. In Sec. III we calculate
the cross section for process (4) for photon energies
w2 € (e is the maximum soft-photon energy). This cross
section depends on e. Our calculation accordingly pro-
ceeds in two steps. We first isolate the e-dependent
part® and determine its contribution to the cross sec-
tion. The e-dependent term is found to have the same
magnitude as the corresponding term in the soft-photon
calculation, but its sign is opposite, so that the total
cross section for inner bremsstrahlung with w>0 is
independent of e. We next proceed to evaluate the
contribution of the e-independent part. The final for-
mulas obtained are fairly elaborate, and a numerical
analysis was necessary to extract their content. The

e W+ Ve Ve Y e”
1/e e” 1/e e”
(a) (b)

Fic. 1. Feynman diagrams for (a) interaction of electron and
neutrino proceeding through the exchange of a W meson, and
(b) interaction of an electron and a neutrino via one photon
exchange.

5 By e-dependent part, we mean that part of the cross section
that diverges logarithmically when one takes the limit e — O.
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results of the numerical analysis and our conclusions
are given in Sec. IV. All our formulas are given in
natural units with #=c=1.

II. CROSS SECTION FOR ELECTRON-NEUTRINO
(ANTINEUTRINO) SCATTERING WITH ONLY
SOFT-PHOTON EMISSION

Following Lee and Sirlin* let us separate the dif-
ferential cross section for electron-neutrino (anti-
neutrino) scattering as follows:

do dzrol
dE dE dE

doy ' doraa | doy

dE  dE

)

E is the final electron energy in the laboratory system
in which the electron is initially at rest. doo/dE is the
differential cross section for the nonradiative scattering
corresponding to the Feynman diagram of Fig. 1(a).
doy/dE results from the interference of the Feynman
diagrams of Figs. 1(a) and 1(b), while doa/dE and
do,/dE are the contributions of the radiative correc-
tions and inner bremsstrahlung (to order «), respec-
tively. do/dE has been calculated in Ref. 4. In their
calculation, Lee and Sirlin limited themselves to the
case that only soft photons are undetected. In what
follows we summarize their results:

doo(ve)= 2mG?*/7)dE, )
dao(z‘z,,,)=2”f2(l—;i—v)2dE, 0
daM<ue>=2m“ b1 q: =iz, ®)
daM(ae)=2 . : 1 f(qz)][(l-%f—zq;]w, 9)

damd<ue>=2"7’:62lzm— [1+4f;2(m—2»>]
sin:2<p 4E, 10)

2maG? g% \?
dU’rad(’-’e) = . [ (1 - _—') Tiaa

T 2my
¢ ¢
-1+ (m—ZV)] dE, (11)
4my? sinh2¢

(@/m)doo, (12)

da'noft =
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where

o )
]
- )

Ipa=— ¢ tanho— / 4o tanhado

tanh2¢

2¢ A
-—2(1—-— )(1+ln—> , (14)
and tanh2¢ m

4o
I,= (2— >ln——+(1 -2 In2)4+—
tanh2¢ € 2 tanh2¢

X{4¢[1—2 In(sinh2¢) |+ L(e**)— L(e~**)}. (15)

These results apply to the frame of reference in
which the target electron is initially at rest. m and my
are the electron and W-meson mass, respectively,
while ¢ is the 4-momentum transfer from neutrino
(antineutrino) to electron. » is the energy of the incident
neutrino (antineutrino) and E, that of the electron
in the final state.

¢*=2m(E—m)=4m? sinh?p.

(16)

G is the Fermi u-decay coupling constant, A a fictitious
mass associated with the photon for the infrared cal-
culation, and e is the maximum soft-photon energy.

f(g® is connected to the neutrino form factor F(q?)
through the relation?

F(g%)=—(G%/167%)¢*f(¢?) . (17

(—e) is the charge of the electron and a=e2/4r=~1/137
the fine-structure constant.
The Spence function L(x) is defined as

zln|1—
0 y

In formula (6) through (13) terms of order (m/mw)2,
1(¢*/mw?) and (v/mw)? were neglected. This is justified
in all practical applications since the available », and
v, sources of reasonable intensity? do not give neutrinos
(antineutrinos) with energies greater than 20 MeV.

(18)

III. CROSS SECTION FOR HARD-PHOTON
EMISSION IN THE REACTION
Ve (OI' Ve)+e_"’> Ve (01‘ ve)+e_+'f

A. The Transition Probability

We want to calculate the transition probability
for the inner bremsstrahlung process (4) when the



155

photon is emitted with energy w > € (e is a small positive
nonzero energy). Let us introduce the following
4-momenta¥:

k,= (v,iv)=1nitial 4-momentum of neutrino
(antineutrino);

k= (v/,iv") = final 4-momentum of neutrino
(antineutrino);

p=(0,im) =1nitial 4-momentum of electron;
p'=(L,iE)=final 4-momentum of electron;
k= (k,iw)=4-momentum of photon.

m is the electron mass, and all momenta are measured
in the laboratory system.

