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Inner Brernsstrahlung in Low-Energy Electron-Neutrino
(Antineutrino) Scattering~t'

MICHAEL RAM

The Johns Hopkins University, Baltimore, 3/maryland

{Received 7 November 1966)

We have calculated the differential and total cross sections for electron-neutrino (antineutrino} scattering
accompanied by hard-photon emission. A numerical analysis of these cross sections including the radiative
corrections to order n, soft-photon emission, and neutrino (antineutrino) electromagnetic form-factor
interference terms calculated by Lee and Sirlin has been performed, and the results are given graphically.

e +v, ~e +v„
e +P, ~e +P.. (2)

v, (v,) refers to the neutrino (antineutrino) associated
with the electron. These reactions are also expected in
a W-meson theory of weak interactions. The cross
section for these processes at energies at which reason-
able intensities of v, and v, are available is very small
(10 4'—10 44 cm'), and it is not surprising that even if
they exist they have not been observed. In this paper
we have assumed the existence of both reactions (1)
an.d (2).

Assuming weak interactions are mediated through
the exchange of a charged vector meson, the neutrino
can acquire an electromagnetic current distribution'
through the virtual transition

v, e +8'~,
and can therefore interact electromagnetically with
charged particles. Figure 1(a) shows reaction (1) oc-
curring via a W-meson exchange; Fig. 1(b) shows the
reaction occurring through exchange of a photon. It has
been pointed out'4 that processes (1) and (2) can be
used to measure the electromagnetic form factor of the
7, or 7,. The interference term between the diagrams of
Figs. 1(a) and 1(b) is proportional to the electro-
magnetic form factor of the neutrino and is a ' times
smaller than the cross section due to the weak inter-
actions alone (a=1/137 is the fine-structure constant).

If lt were posslblc 'to 1TlRkc RcculRtc enough measure-
ments, one could extract information on the electro-
magnetic form factor of the neutrino simply by observ-
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t Based on a thesis submitted in partial ful6llment of the re-
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'R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
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~ Reasonable intensities of v, are produced by p+ emitters and
in Z capture. 7, are available from p decay.

3 J.Bernstein and T. D. Lee, Phys. Rev. Letters ll, 512 {1963).
4 'L D. Lee and A. Sirlin, Rev. Mod. . Phys. 36, 666 (1964).

I. INTRODUCTION

HE Feynman —Gell-Mann current-current theory
of weak interactions' predicts the existence of

electron-neutrino (antineutrino) scattering:

ing this interference term. To do this, one has to know,
of course, the contributions of the other radiative cor-
rections which are also of order 0,. Furthermore, if
the experimental setup is such that no inner brems-
strahlung photons are detected, one has to include the
cross section for scattering with emission of hard
photons:

e-+v.(or v.)~ e-+v. (or v.)+7 (4)

Thc I'RdlRtlvc corrections to clRstlc clcctI'on-ncutI'lno

(antineutrin. o) scattering to order n have been calculated

by Lee and Sirlin. 4 In the case of the inner brems-

strahlung correction they limited themselves to the
case that only soft photons are undetectable. It is
the purpose of this paper to extend their calculation to
include hard-photon emission. This correction has to
be included in all experiments in which thephoton
emitted in reaction. (4) remains undetected.

Section II is a summary of the formulas derived in
Ref. 4 for the cross sections for reactions (1) and (2),
including radiative corrections to order n and the soft-
photon emission contribution. In Sec. III we calculate
the cross section for process (4) for photon energies

~~& e (e is the maximum soft-photon energy). This cross
section depends on ~. Our calculation accordingly pro-
ceeds in two steps. We 6rst isolate the e-dependent
parts and determine its contribution. to the cross sec-
tion. The e-dependent term is found to have the same
magnitude as the corresponding term in the soft-photon
calculation, but its sign is opposite, so that the total
cross section for inner bremsstrahlung with co&~0 is
independent of e. We next proceed to evaluate the
contIibution of the ~-independent part. The final for-
mulas obtained are fairly elaborate, and a numerical
analysis was necessary to extract their content. The

7/
e

7/
e

7/

FIG. 1. Feynman diagrams for (a) interaction of electron and
neutrino proceeding through the exchange of a W+ meson, and
(b) interaction of an electron and a neutrino via one photon
exchange.

' By e-dependent part, we mean that part of the cross section
that diverges logarithmically when one takes the limit ~ —&0.
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5t 38 8 tms ~ 16~m'i= —-l inny ———lnl
3& 15 3 & pN) 3 Eq')

4 2m' (4m'+- 1— 1+I
3 q' E q'

- 1+(1+4mP/qP)iiP-
Xln , (13)—1+(1+4m'/q') 'i'

II. CROSS SECTION FOR ELECTRON-NEUTRINO
(ANTINEUTRINO) SCATTERING WITH ONLY

SOFT-PHOTON EMISSION

Following Lee and Sirlin4 let us separate the dif-
ferential cross section for electron-neutrino (anti-
neutrino) scattering as follows:

results of the numerical analysis and our conclusions where
are given in Sec. IV. All our formulas are given in
natural units with 0=c= i. f q')

d00 do~ dfT..d+ + +
dE dE dE dE dE

E is the final electron energy in the laboratory system
in which the electron is initially at rest. do p/dE is the
diRerential cross section for the nonradiative scattering
corresponding to the Feynman diagram of Fig. 1(a).
d~pr/dE results from the interference of the Feynman
diagrams of Figs. 1(a) and 1(b), while dp„p/dE and
dpv/dE are the contributions of the radiative correc-
tions and inner bremsstrahlung (to order n), respec-
tively. do/dE has been calculated in Ref. 4. In their
calculation, Lee and Sirlin limited themselves to the
case that only soft photons are undetected. In what
follows we summarize their results:

