VI. LABORATORY DISTRIBUTIONS

Laboratory distributions of the momenta and production angles of charged particles are shown in Figs. 12—17. All events except those including strange particles $(2.1\%$ of the total) and unassigned events $(1.5\%$ of the total) are included in these figures. The figures show the number of particles produced in a given interval of momentum or angle when a photon flux with the magnitude and energy distribution shown in Fig. 3 is passed through 1.04 g/cm^2 of hydrogen. This incident beam is nearly a bremsstrahlung distribution with a total energy of 2.04×10^8 BeV above 0.1 BeV, which is 3.71×10^{7} equivalent quanta if a maximum energy of 5.5 BeV is chosen.

Single-prong events are included in Figs. 12—17 after scaling to the total flux for the rest of the sample.

Particles in the ambiguous events of the OC multipion sample [reactions (4), (5), (7); and (8) of Table I] are also included; the ambiguous particle is placed in each possible mass category with a weight equal to the fraction predicted by a Monte Carlo calculation using phase-space distributions and applying the experimental criteria to the calculated sample.

The data of Figs. 12—17 are presented for their utility in estimating backgrounds or beam intensities available from photoproduction processes. The recent work done at $\tilde{\text{DESY}}^{15}$ is in agreement with these results.

ACKNOWLEDGMENTS

We wish to express our deep appreciation to the staff of the Cambridge Electron Accelerator for making the photon beam and the facilities of the CEA available. We wish also to thank our scanning groups for their efficient aid in the analysis of these data. We are indebted to our programming groups for the programming necessary for this experiment.

15 Aachen-Berlin-Bonn-Hamburg-Heidelberg-München Bubble Chamber Collaboration, DESY 66/34, 1966 (unpublished).

PHYSICAL REVIEW VOLUME 155, NUMBER 5 25 MARCH 1967

π^+ Photoproduction from Hydrogen at Lab Angles from 34 $^{\circ}$ to 155 $^{\circ}$ and Lab Photon Energies from 500 to 1350 MeY~t

HENRY A. THIESSEN⁺ California Institute of Technology, Pasadena, California (Received 17 October 1966)

The differential cross section for the reaction $\gamma + p \rightarrow \pi^+ + n$ was measured using the Caltech 1.5-GeV electron synchrotron. The positive pions were detected and momentum analyzed in a multichannel magnetic spectrometer and the data were recorded in the memory of a pulse-height analyzer. The energy resolution was improved over previous experiments and an attempt was made to minimize systematic errors. The data are presented in the form of energy distributions at ¹² lab angles from 34' to 155', and the range of lab proton energies extended from 500 to 1350 MeV. Data were not taken at all energies for each angle, since the maximum useful momentum of the spectrometer, $600 \text{ MeV}/c$, restricted the maximum energy for lab angles less than or equal to 74°.

I. INTRODUCTION

HERE is presently considerable theoretical interest in photoproduction data, in part because of their importance in the evaluation of sum rules derived from the algebra of current components. $1-3$ For these purposes, a detailed multipolc and isotopic-spin decomposition of the photoproduction amplitudes is required. A phenomenological decomposition can be

significant only if accurate and extensive data on differential cross sections are available, supplemented. by data on recoil-nucleon polarization and polarized. incident-photon asymmetries.

This paper reports the results of an experiment which was designed to measure the cross section for the reaction $\gamma + p \rightarrow \pi^+ + n$ at a large number of points with a minimum of systematic errors and good energy resolution. Measurements were made at pion lab angles from 34° to 155° and photon lab energies from 500 to 1350 MeV. The energy range was chosen to include the region in which the following resonant pion-nucleon states are important: $P_{11}(1400)$, $D_{13}(1518)$, $S_{11}(1550)$, $D_{15}(1688)$, and $F_{15}(1688)$.⁴ Additional experiments and a phenomenological analysis of all existing data are in

[~]Work supported in part by the U. S. Atomic Energy Commission. Prepared under Contract No. AT(11-1)-68 for the San Francisco Operations Office, U. S. Atomic Energy Commission

f This work. is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the California Institute of Technology.

f Present address: Los Alamos Scientific Laboratory, University

of California, Los Alamos, New Mexico. ¹ A. Bietti, Phys. Rev. 142, 1258 (1966). [~] A. Bietti, Phys. Rev. 144, 1289 (1966).

³ F. Gilman and H. Schnitzer, Phys. Rev. 150, 1362 (1966).

⁴ P. Bareyere, C. Brickman, A. V. Stirling, and G. Villet, Phys. Letters 19, 342 (1965).

progress at Caltech. ' For this reason, no decomposition of the photoproduction amplitudes based on our data alone has been attempted.

This paper is divided into five parts. Section II is a summary of the experimental method. Section III is a description of the apparatus and the techniques used to calibrate it. Experimental checks on the operation of the apparatus are described in Sec. IV. Finally, the data and a comparison with previous results are presented in Sec. V.