We restrict ourselves to the case when 1(¢?/mw?<«<1
and (m/mw)2*<1 (¢g=k,/’—k,). In this limit, one can
calculate the transition rate for process (4) using the
4-Fermi Lagrangian density interaction”

G
£1 =6[_ i‘;ve(x)')’)\(l +'Y5)"pve(x)
X I:_ i‘l—’e(x)')’)\( 1 +75)‘l’e(x)] . (19)

The lowest-order Feynman diagrams for reaction (4)
in the context of the 4-Fermi theory are given in Fig. 2.
Using Feynman rules, one can evaluate the transition
amplitude corresponding to these diagrams, and from
this, the transition probability. After averaging over
initial electron helicities and summing over final elec-
tron and photon helicities one obtains the following
result for the transition probability w per unit volume
and time:

|:(21r)zeG 254( s ot (0
2V2(wV)1’2] P P

where V is the normalization volume of our wave
functions. T is given by

8 8

= Ti+ Tot Ts, (21)

m2wE mE(Ew—1-k) E(Ew—1-k)?

where

T1(v)=w(E—1-9Y1—k-5)+mw(E-5)(1—E-9"), (22a)

Tg(ue)=w(1—1%-ﬁ')[m+(lTEiéz-ﬁ]
—ml(1-9)—(-Dk-2)]
+L(@'+k)- e J-5—(k-5)(k-1)], (22b)

Ts(ve) = —[12— (B-D2](p'+ ) - e (22¢)

6 The fourth component of our 4-vectors are imaginary. If
a=(a,as) = (a,5a0) and b= (b,bs) = (b,ibo) are two 4-vectors (ao and
bo are real), then their scalar product is defined as a-b=a-b—aobo.

"ye(x) and yYy.(x) are the electron and neutrino fields, respec-
tively. ¢ =y!v4, where ¢! is the Hermitian conjugate of y. The set
of v matrices we use is Hermitian.

INNER BREMSSTRAHLUNG

Fic. 2. Inner brems- v e

strahlung in electron-neu- ¢ Y
trino scattering in context
of 4-Fermi theory. Y, e

We have used the notation

eN=kfv; "=k, (23)
P=v/v; V=v/, (24)
b=/ K] 25)

The corresponding expressions 7T(?.) for the 7. case

can be obtained from T;(v.) by making the substitutions

p— ', »— 5, and e — e® 8

B. The Cross Section

The cross section for hard-photon inner brems-
strahlung is

62G2

Ohard y =

dk
ToH(p+b/+ b p—k)d—dv . (26
4(21)5/ Wk gk L (0

We use the 8 function to carry out the v/ and |k|
integrations. This gives

i / PO @7)
e ) T a=kry
with
phby=p R+ (28)

Equation (28) simply expresses the over-all conservation
of energy and momentum.
Define the 4-vector

S=(s,is0)=k,+p—p'. (29)

We also introduce the four angles 8, v, 6, and 8 defined
as follows (see Fig. 3):

fe-z=cosﬂ; l%-§=cosy

- 30
J-$=cosd; [-9=cosh, (60)
where
s=s/s, s=Is 1)
=11, 1=11].

F16. 3. Momenta and
angles relative to co-
ordinate system chosen.

8 The relations (21) and (22) were derived by Lee and Sirlin
(private communication). I wish to thank Professor Lee and
Professor Sirlin for allowing me to use their results.
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To perform the integration over dQy we have chosen where
the z axis along s, and the xz plane to be the plane ) )
defined by s and I. In this coordinate system, & is the / [ 2E m ]

: : K= [ d@ —1+ . (37
azimuthal angle of k. It is easy to see that (E—1lcosB) (E—IcosB)2

cosB= cosry cosé--siny cos® sind. (32) All the e dependence of opara y is contained in I..
The integrals involving 7'y and T are independent of
e in the sense that they remain finite when the limit C. Evaluation of the e-Dependent Part
e¢—> 0 is taken. On the other hand, the integral involving . ] .
T3 depends on ¢, diverging logarithmically when e — 0. We V\flll descrlbt.a a convenient and elegant method of
We wish to separate this e-dependent part as it requires  €valuating /. devised by Sirlin.? Let
special treatment. Some formal manipulations give I.=[2eG/ (2r)5]4, (38)
here
e:G? l kl w dl ’, S
Chard v= T'———dld+1., (33) CA@)=2] — L K (39a)
4(2#)5/ (1—Fk-9) ¢ . ’
where o o EAS-S
dl sofp’-k
T'=—-T1— Tot- Ty, (34) A()=2 / _-9( )k 39b
with mol  mE(p'-k)  E(p'-k)? e Ev\s-S/ o)
1 . . .
Talv) = ——[B—(B-12Tk- (B, — "), 35 The |k| integration is restricted to |k|2> e. In
i(ve) v (= (D2 Je- (& . ?) (352) Appendix A, we show that for |k| >, the domain of

) integration can be divided into two regions such that
) . w in region I the kinematic limits are restricted by (A11)
Ts(,,e)’zz[lﬂ_ (k'l)zj[j@l'k”)—k'k”]’ (35b)  while in region II they are restricted by (A14). Let