I„d=—q tanhy— 40. tanho. do.
tanh2q

and

2p
1+in—l, (14)

tanh2pp re
4p 1

I~= 2— ln—+ (1—2 ln2)+
tanh2q 2 tanh2y

X{4ppt1—2 in(sinh2&p)]+L(ePv) —L(e 4v)). (15)

These results apply to the frame of reference in
which the target electron is initially at rest. m and m~
are the electron and W-meson mass, respectively,
while q is the 4-momentum transfer from neutrino
(antineutrino) to electron. v is the energy of the incident
neutrino (antineutrino) and E, that of the electron
in the 6nal state.

do p(v, )= (2mG'/~) dE, (6)
qP= 2m(E —ppp) =4m' sinh'pp (16)

2mG' q'
d~p(v. ) = 1— dE,

7i 2mv

G is the Fermi p,-decay coupling constant, 5 a 6ctitious
mass associated with the photon for the infrared cal-
culation, and e is the maximum soft-photon energy.

f(q') is connected to the neutrino form factor F(q')
through the relation'2mnG2

d~~(v, )= t-,'f(q')] 1— ldE,
~2 4v'i F(q') = —(G'e/16s') q'f(q') . (17)

(—e) is the charge of the electron and n= e'/4s = 1/137
(9) the fine-structure constant.

The Spence function L(x) is defined as

lnl1-xl
L(x) = dy.

2mo.G2 q2 2 q2

(")= l:lf(q')]
2mv 4v'

2mo.G2

dp'imp(vg) =
q2

I,„p 1+ (m —2v—)
4mv'

(18)

2mo.G' q'
do„p(v, )= I,.d

7r2 2mv III. CROSS SECTION FOR HARD-PHOTON
EMISSION IN THE REACTION
v, (or v,)+e ~ v, (or V,)+e +yq'

1+ (m —2v)
4mv' sinh2y

dE, (11) A. The Transition Probability

We want to calculate the transition probability
(12) for the inner bremsstrahlung process (4) when thedp, .gp, = (n/pr) I,do p,

0 y

In formula (6) through (13) terms of order (m/yns )',
p'(q'/ms') and (v/ms)' were neglected. This is justified

X dE, (10) in all practical applications since the available v, and
sinh2y v, sources of reasonable intensity' do not give neutrinos

(antineutrinos) with energies greater than 20 MeV.
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photon is emitted. with energy a& &~ e (e is a small positive
nonzero energy). Let us introduce the following
4-mome nta'

k.= (v, iv) = initial 4-momentum of neutrino

(antineutrino);

k„'= (v', iv') =6nal 4-momentum of neutrino

(antineutrin. o);

p= (O,im) = initial 4-momentum of electron;

p'= (l,iE) =final 4-momentum of electron;

k= (k, i~0) =4-momentum of photon.

ns is the electron mass, and all momenta are measured
in the laboratory system.

We restrict ourselves to the case when 4(q'/ms ')«1
and (m/ms)'«1 (q=k„'—k„). In this limit, one can
calculate the transition rate for process (4) using the
4-Fermi Lagrangian density interaction'

FIG. 2. Inner brems-
strahlung in electron-neu-
trino scattering in context
of 4-I'ermi theory.

We have used the notation

e&"&=k„/v;

v= v/v;

k=k/fk/.

e'"'& =k„'/v',

v'= v'/v',

(23)

(24)

(25)

The corresponding expressions T,(v.) for the v, case
can be obtained from T;(v,) by making the substitutions
"—+ "' "' —+ v and e'"' —+ e(') '

B. The Cross Section

The cross section for hard-photon inner brems-

strahlung is

e2G2

chard y
4(2~)&

T64(p'+k„'+k —p —k„)dl—dv'. (26)

The lowest-order Feynman diagrams for reaction (4)
in the context of the 4-Fermi theory are given in Fig. 2.
Using Feynman rules, one can evaluate the transition
amplitude corresponding to these diagrams, and from
this, the transition probability. After averaging over
initial electron helicities and summing over final elec-
tron and photon helicities one obtains the following
result for the transition probability m per unit volume
and time:

(2n.)'eG
b'(p'+k„'+k p k„)T, —(20—)

2 y2(~y) i/2

where V is the normalization volume of our wave
functions. T is given by

We use the b function to carry out the v' and ~k~

integrations. This gives

with

e'G'
og„g,= — T dldQg,

4(2~)' (1—k v')
(27)

S= (s,iso) = k„+p —p'. (29)

We also introduce the four angles P, y, b, and 8 defined

as follows (see Fig. 3):
k l=cosP;

s= cos8)

A

k s=cosy
l' 0= cos8 )

(30)

p+ k„=p'+ k'+ k„'. (28)

Equation (28) simply expresses the over-all conservation
of energy and momentum.

Define the 4-vector

T= Ti+ T,+ T&, (21) whe~e
m'aE mE(E~ I k) E(E(o —I k)'—

where
(31)

Ti(v,)=o)(E—I v')(1 —k v)+me(k v)(1—k P'), (22a)

T2(v, ) =(0(1—k 0')[m+(I—Ek) v]
—m[(1 v') —(k 1)(k P')]
+[(p'+k) ei"'&][I.v —(k v)(k I)], (22b)

FIG. 3. Momenta and
angles relative to co-
ordinate system chosen.

T,(v,) = —[l'—(k I)'j(p'+k) e~"'& (22c)

'The fourth component of our 4-vectors are imaginary. If
a = (a,a4) = (a,za0) and b = (b,b4) = (b,ib0) are two 4-vectors (a0 and
b0 are real), then their scalar product is de6ned as a b =a b —a0b0.

'P, (x) and P„,(x) are the electron and neutrino Gelds, respec-
tively. P =P~y4, where pt is the Hermitian conjugate of f.The set
of y matrices we use is Hermitian.

I

P'
X

8 The relations (21) and (22) were derived by Lee and Sirlin
(private communication). I wish to thank Professor Lee and
Professor Sirlin for allowing me to use their results.
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where
4(2n.) '

T' . dldQ +I, ,
(1—k v')

(33)

8 8
T~+ T3', (34)

mE(p' k) E(p' k)'
with

T3(v,)'= ——[t2—(k 1)']k (k„'—p'),

co

T (3)v=-3 v.)'= [P (k -1)']— (p' k„) k—k„—
4e'G'

I,(v,)=
(2m. '

4g2Q2

I,(v,) =
(2m '

rat~on over dQ~ we have chosenTo perform the integra ion
ion s and the xz plane to e e

defined by s and 1. In this coor ina e sy
azimuthal angle of k. It is easy to see that

p= cost(+sing cosC sr'. 32)cosp = cos+

'n T~ and T2 are independent ofThe integrals involving ~ an
sense that they remain finite w en e i

h h d the integ al involving
11 h 0

On the other an,
T depends on ~, dive g' g gr in lo arit mica y w3

this e-dependent part as i rt requiresWe wish to separate t is e-

special treatment. Some formal manipu a ions

g2G2

where

(E—l cosP) (E—l cosP)'
(37)

is contained in I,.All the e dependence of o.h»~ ~

C. Evaluation of the z-D ye endent Part

fand ele ant method oWe will describe a convenient an g
evaluating I, devise yev, '

b Sirlin. ' Let

I,= [2e'G'/(2x-) 'jA, (38)
where

dltp' S
A(v) =2 —

i K,
EkS.S

(39a)

dl so p 'kv
A(v, )=2 —— K. (39b)

ration is restricted to InThe
~
k

~
mteg

while i egro yII the are restricte y
note the contributions to rz ii

o1g

1o . Th 1

1 inte ration rs en
performed by taking the polar axis a ong v.
of these two integratrons is

Em ax

r v, = m' — dE 2 —ln —87r2Ar(v, ) =8m'm ln-
m — m

8—I
dE 2+—ln

t E+1

W' —t
X m n. x )

—[ms, —(X—l)j, (40a)min
~

(t—m) +min. ——m 0—
&4

&max E E—t
Ar(v, ) =87r2m ln — dE

m — m

~—~ So
dE 2+—ln

where

8'—t
X 5$sp n — —msp s E—t, 40bmsoln (t m) +mso —ln —m 0—

. 4mSp

and
W'= m+2v.

slm
the ener states of alt of the degeneracy between the en

r ir in or corn
' '

its and allowing me to use them.

suto e

'
ation). wi r Sirlin for communicating his results an a owingF' kit', dA. Sili, Ph . R . 101, 866"T.Kinoshita and A. Sirlin, Phys. Rev.

'—t m vanishes in the11 1

the relation (A6).
i

' ' '
e ar ument of in[(W — mnote that at t e upper i

differential cross section diverges logarit mica y
th adi t'A

'
ilar divergence is oun w

free electron an t ose oh of an electron accompaniere
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photons. Applying the I.ee-Nauenberg theorem, " one can get 6nite results by simply summing the transition
probability over the degenerate set of states. Ke can achieve this by averaging the differential cross section over
a small energy interval hE, corresponding to the experimental energy resolution. If we do this, we find that the
divergence is removed.

Ke now turn over to the evaluation of Ail, To do the dQI, integration we choose the polar axis along s. After that,
the 6nal integration over dl is easily performed by taking the polar axis along y. For this last integration it is con-
venient to replace the variable of integration (cos0) by Ir, where p is given by Eq. (A13). Dropping terms that lead
to contributions of 0(p) to XII we can write

d(cos8) = drr.
2v l(1- Ir)

The result of these manipulations is

A II(v,) = —4rr'm (44a)

AII(v.)= —4rr'm
Emax gp&—IIdE,

2
n

(44b)

dv 2E (E+l) (1—cos8) (Err l cosh)—
(1—Ir) — ln +1

-I (1—p) l lrr —E cos5+[m' sin'51 (lrr —E cosr'I)'j'r' [m' sin'8+(lrr —E coslr')'lrr'

cosa=@

cosh = (1/sp) (Nv —l),

where u is de6ned by the relation (AS). If we substitute y= lrr Ecosir, H—reduces to an integral of the form Mp
discussed in Appendix B.The 6nal result is

E E l 1+f — mv 1 E+l '
B=2—2— ln ln — ln I.

2(E—lf)
-(E—l)(1+f)-

—I. —I. —In 2 ln—, 45

and L(x) is the Spence function.
Coinbining (I,)I and (I,)II we anally obtain

f= (1/spl) (Esp—mv),

G2 q . &max 2~Q m E- E—/ E—/

r.(.)= m(rn —
) dp(r+ —rn )

— dR(2+ —ln ) urn ( )p
—m)

8"—I,

+m ln ——[msp —v(E—l)j— IIdE, (47a,)

2~G~ ~ &max E 8—/ sp' 2oG' 8—I, Sp

I,(v,)= m ln— dE 2+—ln — — dE 2+—ln
x2 m E+l v' rr' l E+l v'

8—t lV' —t o,G'm ~ -sp'
X msp ln (l—m) +msp ln —[msp —v(E—1)] — HdE. (47b)—

4msp m 7i ~ P

In Appendrx D lt. Is sllowll that 'tllc 'tel Ill pl'opoltloIIR1 'to ln(p/m) III I, Is of 'tllc saIIlc magnrtude blrt of opposltc
sign to the term proportional to in(p/m) in o It, p. Tllus upon adding (T fr, y and tTQ Q p to give o~ (the total brems-
strahlung cross section without any restriction on k apart from those imposed by energy-momentum conservation),
the ~ dependence completely drops out.