Ay and A1r denote the contributions to 4 from regions

4eG* [ dlyp’-S I and II, respectively. Consider first A;. In region I
I(vo)= / —<—> ) (36a)  there is no restriction on the orientation of k. It is
(2m)*J ENS-S convenient to integrate over dQy first, choosing the polar
4e2G> [ dl so/p' by axis along 1. The dl integration is then quite easily
I(pe)= / ——( > , (36b) performed by taking the polar axis along v. The result
2x)5J E »\S-S of these two integrations is

e\ B E E—I B E E—I
Ax(ve)=8w2m[ln<—):|/ dE<2+~— 1n—>-—87r2/ dE(Z—I——— ln—-«)
m m I E+I m ! E+I

X {m ln':<E_ l)(t— m)]+m ln<W,_t)—;[:mso—v(E— z)]} . (400)

4msy m

€ Fmax E  E—I\s¢? Fmax E E—Ns
Al(fze)=87r2m[ln<~—>} / dE<2+— ln——)————&r2 / dE(Z—l—— ln——)—
m/ 1) m I E41/»? m I E+1/v?

!

X [mso ln[(E—l>(t—m):|+mso ln(W _t)—[mso—v(E—l)]] . (40b)

4msg m
where
t=E+1, (41)
and
W'=m-+2v. (42)

Enax is defined by the relation (A6).

It is important to note that at the upper limit of integration the argument of In[ (W’—1t)/m] vanishes in the
limit when ¢ — 0, so that the differential cross section diverges logarithmically at the end of the electron spectrum.
A similar divergence is found when one considers the radiative corrections to u decay.!0:1! This divergence is a
result of the degeneracy between the energy states of a free electron and those of an electron accompanied by soft

9 A. Sirlin (private communication). I wish to thank Professor Sirlin for communicating his results and allowing me to use them.
0 R. E. Behrends, R. J. Finkelstein, and A. Sirlin, Phys. Rev. 101, 866 (1956).
1T, Kinoshita and A. Sirlin, Phys. Rev. 113, 1652 (1959).
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photons. Applying the Lee-Nauenberg theorem,!? one can get finite results by simply summing the transition
probability over the degenerate set of states. We can achieve this by averaging the differential cross section over
a small energy interval AE, corresponding to the experimental energy resolution. If we do this, we find that the
divergence is removed. ,

We now turn over to the evaluation of 411. To do the dQ integration we choose the polar axis along s. After that,
the final integration over dl is easily performed by taking the polar axis along v. For this last integration it is con-
venient to replace the variable of integration (cosf) by v, where v is given by Eq. (A13). Dropping terms that lead
to contributions of O(e) to Arr we can write

d(cosf) = —————dp. (43)
WI(1—2)
The result of these manipulations is
Emax
Anlve)= —47r2m/ HIE, (44a)
Emax S 2
Au(l-/e) = "'471'27%/ —2HdE , (44:b)
m v
where
L dy 2E (E41)(1—cosb) (Ev—1 cosd)
=/ [(l—v)—-———ln 1—
~1(1—9) I Iv—E cosd+[m? sin?6+ (lo— E cosd)*]V/2 [m? sin2+ (lv— E coss)?]V/2

In the above
cosf=u
and
cosé= (1/so)(uv—1),

where # is defined by the relation (AS). If we substitute y=1I— E cosd, H reduces to an integral of the form M.
discussed in Appendix B. The final result is

e ol ) )

2 2\) E [E+1 5o
—,L(———)—L<~——> } - ln( >+2 In—, (45)
1+ \E+1/] 1 \E—1I y

f=1/sd)(Eso—my), (46)

where

and L(x) is the Spence function.
Combining (Z.)r and (I)11 we finally obtain

20G? € Emax E E—I\ 20G? [Emax E E—I E—I
I(ve)= m(ln—)/ dE(Z—f——— ln—>—— / dE(Z—l—— ln———) {m ln[< )(t— m)]
w2 mlJ)m I E+I T2 ! E+I 4ms,

W'—t\ 1 aG?m  [Emex
+m ln( >~—[mso~u(E—— l)]}-— HIE, (47a)
m 14 ™ m
2aG? € Bmax E E—I\sy® 2aG? [Fmex E E—INso
I.()= —~—'m<ln——>/ dE(Z-{—— In )——~ / dE(2+— ln~——-—)—
2 ml ) m I E+1/v 2 I ! E+1l/v?
E—1 W'—1i aG?m  pEmax 42
X {mso 1n[< )(t—m):l—i—mso ln< )—[mso—V(E— l)]}— / —HAIE. (47b)
4ms, m w2 Jm 2

In Appendix D it is shown that the term proportional to In(e/m) in I. is of the same magnitude but of opposite
sign to the term proportional to In(e/m) in o1t 4. Thus, upon adding gt 4 and onara 4 to give o, (the total brems-
strahlung cross section without any restriction on % apart from those imposed by energy-momentum conservation),
the e dependence completely drops out.

2 T. D. Lee and M. Nauenberg, Phys. Rev. 133, B1549 (1964).
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D. Evaluation of Non—e-Dependent Part

Consider

S e / VL B )
hard vy € 4(21'_)5 (I—Ef)’) ko

This integral has no e dependence,® so that in computing it we can simply take ¢ to be zero. [ This is equivalent
to neglecting terms of O(e).] The ranges of integration for the case e=0 have been determined in Appendix A and
are given by (A7).

The integrals in relation (48) can all be brought to the following form:

dl D(E,cosh)
(% ,
E  (so—s cosy)*(E—1I cosB)™

where # and m are positive integers, including zero. It is convenient to perform first the integration over d<.
For # and/or m equal to zero the integration is trivial. If both are different from zero the integral is slightly more
involved and a method for its evaluation can be found in Appendix B. After this is done, one is left with the integra-
tion over dl. Most of the terms can be trivially integrated. In some cases it is convenient to replace (cosf) by s as
variable of integration. The more difficult integrals can all be brought to either the form M; or M which are dis-
cussed in Appendix B. The final result after integration is

2m?aG? EPmex 4 JE

> Ji— +I¢, (49)

™ m =1

Ohard v=

where

1 EZS() 1 S()V2 3 Solz 803 1/E 3 So
Jilve)= { [mso—v(E—1)] [Eso—i— (v2—10)+152— 6mv+ - f— ——:I—I— 2< >
Am%

m 4 m 4m 8m m 8 m

3
X [mso—v(E—1) s>+ (v—1)2]+——s0*(so—4m) (v+1)*(1—1?) ) ,  (50a)
16m

JQ(Ve)_—— {Sol:mV50+2F280+2va+s (l—s—>+E<1"‘—)(30 —‘V2+l2)—750<1“——)(V2+l2)—”——(ll ‘—'lZ) }
4m? 4 4m 2m 2 16
303 ES() 1
X[—=21In24(1—7r) In(1—r)+(1+47) ln(l—l—r)]-—[iso-{—E-l——-—————(v2+lz+soﬂ):|[1+2 In2—72
3 2m 8m
3 5
—(1—=) In(1—7r)— 1+ ln(l-l—r)]—-éa si[%+2 In2—7%-3rt— (1—7%) In(1—7)— (147%) In(1+7) ]
m
Esg? So So 1—7r
+%[(V lﬁ)<2Eso—l—2mv———————> Gy (1——-—)+s02(v2+l2)(1——>][2 ln2+(-—~—> In(1—7)
m 2m 4m r
147 1—73 1473
—(———) 1n(1+r):l—%so2(v+l) (1-—-—~>[(1+2 In2)r2— < ) ln(l—r)—( > ln(1~|—r)]] , (50Db)
r 4m r 7
1 E41
Js(ve)=——u)*El 1n< ) , (50c¢)
4m? F—1

<ue>——2{1—3+2”+(zzz—1)u<zo — L)+ L)~ L(Zz/%x)]~—<1——) In— - [ (1= 22)4 - (z>

v m? m 21

BT () Pt e ) e A
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(51a)
2m%
So? So $o? So
Jao(3g)= l:{Zm(so— m)(l————>+—(so—2m) ] {—2 In2+(1—7) In(1—7)+(1+7) In(147)} +—(s0—m)?
2m%? dm/  4m 6m
X {12 In2— 72— (1— 1) In(1—7)— (147%) In(1-Fr)} ———
20m
X{3+2In2—7—4r— (1—7% In(1—7)— (1+7%) In(l—{—r)}} , (51b)
Js(pe)= ! ( LI (E+l 51c)
e _4m2 *) 8 E—l>’ (e
Ji3o)=3(U1+Us+Us), (51d)
where

{2 47202 ) o)
s - s -2 o)

mE2W 4y 2y 23 %2 Z2
—I————Ii———-—— In—— (Z1+ >+ A4z){ —— 1) ln(——— 1>+<1+—>(zl~— 1) In(z:— I)J ,  (52a)
p? 21 21

m m m 1 21

m

Uz=—15—y[m4az{L(z2)—L<zl)+L(1>-—L(—:—j){+ ’ )( +m2a1> {1n<n—1>—1n2}+—2-)<f—m2a1) In(p+1)

(n—1 (n
1—1)

- ———(a+m222al){ Inz1—2 In(z1+9)} —— [ <1+ >a+2m2a1 ] ln———l— { (z1t+1)a+m?(z1+22)a1) &
w v 22

m( [z %9 (z2—21) /%2
Xln(z1—1)—— { (——-l— 1>a+m?<z—+z2>a1 I ln<——— 1>]
14 21 1 ZZZX 21

2b0 W v 81’ Zbl v
+ [ ln(~—|— 7;)—-—ln—— ln<——+ "I>] ——1In—, (52b)

mivn m m m?

Us=Us®O4-Us@4U;® (52¢)

11r2 /a0 29\ M/ ay n+1 v m
U= ———[—<—+a1> ln( > < +Zz‘—+22a2) { 2 ln( >— 1n—+an1} —|———<—+——+z2a2>
42 m?>\m? 2/ mw\mt* m? z1+17 m mt m?