"T. D. Lee and M. Nauenbelg, Phys. Rev. 1M, 81549 (1964).
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Consider

D. Evaluation of Non-a-Dependent Part

o.i,„g~
—I,=-

4(22r)'

I~IT' dldOg.
(1— v')

(4S)

This integral has no 2 dependence, so that in computing it we can simply take 2 to be zero. [This is equivalent
to neglecting terms of 0(o).]The ranges of integration for the case 2=0 have been determined in Appendix A and
are given by (A7).

The integrals in relation (48) can all be brought to the following form:

dl D(E,coslI))—dQg,
E (so—s cosy)" (E—l cosP)"

vrhere g and m are positive integers, including zero. It is convenient to perform first the integration over dQI, .
For I and/or m equal to zero the integration is trivial. If both are different from zero the integral is slightly more
involved and a method for its evaluation can be found in Appendix B.After this is done, one is left arith the integra-
tion over dl. Most of the terms can be trivially integrated. In some cases it is convenient to replace (cos8) by s as
variable of integration. The more dificult integrals can all be brought to either the form 3f~ or M2 which are dis-
cussed. in Appendix B.The final result after integration is

2m20.'G2 E ~ 4 JE
Q J; +I„

m

Esp jSpv 3$0P sp 1 E 3 $0
J2(v,)= [mSo—v(E—l)] ESl)+-', (v' —l2)+-'2So2 —6mv+ —— +- — +——2+-—

4m2v' m 4m 4m Sm 2m Sm

3
X[mso —v(E—l)][so'+(v—l)']+ so'(so —4m)(v+l)'(1 —r'), (50a)

I6m

SoP So l)) Sp $0 j
J2(v.)= so mvso+2E'so+2mvE+ 1— )+—Ll 1— (so2 v2+l2—) —;s, 1—— (v'+P) — (v' l2)2—

4m'v' 4 4m) 2m 2m 16m

Sp ESp
&&[ 21.2+(1-,) 1.(1-,)+(1+,) 1.(1+,)]—'

—;..+E+ '- ("+l+..) [1+»-2-"
3 2m Sm

S 5

—(1—r') ln(1 —r) —(1+r') ln(1+r)]———[2+2 ln2 —r'—22r4—(1—r') ln(1 —r) —(1+r') ln(1+r)]
Som

ESp~ Sp $0 1—r
+2 (v2 12) 2Es +2mv +2 (v2 12)2 1 +s 2(v2+l2) 1 2 ln2+ ln(1 r)

m 2m 4m r

1+r~ Sp 1 ro) l 1+ro
~

ln(1+r) ——,'so'(v+l)' 1— (1+2 ln2)r' —1+
~
ln(1 —r) —

~
ln(1+r), (50b)

r i 4m r r

L+I
jo(v,)= (1—I)'El ln

4m' E—I
' (50c)

m' 13 2v 8"' 2v v 2v 1 j. $2

J4(v,)= —+—+ 2 —1 [1.(s2) —I.(z))+1.(1)—1.(z2/s2)] ——1——ln—+- 22(s2—s2)'+-—
4v~ 8 m m' m m 4 2 sg

( S2 S2 v V V (S2—
d~~ n, +——+ O(nnn, )+—l—

~

)n(n, —l)+ —OO, n,)+—l—)n~~
—)) . (50d)

sf s2 m m) m m &sr
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J1(v.)= (1—I)[—m2+-'pmsp+ v(E—l)j,
2m2v

(51a)

S 2

J2(v.)=
2m2v2

Sp Sp Sp

2m(s, —m)(}— + (s,—2m) (—2 Ind+(}—r) ln(}—r)+(}+r)(n(1+r)}+ (s,—m)'.
4m 4m 6m

Sp

X{1+2ln2 —r' —(1—r') ln(1 —r) —(1+r') In(1+r)}-
20m

X {2+2In2 —r' —or' —(1—r') ln(1 —r) —(1+r') ln(1+r)), (51b)

1 E+t
Jp(v, ) = (1—u) 2E/ ln

4m2 E—l

J4(v,)= ', (U1+ U-2+ Up),

vrhere

(51c)

(51d)

f Z2 13 2v 2V( v 2V 1 1(s2 ' S2 S2'

, 2h1 L(1)—Ll —+L(so)—L(») +—+—
l

1—»—+- 2(»—z2)'+-l — —3 z1+———
2P }s, 8 m mk m m 4 2 kz1 ~1 ~1

v v V V (Z2
+ B(s1,s2)+—1——

( ln(s1 —1)+ —B(s1,s2)+—1—— lnl ——1
m m m m ks,

mE 28' 4v 2P s2 ((s2 ) S2 S2)
+ ——ln—s1+—+(1+s1)l—1

l
ln —1 + 1+—l(z1—1) ln(s1 —1), (52m)

v2 m m m S1 &S1 d Z1)

=1 S2 2 a 2
U2 ——-- m'a2 L(s2) —L(s1)+L(1)—L — + —+m'a1

l
{In(g—1)—In2) + —

l
—m'a1

l
ln(ri+1)

m'p z1 (g—1) g i (v+1) &v

m m 1) 2v m (s1—1)——(a+m'soa1){ lns1 —2 ln(z1+g)) —— 1+—la+2m'a1 ln—+—{(s1+1)a+m'(s1+s2)a1)
gv v s2) m 221X

(»—»)
X»(zi—1)——+1 la

v s1 I 41 i 2s2X s,

2bp tV v (si 261 v

+ ln —+g
—ln—Inl —+ ri — ln—, (52b)

m3vg m m Km' mp m

Up ——Up("+ Up("+ Uo('), (52c)