22 14 m 0 1 o 22001
X { ln———Hn——} "‘-—‘ (—+—+22a2>+-—<—+——~—]—22a2>} lIlX:I y (53&)

221

21 m mt m? n\mt  m?
1 1 1 / 1 do

U3(2) = ~[(mW~ 51/)—‘ (d1+m - ——-{-d2+m422>+ ds ln lL dz—‘ 3’”7/422)
2 2m%? 2mv?\zy, m* m 2m2n\22 mt

w v 51/
X { ln<—+ n>—ln——ln<—2+ 17> ] +——{ (dit-mzads)+{ — —~+d2-l-m4zz>s1 }
m m

m 2m
1 l/ldo

X l
X2 2m271\22 mt

d2—2miyd;— 3m4Z2) lnX] , (53b)
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6nn—DL —1)2 (—n)td " 6n(n+1)

X[n(z1—1)+2 In(p—1)+1nz; ]+ [RQD(Z2)+ :
n

R
+1)

- e ]

(z1+m)?
][—2 In(n4+1)+2 In(z1+9)—1nz ]

1

+R5[L<z2>—L<zl>+L<1>—L(3>}L[m{—1

21
1 1 1
+R2{—— =
3 22(n+1)° 22(n+1)?

1 N 1
-|“|:R2[~ N D(Z2)}_R
3 (tm)? 2 (ztn)?

1 1 (3a—21)

2 (22/21+77)2_D(z2) } _R4n(n+ Dzt n)] ln<z

3a(n—1) 2m(n—1)2

1 (g+1) 1/9—1 2y
+D(z2) ] —-Ry +“< )R{l In—

7 (p—1) n

)|

ntl

m

(z21—1) 1 ]
—— | In(z;—1)+| Ry {— ———
(n+1><zl+n>] G=D) [ {3 (so/ 214 1)?

_1>+R1[§[(21in)3 1n(zl—1)+m 1n<:—i—- 1)}

% { (Zli —nter 1)+(?27ZT1——& 1n€-— 1>}+c(Z2) 1n<j—j— 1>}

+R‘°’H (211_ e 1)+@;11:5 I“C‘i“ 1>}+(ni 0 ‘“C‘j“ 1”

a, a;, b, d;, a;, and R; are functions of » and E and
are given in Appendix C. We have used the following
notation:

W=m+v, (54)
r=@w—10)/s0, (55)
21= (1/m2) {EW — b+ | IW —Ev|}, (56)
za=1420/m, (57)
=12, (58)
X=(1/m?)|IW—E»|, (59)
s/=EW—1y, (60)
Blayss) = <z1—f3> {1—£<z1+ﬁ>} . (©1)
21 4 21
Claymr (62)
3(n—1)* 2(n—1)* ’
Dyt (63)
3(n+1)* 2(n+1)°
h1=222+i2(2E—v)(2E—W). (64)
m

u is defined by the relation (AS3).

R;
—2R,C(22) In(z1—1n)— In(zi—n). (53c)
(n—1)
It is interesting to note that
4
Z J1=07
=1
for I=0 and /=1pax.
50 T T T T T T
aof .
%lre)
< 30F -
<
o
e 20} J
(7)
ok %'\ |
% 1z & 20 24

lNéIDENT NEUTRINO (ANTINEUTRINO) LAB ENERGY IN MeV

Fic. 4. Total cross section for radiationless elastic electron-
neutrino scattering ao(».), and elastic electron-antineutrino scat-
tering ao(7e).
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F1c. 5. Electromagnetic corrections to (a) ao(r,) and (b)oo(7e)
assuming mw =60007 and e=0.01m.

IV. NUMERICAL ANALYSIS OF RESULTS
AND CONCLUSIONS

The results we have obtained are fairly elaborate and
a numerical analysis was necessary to clarify their
content. We computed total and differential cross sec-
tions for incident neutrino (antineutrino) energies of 5,
10, and 15 MeV. We also considered the case when the
incident neutrino has an energy of 1.4 MeV, as this cor-
responds to the energy of the neutrinos produced in the
K capture of Zn®, which has been suggested* as a
convenient source of neutrinos for observing reaction
(1). The graphs given in Figs. 4 through 11 show the
results of this numerical analysis assuming mp=
6000m. The value of G we used was the one deter-
mined from u decay® (including radiative corrections),
namely,

G=(1.4350-£0.0011) X 10~ erg cm?.

The following cross sections and radiative corrections
were plotted in these graphs:

3 C. S. Wu, Rev. Mod. Phys. 36, 618 (1964).
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doo/dE—differential cross section for nonradiative
electron-neutrino (antineutrino) scattering [see rela-
tions (6) and (7)].

dos/dE—This is the radiative correction to processes
(1) and (2) to order «, assuming that photons with
energy less than e cannot be detected (the contribution
coming from the electromagnetic form factor of the
neutrino is not included).

dO's dO',-ad da’sgft ¥
—=—+ . (65)
dE dE dE

In computing dos/dE we assume that e=0.01m.
doy/dE—This is the radiative correction to processes
(1) and (2) to order «, assuming that the experimental
setup is such that any photons emitted in the scattering
process are undetectable. It does not include the con-

l—v=5 MeV —=|

x10744)
o
2
wm

~——— v =10 MeV ——— |

v =15 MgV —m————————

o
o
()

( cm?

dE
o
N
wn
T
1

doy, (7)

0 ! 1 1 1 1 L
5 10 15 20 25 30

FINAL ELECTRON LAB ENERGY IN UNITS OF ELECTRON MASS
(a)

1 1

1
! 5 10 15 20 25 30
FINAL ELECTRON LAB ENERGY IN UNITS OF ELECTRON MASS
(b)

Fic. 6. (a) Differential cross section doo(v.)/dE for radiationless
elastic electron-neutrino scattering. The cross section is a constant
independent of the incident neutrino energy. (b) Differential
cross section doo(5.)/dE for radiationless elastic electron-anti-
neutrino scattering, at incident antineutrino energies » of 5, 10,
and 15 MeV.

14 For such a value of e it is eéssentially sufficient to consider only
one photon bremsstrahlung.
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Fic. 7. Electromagnetic corrections to (a) doo(ve)/dE and (b)
doo(5.)/dE to order a, including soft- and hard-photon emission
and neutrino (antineutrino) form-factor interference term. The

curves correspond to incident neutrino (antineutrino) energies
v of 5, 10, and 15 MeV, and mw =6000m2.

tribution coming from the electromagnetic form factor
of the neutrino.

do'l[ do'md | da’soﬁ, £ Ldo'hn.rd 1%

—_ . (66)
dE dE dE dE

As discussed in Sec. III, donara 4/dE diverges loga-
rithmically at the end point of the electron spectrum.
This divergence was removed by averaging donard 4/dE
over a small energy interval AE corresponding to the
experimental electron energy resolution, We chose AE
to be 100 keV.

As it s, to get the total electromagnetic correction to
order «, one also has to include the correction due to the
electromagnetic form factor of the neutrino, dos/dE.
We accordingly evaluated and plotted

dogm doy dou
= fe—, 67
dE 'dE «[dE
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This is the total electromagnetic correction to re-
actions (1) and (2) to order a. It is the electromagnetic
correction one would measure, as there is no way to
measure dog/dE and doy/dE separately. To be more
accurate, one should really say that what one measures

1S
do dog

dE dE dE

dosm

(68)

By subtracting the theoretical value of doo/dE from
this, one can infer what domm/dE is. The reason we
also plotted doy/dE and doy/dE separately was to
give an idea of their relative contribution to the total
electromagnetic correction. By measuring dopm/dE as
described above, and subtracting from it the theoretical
value of dog/dE, one can compare the result with the
theoretical doy/dE and thereby verify the theory that
was used in deriving the relation (13). We did not plot
do/dE as dowm/dE is only of the order of 19, doo/dE,
and on the scale we are using would not change doo/dE
significantly.
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F16. 8. (a) Electromagnetic corrections to dao(v.)/dE to order
a, for an incident neutrino energy » of 1.4 MeV, my =6000m and
¢=0.01m. (b) Electromagnetic corrections to dao(5.)/dE to order
a, for an incident antineutrino energy » of 5 MeV, mw=6000m
and e=0.01m,
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F1c. 9. (a) Radiative corrections to doo(v.)/dE to order «, in-
cluding soft photon emission but excluding neutrino form factor
interference term. This correction is very insensitive to the incident
neutrino energy » and on the scale used the curves for »=3, 10,
and 15 MeV coincided. We assumed ¢=0.01z. (b) Radiative cor-
rections to doo(7.)/dE to order e, including soft photon emission
but excluding the antineutrino form factor interference term. The
curves correspond to incident antineutrino energies » of 5, 10,
and 15 MeV, and ¢=0.01m.

As the results show, the cross section for elastic
electron-neutrino scattering is about 3 times that for
elastic electron-antineutrino scattering, showing that
the detection of process (1) is somewhat easier than ob-
serving process (2). We also see that for ¥>m, ¢ in-
creases linearly with ».

oeum is negative for both v, and 7., but the magnitude
of orm (v.) is about three times that of ogm (7). Further-
more, as » increases so does |ogn|. In fact, we see that
|omm (ve)| increases from 1.359, of ao(ve) to 1.65%, as
the incident neutrino energy increases from 3 to 15 MeV.
Correspondingly, |oem(?.)| increases from 197 of
ao(¥.), to 1.59,. It is important to note that more than
half the contribution to ogm comes from the form factor
term oas.

For any given incident neutrino (antineutrino)
energy we found that

dootdo,<dootdom.
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TasLE I. Neutrino and antineutrino form factor interference
terms for different W-meson masses, and an incident neutrino
(antineutrino) energy of 5 MeV.

mw
(electron mass au(ve) o (be)
units) (cm?X 10746) (cm?X 10746)
6000 —7.315 —2.524
10 000 —7.948 —2.736
15 000 —8.451 —2.904

This is exactly what we expected, since by also includ-
ing the emission of hard photons we obviously increase
the cross section.