1 2 (dao ) (s2 m no (g+1 v m op A1—
I

—+~1
l »I ————+»—+s2~2 —(n—+(nz, +——+—+s, ,)4v2 m2(m2 ) (Z1 qv m4 m2 }s1+ri m m4 m'

z2 V m (420 421 1 /42p s2421
ln—+ln———

l

—+—+s2Q'. 2 + l + +s2422 InX (53~)
s1 m v km 4 m' g km4 m'

1 8' 1 dp v 1 (1 do
(r,&'&= (mW —s,')— (3,+m's, d,) — ——+d,+m'r, , +d, ln—+

~

——3,—3m'ss)
2P 2m2v2 2mv2 2 m4 m 2mogks2 m'

S' P Sy 1 ((' 1 dp

X ln —+z —ln—ln —+z + (d,+m'z, d, )+~ ——+d,+m'z, )s,'
m m m2 2m4

1 1 dp
X- —+ — — d2 2m'ado —3m—'s2 —lnX, —(53b)

X2 2m2g 2 m4
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U, (3)—
Rr (zz+ 1) (sl +zz) Rz (z2+ 1) (zz+z1 ) R3

+ + + RaC(sz)+
6'(g —1) ()7—1)' (s) —g)' 6q(q+1) ()7+1)' (sg+)7)' (g—1)

R4
X [ln(s) —1)+2 In(g —1)+1ns&$+ R2D(s~)+ [—2 1n(q+1)+2 1n(z)+ q) —lnsqj

(v+1)-

1 1 1 1
+R, L(s,)—L(z,)+I.(1)—L —

I
+ R, ——

sr/ 3 s.(q —1)' 2 sz(v) —1)'
—C(s2)

1 1 1 1 ()1+1) 1 g
—1 2v

+Rz +- +D(zg) ——RR +— R4 1n—
3 s (q+1)' 2 s (g+1)' (rj—1) g v)+1 m

1 9 1 1 ( —1)
R2— —D(sz) —R4

3 (s)+q)' 2 (s)+q)' (~+1)(»+n)-

1
1n(s) —1)+ Rz—

3 (sz/s)+g)'

1

2 (sz/s)+g)'

(sz—sr)
—

sg 1 1 2—D(n, ) —R, ln —1 +R, — )n(n, —1)+ ln —-1)
n(v+1)(si+n)- -3 (sr—n)' (s~/» n)'-

1 1 1 S2 S2

+— ln(n, —1)+ ln —1 +C(n, ) ln —1)
2 (sr-)7)' (s2/sr —g)' 1

1 1 S2 1 S2

+Ra ln(n —1)+ ln —1 + ln —1)
(sg —g) (s2/s) —g) s) (&-1)

2R3—2RqC(s2) 1n(sq —q) — 1n(sq —g) . (53c)
(~-1)

W=m+v,

r= (v—l)/so,

sr ——(1/m') (EIV—lv+
I
lkV Ev

I ),—

sz= 1+2v/m,

)7=ass,
X= (1/m') I

llV —Ev I,
Sl' ——I'H/' —1V,

(54)

(56)

(57)

(58)

(59)

(60)

u, a;, b;, d;, n;, and R; are functions of v and E and
are given in Appendix C. We have used the following
notation:

for l =0 and 1=1~»

QJg ——0,
i=1

50

It is interesting to note that

era(ve)

1 ~ 1 1
C(s2) =—

3 (~-1)' 2 (~-1)'

1 ~ 1 1
D(sz) =-

3 (v+1)' 2 (v+1)'

(61)

(62)

(63)

50
I

O

20

IO

0
0 12 I6 20 24

h& = 2s.+ (2E v) (2L&' $V) . — — —
m2

u is defined by the relation (A5).

(64) INCIDENT NEUTRINO (ANTINEUTRINO) LAB ENERGY IN MeV

Fla. 4. Total cross section for radiationless elastic electron-
neutrino scattering op(v.), and elastic electron-antineutrino scat-
tering 0p(ve).
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duo/dE —differential cross section for nonradiative
electmn-neutrino (antineutrino) scattering Lsee rela-
tions (6) and (7)].

do, /dE —This is the radiative correction to pmcesses

(1) and. (2) to order a, assuming that photons with

energy less than e cannot be detected (the contribution

coming from the electromagnetic form factor of the
neutrino is not included).

-40
~S(ve) fTrgd( e)+aeons t y(ve

~0'e: dgrad. d&soft y+
dE dE dE
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INCIDENT NEUTRINO LA8 ENERGY IN MeV

(a)

t

I4
In computing riog/dE we assume that e=0.0bs.

da Jr/dE —This is the radiative correction to processes

(1) and (2) to order n, assuming that the experimental

setup is such that any photons emitted in the scattering
process are undetectable. It does not include the con-
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0
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INCIDENT ANTINEUTRINO LAB ENERGY IN MeV

(b)

Fn. 5. Electromagnetic corrections to (a) ~0(~,)»d (b)~0(~.)
assuming bing =6000m and &=0.01m.

— v=lO MeV

v=5 MeV~
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IV. NUMERICAL ANALYSIS OF RESULTS
AND CONCLUSIONS

5'- '

lO

FINAL ELECTRON LAS ENERGY IN UNITS OF ELECTRON MASS

(a)

30

The results we have obtained are fairly elaborate and
a numerical analysis was necessary to clarify their
content. We computed total and differential cross sec-
tions for incident neutrino (antineutrino) energies of 5,
1.0, and 15 MeV. We also considered the case when the
incident neutrino has an energy of 1.4 MeV, as this cor-
responds to the energy of the neutrinos produced in the
E capture of Zn", which has been suggested4 as a
convenient source of neutrinos for obsessing reaction
(1). The graphs given in Figs. 4 through 11 show the
results of this numerical analysis assuming ms~ ——

6000m. The value of 6 we used was the one deter-
mined from p decay" (including radiative corrections),
namely,

G= (1.4350+0.0011)&&10-4s erg cm'.