We have also evaluated oi for »=5 MeV and
mw=06000m, 10 000m, and 15000m. As the results
given in Table I show, o is not too sensitive to the
exact value of mw {the reason why this is so is clear
when one observes that doa depends on mpy only
through a term proportional to In(mw/m) [see expres-
sion (13) which is taken from Ref. 37}.
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F16. 10. Radiative corrections to (a) doo(v.)/dE and (b) doo(e)
/dE to order a, including the emission of soft and hard photons
but excluding the neutrino (antineutrino) form-factor interfer-
ence term. The curves correspond to incident neutrino (antineu-
trino) energies » of 5, 10, and 15 MeV.
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F1c. 11. (a) Neutrino form factor interference term and (b)

antineutrino form factor interference term, for incident neutrino
(antineutrino) energies » of 5, 10, and 15 MeV and mw = 6000#m.
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APPENDIX A

We shall determine the kinematic limits for the re-
action (4). Two cases will be of interest:

(a) w2>0.
(b) w>e.
w is the photon energy and e is a very small positive

energy.
Case (@) w20

We choose a frame of reference in which the electron
is initially at rest. In terms of the 4-vector S= (s,iso)
defined by Eq. (29), we can express the energy-momen-
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tum conservation relation (28) as follows
s=v+k (Ala)
and
so=v'tw. (A1b)

The kinematic limits we shall determine for this case
will be applied to integrals with no infrared divergence,
so that we can take A=0 (A is the fictitious photon
mass), and write w= | k|.

Eliminating »" from Egs. (Ala) and (Alb), we find
that

S-S
k| =——-——r, (A2)
2(sp—s cosy)

where cosy=£-§ and S-S=s2—s¢2.
Using Eq. (28) and the definition of S, we find that
S-S=(k/+kE2=2/|k|(#'-k—1)<0.  (A3)

Therefore,

S0>S. (A4)

We require that |k|=w>0. Because of (A3) and
(A4) it is easy to see that (A2) satisfies this condition
for all cosy, i.e.,

—1<cosy< 1.
Using (A4) we find that

0<u<LcosfL,
where

u= (—mso+vE)/vl. (AS)

The restriction #< 1 determines the maximum value
of E for any given ». We find that

Emax= (W2+y2>/ (W+ V) ) (A6)

where W is defined by the relation (54). The allowed
range of E is therefore

m< ES Emox-

To summarize, the kinematic limits for the case
w=|k| 20 are
—1<cosy<1,
u<cos<l,
m< ES Emax-

Case (b) w>e

(A7)

To treat this case we use a method due to Sirlin.?
As in case (a), we find, using 4-momentum conservation,
the restriction (A2) on |k|. We have again taken A=0
since we are interested in w2 e and no infrared diver-
gence is encountered. We now impose the condition
w=|k| > e. Together with (A2), this implies that

1 (so—5)
cosy > —1so—
s 2¢

(sot+5) | - (A8)
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Since so>s [see (A4)], the domain of integration can
be divided into two regions, as follows:

In region I: (A92)
(A9b)

Consider first region I. Applying the condition (A9a)
to (A8), we see that cosy> —1. Since there is no other
restriction on cosy, we must have

So—522¢,

In region IT: so—s< 2e.

—1<cosy< 1.

In region I, so—s2 2e. This gives the following lower
limit for cosf:
cosf > u(e

where
2eso—mso+vE
#d=—--—-— >0, (A10)
vl
Therefore,
0<ul®< cosf< 1.

Since #(9<1, it follows that EX Emext+0(e), where
Eax is given by the relation (A6). We have therefore
found the following kinematic limits in region I:
—1<cosy<1,
u@L cosf< 1,
mg E< Emax+0 (G) ;

(A11)

We now deal with region II. In this region
0< 50— 5% 2e. (A12)
This, together with (A8), implies that

< cosy<1,

1 S-S
1}=—<So+_—> .
s 2¢
The condition (A12) imposes the following limitations
on cosf:

where

(A13)

u<cosfL ul®,

Furthermore, the requirement that %(9<1 gives the
following upper limit for E:

E<L Enmaxt0(e).
The kinetmatic limits in region II are therefore

v<cosy< 1,
u< cosfLul?,
ML EL Enaxt0(e).

(A14)

To summarize, we have found that when w=|k| > e
the domain of integration can be divided into two re-
gions, such that in region I the kinematic limits are
determined by the restrictions (A11), while in region
IT they are determined by (A14).
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APPENDIX B

In this appendix we shall discuss some of the integrals
encountered in our calculation.

(1) Integrals of the form

4r ko
/0 (so—s cosy)*(E—1 cosB)™ '

To evaluate these integrals for arbitrary integer
(nonzero) # and m, we use the identity

4 %
/; (aso—s cosy)*(bE—1 cosB)™
(_ 1)m+n dﬂ-—l dm—l
B (n—1)(m—1)!so"Em=1 da"=! dbm~!

4T ko
X / , (B1)
o (aso—s cosy)(bE—1 cosB)

where ¢ and b are two numerical parameters which are
put equal to 1 after the differentiations are performed.
It is therefore sufficient to evaluate

4 dQ "
9= .
/o (aso—s cosy)(BE—1 cosB)

Substituting the relation (32) for cosB, and carrying
out the azimuthal integration, we obtain

1 d(cosy)
9=2r /

1 (aso—s cosy){c*+ (I cosy—bE cosd)?}1/2’

where ¢?= (B2E2—I2) sin?%.
We now carry out two transformations, First
x= (I cosy—bE cosd) ,
followed by

y=x-+ ()2,
This gives

dr dQ 4
/ =——N y (B2)
o (aso—s cosy)(BE—1 cosp) s
where
v2 d 1
N= y =
n (—Ry—c?) (R*+4cH)?
(y2—r)(y1—12)
ln[ﬁ__‘yl—z:] . (B3)
(1—r1)(y2—r2)
and
So
R=2 (al——— bE cos&) , (B4)
s