The following cross sections and radiative corrections
were plotted in these graphs:

~ C. S.%'u, Rev. Mod. Phys. 36, 618 (1964).

0.75

0
0.50

E

I V) 0.25

0
5 . . IO l5 20 25

FiNAL ELECTRON LAB ENERGY I,N UNITS OF ELECTRON MASS

"For such a value of e it is essentially sufFicient to consider only
one photon bremsstrahlung.

FIG. 6. {a) Differential cross section dooiv, )/dZ for radiationless
elastic electron-neutrino scattering. The cross section is a constant
independent of the incident: neutrino energy. . (b) Dif'ferential
cross section dao(J, )/dE for radiationless elastic electron-anti-
neutrino scattering, at incident antineutrino energies p of 5, 10,
and 15 MeV.
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(68)

This is the total electromagnetic correction to re-
actions (1) and (2) to order n. It is the electromagnetic
correction one would measure, as there is no way to
measure doIr/dE and do,rr/dE separately. To be more

accurate, one should really say that what one measures
ls

-5.0—
)' e soft e) hard

I I I

I 5 Io l5
I I

20 25 QQ

co 0
ct'
I
O
~ -0.2

C4
E
O

-04

-0.6

m+=6000 m

FINAL ELECTRON LAB ENERGY IN UNITS OF ELECTRON MASS

By subtracting the theoretical value of da. p/dE from

this, one can infer what doEM/dE is. The reason we

also plotted doH/dE an. d dasr/dE separately was to
give an idea of their relative contribution to the total
electromagnetic correction. By measuring dozM/dE as
described above, and subtracting from it the theoretical
value of dorr/dE, one can compare the result with the
theoretical do sr/dE, and thereby verify the theory that
was used in deriving the relation (13).We did not plot
d&r/dE as dozM/dE is only of the order of 1% dap/dE,
and on the scale we are using would not change do p/dE

significantly.

-0.8

-I,o
I 5 Io I 5 20 25 30
FINAL ELECTRON LAB ENERGY IN UNITS OF ELECTRON MASS

(b)

Fro. 7. Electromagnetic corrections to (a) dorp(v. )/dE and (b)
d0.0(v.)/dE to order n, including soft- and hard-photon emission
and neutrino (antineutrino) form-factor interference term. The
curves correspond to incident neutrino (antineutrino) energies
v of 5, 10, and 15 MeV, and mIt7 =6000m.

tribution coming from the electromagnetic form factor
of the neutrino.
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0

d0FI d0rad d08oft y d0hard y+ +
dE dE dE dB

(66) -0.25
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ooom
Im
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As discussed in Sec. III, dos„q r/dE diverges loga-

rithmically at the end point of the electron spectrum.
This divergence was removed by averaging doh„z «/dE
over a small energy interval hE corresponding to the
experimental electron energy resolution. We chose AE
to be 100 keV.

As it is, to get the total electromagnetic correction to
order o., one also has to include the correction due to the
electromagnetic form factor of the neutrino, dov/dE.
We accordingly evaluated and plotted

dC'M(&e)

dE

-I.OO
CTsoft (~e)

dE

—I.25
I I I I33 5 7

FINAL ELECTRON LAB ENERGY IN UNITS OF ELECTRON MASS

do'EM do II da'3l
+

dE ', dE p (dE

Fro. 8. (a) Electromagnetic corrections to dvp(v, )/dZ to order
n, for an incident neutrino energy v of 1.4 MeV, m~=6000m and
e= 0.01m. (b) Electromagnetic corrections to dos(v, )/dE to order

(67) n, for an incident antineutrino energy v of 5 MeV, ms =6000m
and e=0.01m,
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(o)

TABLE I. Neutrino and antineutrino form factor interference
terms for different W'-meson masses, and an incident neutrino
(antineutrino) energy of 5 MeV.

tÃg
(electron mass

units)

6000
10 000
15 000

a'M(v )
(cm')& 10 4')

—7.315
—7.948
—8.451

(")
(cm'X 10 46)

—2.524
-2.736
—2.904

This is exactly what we expected, since by also includ-

ing the emission of hard photons we obviously increase
the cross section.

We have also evaluated o~ for o =5 MeV and
m~=6000m, 10000m, and 15000m. As the results

given in Table I show, 0-~ is not too sensitive to the
exact value of oops {the reason why this is so is clear
when one observes that do~ depends on mg only
through a term proportional to ln(ms /m) )see expres-
sion (13) which is taken from Ref. 3j}.

I I I t

5 IO I5 20 25 30
FINAL ELECTRON LAB ENERGY IN UNITS OF ELECTRON MASS

(b)

FIG. 9. (a) Radiative corrections to d~o(v. )/dE to order a, in-
cluding soft photon emission but excluding neutrino form factor
interference term. This correction is very insensitive to the incident
neutrino energy v and on the scale used the curves for v=S, 10,
and 15 MeV coincided. We assumed ~ =0.01m. (b) Radiative cor-
rections to do-o(v, )/dE to order a, including soft photon emission
but excluding the antineutrino form factor interference term. The
curves correspond to incident antineutrino energies v of S, 10,
and 15 MeV, and e=0.01m.
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As the results show, the cross section for elastic
electron-neutrino scattering is about 3 times that for
elastic electron-antineutrino scattering, showing that
the detection of process (1) is somewhat easier than ob-
serving process (2). We also see that for v))m, op in-

creases linearly with v.

o-EM is negative for both s, and P„but the magnitude
of o.EM(v, ) is about three times that of oEM(v, ). Further-
more, as v increases so does

~

p-EM
~
. In fact, we see that

~oEM(v, ) I
increases from 1.35% of op(o.) to 1.65% as

the incident neutrino energy increases from 3 to 15 MeV.
Correspondingly,

~

o.EM (S,) ~

increases from 1% of
o'p(P ), to 1.5%. It is important to note that more than
half the contribution to fTEM comes from the form factor
term 0~.

For any given incident. neutrino (antineutrino)

energy we found that

dos+do, (do p+darr

FINAL ELECTRON LAB ENERGY IN UNITS OF ELECTRON MASS

(o)

-0.I

tD

I

g -0.2
N
E
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td

bL" ~
o -04— du~(Pe) da~(PB) do~or& (v~)

dE dE dE

I I 1 I I

I 5 IO 15 20 25 30
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(b)

Fro. 10.Radiative corrections to (a) dao(v. )/dZ and (b) do o(P.)
/dE to order 0., including the emission of soft and hard photons
but excluding the neutrino (antineutrino) form-factor interfer-
ence term. The curves correspond to incident neutrino (antineu-
trino) energies v of 5, 10, and 15 MeV.
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turn conservation relation (28) as follows

-0.7
and

s= v'+k (Ala)

CO

I

O

CV

Eo 08
~ UJ'0

sp= v +co ~ (A1b)

The kinematic limits we shall determine for this case
will be applied to integrals with no infrared divergence,
so that we can take 6=0 (6 is the fictitious photon
mass), and write p&= ~k~.

Eliminating v' from Eqs. (A1a) and (A1b), we find
that

SS
=09

I 5 IO l5 20 25 30 fki=—
2(sp—s cosy)

(A2)

O.I

FINAL ELECTRON LAB ENERGY IN UNITS OF ELECTRON MASS

(o)
A

where cosy=k s and S S=s'—sp'.
Using Eq. (28) and the definition of S, we find that

0
-O.l

S S= (k.'+k)'=2v'ski (v' k —1)(0. (A3)
lD

I -0.3
CV

C
-0.5

la~

b

-0.9
I

I I I I I

5 IO I 5 20 25 30
FINAL ELECTRON LAB ENERGY IN UNITS OF ELECTRON MASS

Therefore,
(A4)

We require that ~k~ =pp&~0. Because of (A3) and
(A4) it is easy to see that (A2) satisfies this condition
for all cosy, i.e.,

—1&~ cosy&~ 1.
Using (A4) we find that

FIG. 11. (a) Neutrino form factor interference term and (b) where
antineutrino form factor interference term, for incident neutrino
(antineutrino) energies v of 5, 10, and 15 MeV and mw=6000m.

0&I& cose& 1,

u= ( rasp+vE)/vI. — (A5)
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APPENDIX A

We shall determine the kinematic limits for the re-
action (4). Two cases will be of interest:

(a) (u &~ 0.
(b) M+~p.

cu is the photon energy and e is a very small positive
energy.

Case (a) &v &~0

The restriction N~& 1 determines the maximum value
of E for any given v. We 6nd that

E,„=(W'+ v')/(W+ v), (A6)

—1 ~& cosy ~& 1 )

N&cos&1,

m&E&E . .
(A7)

Case (I) p» p

To treat this case we use a method due to Sirlin. '
As in case (a), we find, using 4-momentum conservation,
the restriction (A2) on ~k~. We have again taken 5=0
since we are interested in ~&~ e and no infrared diver-
gence is encountered. We now impose the condition
co=

~
k~ &~ p. Together with (A2), this implies that

where W is defined by the relation (54). The allowed
range of E is therefore

+&~ ~&/~max ~

To summarize, the kinematic limits for the case
(u= )k( &0 are

We choose a frame of reference in which the electron
is initially at rest. In terms of the 4-vector S= (s,esp)

defined by Eq. (29), we can express the energy-momen-

1 (sp s)
cosp &~

— sp — (sp+ s)
S 2c

(A8)
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Since sp~&s (see (A4) j, the domain of integration can
be divided into two regions, as follows:

In region I: sp —s~& 2cy (A9a)

In region II: sp —s~& 2e. (A9b)

Consider first region I. Applying the condition (A9a)
to (AS), we see that cosy~& —1. Since there is no other
restriction on cosy, we must have

—1 ~& cosy &~ i.
ln region I, sp —s~&2e. This gives the following lower
limit for cos8:

APPENDIX B

In this appendix we shall discuss some of the integrals
encountered in our calculation.

(1) Integrals of the form

(sp—s cosy) "(E—l cosP)"

To evaluate these integrals for arbitrary integer
(nonzero) e and m, we use the identity

where
cos8~& m('),

(esp —s cosy) "(bE—l cosP)"
2psp —msp+vE

~(e)— &0. (A10) ( 1)m+n dn —1 dm —1

Therefore,
vt

0(u(' ~& cos8~& 1.
(e—1)!(m—1)!sp" 'E" ' da" ' db" '

—1~& cosy& i,
I ~& cosO~&1 )

m~& E&E,„+0(p),
(A11)

Since u~'~&1, it follows that E&E, +0(p), where
E,„ is given by the relation (A6). We have therefore
found the following kinematic limits in region I:

X (B1)
p (Gsp —s cosy) (bE l cosP)—

where a and b are two numerical parameters which are
put equal to 1 after the differentiations are performed.
It is therefore sufficient to evaluate

(asp —s cosy) (bE—l cosP)
We now deal with region II. In this region

0& sp —s& 2m.