1552
y1=0E—1)(1—cosd); y.=(ObE+I])(1—coss),  (BS5)
r=3R+ R+, ra= R~ (Ri+40)17]. (B6)
(2) Integrals of the form M,

s’ (s'— mz)_ (5'2_d2)1/2—l ds’
= ) 1 .
v/:l, f(S) n[(sr_mz)_l_(8'2_d2)1/2_l(512_d2)1/2

We first substiture

x=s"+ (s2—d2)'2,
This gives

2 sy d? dz dx
M= / f<—+——) ln(-—-—1>——
a \2 2% m2x x
2 /% d? x dx
-[ GG
an \2 2% m? x

x2=s2’+ (52/2_d2)1/2.

where
x1=s51"+ (12— dH)"?;

Introduce the new integration variable y=d?/x in
the first integral and change the name of the variable
in the second integral from % to y. Finally, introducing
the dimensionless variable of integration £=1y/m?, gives

d'2 d
M= Y(Sl)&)"" Y<_ ’ _) )
1 &
where

B rm?  m2d’? dy
Y(a,8)=— / f(?y+ . )ln(y-l);,

and

£1= x1/m2; £2=x2/m2.

d?=da/m!.
(3) Integrals of the form M,

/ e

(5" dw

By making the substitution x=s"-+ (s2—d?)'2, M,
is brought to the following more convenient form:

2 sy d? x dh\dx
M= / f< +—, --—) .
2 2x 2 2z
APPENDIX C
ao= (m/v)[2s0(?W — EW')—W*m~+E)],
ar= (m*/v)[W (m-+E)*—2vEs, |,

as=(m/v)(W'—3E)E,

a=ay+m*sa:,
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m?

o———[(W’ 3E)(mW+W'E)—4mW s, ],
m
b= (7' —3E) W+ E)—4Es).

Co= —g{ 2m3W —my* (W 2v)+4mWW'E
+W(m—v)E?},
a= —{m2(2W2+u2)+WE(5mW my— 3v?)
+W'E2W+m)},
Co= -——{m2(2W2—|—m2)+4mWE(2m— v)
) + (Tm W+ 3my— 27 E2) |
c3=——";(m3+ mW E—2yE?)

Co= B2,
do=—m*W {mQ@m>+v?)+2W" (m—v) E+3W'E?} ,
di=m*{m(2m—v) QW *+v2)+6mW (W +m)E

W (Am—30) B,
do=m{~—m(Sm>*+ Tmy+v*)+2W (2v— Sm) E—3mE?} ,
dy=m2m—r)+2E2,
cto=—m(mW2—2W E-+3W'E?),
on=2mE[W 2m—»)+C@W+)E],
ay=W?*—4WE— E2,

[(Go+2262+22204)+n(61+2263)]

VZz

3 W2
=—-—v-2——(2mW"‘l/2 21]m2)<E""—> 5
2m% 7

Ry= {(Co+226’2+Z22€4) 17(61+Z263)}
12 Zz
3 wW\?
QCmW — v+ 2q9m?) (E-I———-) ,
2m%? 7
1

R3= _41)2,‘73{ (Co— Z2C2— 322204)— 2,7363} )
R4 {(60—2262—322264)+217363} N

4y’
Rs=(1/2v%)c,.

W, r, 21, 22, 1, X, 51, B(21,22), C(22), and D(zz) have
already been defined by the relations (54) through (63).
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APPENDIX D

From the relations (10), (11), (12), (14), and (15) we

see that doraa+dosess 4 has an e-dependent term

WGy 20
(1 )

V= —
2 \ tanh2¢

L I

The upper row applies to v, the lower one to 7.
Using the relations (16) and (29) one can easily show

(D1)

that
¢\ So
(1 ———) = (D2)
2my v
Therefore,
2maG? 2¢ m 1
o <1~ )(2 ln—){ }dE. (D3)
w2 tan2¢ e/ lse®/v?

dopard v also has an e-dependent term. This is [see
expressions (47a) and (47b)]

2maG21/ E E—]
Vy= —(2+——1n—-—)
a2 2\ 1 E+I

X (2 ln;—>l Solg/ﬂ}dE. (D4)
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To prove that ¥; and ¥, are of equal magnitude but
have opposite signs it is sufficient to show that

2¢ 1 E E—-I
(1—- ) and —-(2-5——- ln————>
tanh2¢ 2 ! E+I
are equal.
From the relation (16), it follows that

E=m cosh2¢ (D5)
and
l=m sinh2¢. (D6)
Therefore
E/l=1/tanh2¢. D7
Using the identity
x4 (xz_ az)l/z x
1 lnl:———————————:l =cosh™|-| , (DY)
x— (xz__az)ll‘z a

with x=E and a=m, together with (D5), we find that

E+1
%In( >=2<p.

o —

(DY)
Combining (D7) and (D9) gives

2¢ 1 E (E-I
(122 ) s 2],
tanh2¢/ 2 I \E+Ii

Therefore

Y1= —Yz.