This, together with (A8), implies that

v& cosy~&1,
where

1t S Sy
V= — Sp

sk 2. )

Substituting the relation (32) for cosP, and carrying
(A12) out the azimuthal integration, we obtain

d(cosy)

i (asp —s cosy) (c'+ (l cosy —bE cosb)') '~'

where c'= (O'E' —P) sin'8

We now carry out two transformations. First

The condition (A12) imposes the following limitations
on cos8:

I& cos8& I(').
followed by

x= (l cosy bE cosb), —

y=x+ (c'+x')'".

E&E, +0(p).

The kinetmatic limits in region II are therefore where

Furthermore, the requirement that I(')~&i gives the T»s gives

following upper limit for E:

(asp —s cosy) (bE—l cosP)

4x
= ——X, (B2)

s

v& cosy&1,
u ~& cose~& I('),

m&~E~&E .„+0(p).
(A14)

To summarize, we have found that when &o= ~lr
~

&&p
the domain of integration can be divided into two re-
gions, such that in region I the kinematic limits are
determined by the restrictions (A11), while in region
II they are determined by (A14).

and

(y' —Ry —c') (R'+ 4c') ' '

(yp —ri)(yi —rp)
Xln (B3)

-(yi —ri)(yp —rp)-

(B4)
Sp

R=2 al bL cosb ~,
——

s )'
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yl=(bE —i)0—co»)' y2=('E+)(' '"')
b, = p(W —3E)(mW+W'E) —4mWspd.«+(&2+4C2) Iloj;,2=-,'LZ —(Z'+4C')"'1 (&6)

(2) Integrals of tile fol'In MI

s2'

this gives
g=s+(s —d )

xp (g d2) ( d2 dg
fl -+—I»l

2g) smog

-(s'-m') —(S"-d')"'
s'& 1n

( g 2)+ (si2 d2) ll2 (s~2—d2) Ilp

&,=—((W' 3E—)(W+E) 4E—"}.
2p

(2 2W mv2(W+2 v)+4mWW'E
m3

+W'(m —v)E'},
(m2(2W2+ v2)+WE(5mW —mv —3v')

+W'E2(2W+m) },
(m2(2W2+m2)+4mWE(2m —v)

ms

+ (7mW+3mv —2v')E'}
22 g d2 g )dg

,=—( '+ WE—2 E)
(m2 j g m

g,=sl'+(Sl"—d')'l2' g =s '+(S2"—d')"'.
0

Introduce the new integration variable y=d'/g ln
ablethe erst integral and change the name of the variab e

th econ' integral from x to y. Finally, introducing
the dimensionless variable of integration (=y/m', gives

(d d
~I= I'(b, b)+ I'I ——

b 4
%herc

(m' m2d"q dy
&(,C)=- fl —y+ ll (y-&)—,

k2 2y) y

c4——E'+l2

d, =—m4W{m(2m'+")+2W'(m —)E+'W'E'»
m2(m(2m „)(2W2+v2)+6mW(W+m)E

+W'(4m —3v)E'},
d2 =m f —m(5m'+ "/mv+ v')+2W(2v —Sm)E-3mE'},
do=m(2m —v)+2E',

cap = —mo(mW2 —2vWE+3W'E2),

c21=2mELW(2m —v)+ (2W+ v)Ej,

$1=g1/m j $2= g2/m

d"=d2/m'.

(3) Integrals of the form M2

ds

t(cp+S2C2+S2 C4)+8(CX+Soco))
2p &

W~2
(2mW —v' —2qm2) E——i,2m'v' g j

f(s', (s'2 d2) Il2)—
($~2 d2) llo

Jj„

By mak1ng tile substltutlon g=s +(s — )
is brought to the following more convenient form:

I
((CO+S2C2+S2'C4) g(CI+S2C2—)}

2v's2

( W~2
(2mW —v2+22lm2)

~
E+—~,2m'v' 5 2l )

APPENDIX C

Ro= — j(co—spc2 —3s2 C4)—2g co} ~

4s 'g'

Ilo ——(m'/v) t 2so(vW —EW') —W2(m+E) 7,

al ——(m'/v)I W(m+E)' —2vESo],

a2 = (m/v) (W' 3E)E, —

8= gp+m s282 ~

E4= {(cp—soc2—3s2 c4)+22l co},2 3

4p9~8

Rp = (1/2v2)cg.

W, r, sl, s2, 2l, X, sl', B(sl,s2), C(s2), anil D(s2) have
already been Ileflned by the relations (54) through ( ).
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m 1
X 2ln-

e (1—q'/2mv) ' dE. (D1)

APPENDIX D

From the relations (10), (11), (12), (14), and (15) we
see that d&r„q+d&r„f~ ~ has an e-dependent term

28$AG 2 p
Fg ——

tanh2y

and
8=m cosh2p (D5)

To prove that I'~ and V2 are of equal magnitude but
have opposite signs it is sufFicient to show that

( 2y ) 1 E E—l
~

1—
~

and —2+—ln
tanh2 y) 2 l E+1

are equal.
From the relation (16), it follows that

The upper row applies to v„ the lower one to 7,. Therefore
Using the relations (16) and (29) one can easily show
that

Using the identity

1=m sinh2y.

E/l = 1/tanh2 y.

(D6)

(D7)

Therefore,

(D2) x+ (x'—a') '"-
—,'ln

x (x2 g2) 1/2

g
= cos}1 —

)
8

(Dg)

2m'' 2(p m)
Fg—— 1— 2 ln—

~

dE.
tan2y e j sp'/v'

doh„q „also has an e-dependent term. This is Lsee
expressions (47a) and (47b)j

2moG' 1 E E—1

Y2 —— — 2+—ln
2 1 F&+l

E+1)
—', ln ~=2'.

E 1)—
Combining (D7) and (D9) gives

(D9)

tanh2y 2 I E t

with x=E and a=m, together with (D5), we hand that

1
X 21n- (D4) Therefore

m so'/u' Vg= —Y2.