II. EXPERIMENTAL METHOD

The reaction $\gamma + p \rightarrow \pi^+ + n$ was studied at the Caltech 1.5-GeV electron synchrotron. The bremsstrahlung beam illuminated a liquid-hydrogen target and the π^+ were detected and momentum analyzed in a magnetic spectrometer. The experimental method was similar to that used in several previous experiments. 6-11

The kinematics of single-pion photoproduction relate the laboratory pion momentum p and angle θ to the laboratory photon energy k and c.m. pion angle $\theta_{c.m.}$. For two-pion production, as in the reactions

$$
\gamma + p \longrightarrow \pi^+ + n + \pi^0
$$

$$
\longrightarrow \pi^+ + p + \pi^-
$$

there is a minimum photon energy k_2 required to produce a π^+ with given laboratory angle and momentum, where $k_2 > k$. In this experiment it was possible to choose E_0 , the maximum energy of the photon spectrum, to lie between k and k_2 so that the multiple-pion reactions were not observed.

The background of particles incident on the spectrometer included protons, electrons, and muons. Protons were separated from pions in the counter system, while electrons and muons were indistinguishable from pions. Previous experiments showed that electron contamination at large angles from the photon beam was small, and several tests with the magnetic field reversed confirmed this result. The major source of muons was the decay of the pion $\pi^+ \rightarrow \mu^+ + \nu$ and a correction for this process was made in computing the momentum resolution function (see Sec. III B). Muon pair production was assumed to be negligible.

Because k and $\theta_{\text{c.m.}}$ vary rapidly with p and θ , and because the spectrometer collected data in seven momentum channels simultaneously, it was not feasible to measure angular distributions at fixed values of k . Instead, the data were taken as energy scans at fixed laboratory angles. Several spectrometer central momentum settings were required for each scan, and an appropriate value of E_0 was chosen for each momentum setting.

The data were taken during two 4-month periods separated by 4 months. Each point was measured at least once during each period, and careful checks demonstrated that the two sets of data were consistent.

III. APPARATUS AND CALIBRATION

A. Photon Beam, Beam Monitors, and Hydrogen Target

The beam-area layout is shown schematically in Fig. 1. The electron beam of the Caltech synchrotron irradiated a 0.2 radiation length tantalum radiator and the resulting photon beam was collimated by a lead collimator to a rectangular cross section with halfangles of 1.8 and 2.2 mrad. The beam then passed through two lead scrapers (collimators with slightly larger apertures than the primary photon beam) and some sweeping magnets before striking the hydrogen target of another experiment. Two scrapers mounted in 6-in. lead walls served to eliminate particles produced in the upstream target before the beam reached our hydrogen target. The beam was stopped in a lead and concrete beam catcher 30 ft downstream from the liquid-hydrogen target.

The photon spectrum was computed from a thickradiator bremsstrahlung theory developed by Wolverton radiator bremsstrahlung theory developed by Wolverton
at Caltech.12 This theory combined the effects of showering and multiple scattering in the radiator to obtain the energy distribution as a function of angle. This distribution was integrated between limits defined by the primary collimator to obtain the bremsstrahlung spectrum. It is expected that the results of this calculation are accurate to 2% .

The primary standard for beam monitoring was a The primary standard for beam monitoring was a
Wilson quantameter.¹³ Because the beam spot was too large to put the quantameter downstream from the hydrogen target, we were unable to use the quantameter while taking pion data. Instead, the quantameter was located on a movable platform upstream of the hydrogen target. Before and after each data run, the quantameter was moved into the beam line and used to calibrate several secondary monitors consisting of two thin (0.005-in. -A1) ion chambers placed upstream from the quantameter and a monitor of the circulating beam of the synchrotron. By using this procedure, we believe that the average of the secondary monitors was calibrated with a precision of 0.5% , although the fluctua-

⁵ S. D. Ecklund, C. R. Clinesmith, and R. L. Walker (privat communications). 'F. P. Dixon and R. L. Walker, Phys. Rev. Letters. l, ¹⁴²

^{(1958);} 1, 458 (1958). J.R. Kilner, Ph.D. thesis, California Institute of Technology,

¹⁹⁶³ (unpublished). L. Hand and C. Schaerf, Phys. Rev. Letters 6, 229 (1961). '

⁹ C. Schaerf, Nuovo Cimento 44, 504 (1966).
¹⁰ H. Heinberg, W. M. McClelland, F. Turkot, W. M. Wood-

ward, R. R. Wilson, and D. M. Zipoy, Phys. Rev. 110, 1211 (1958). ¹¹ S. D. Ecklund and R. L. Walter (private communication). An account of this experiment which measured the same reaction at forward angles is in preparation.

¹² An account of this work is in preparation. F. Wolverton kindly provided a computer program, BPAK I, which did the calculations.

¹³ R. R. Wilson, Nucl. Instr. 1, 101 (1957).

FIG. 1. Beam-area layout.

tions of a single secondary monitor were occasionally as large as 2% .

Shortly after all the data were obtained, the q shortly after an the data were obtained, the quanta-
meter was taken to the Mark III linear accelerator at Stanford University and was calibrated with a Faraday The result of this calibration was $U_q = (4.78 \pm 0.1)$ The result of this calibration was $U_Q = (4.78 \pm 0.13)$
(18)¹⁸ MeV/C at the standard pressure and tempera- $\tan 800$ mm Hg and 20° C. This number agrees very tun ture of soo inin 11g and 20 °C. This number agrees ve well with a previous experimental calibration¹⁴ and wi the theoretical value of 4.80×10^{18} MeV/C.¹⁸ The theoretical constant has been used for normalizing the data presented here.

The liquid hydrogen was contained within a long, the axis of the cylinder perpendicular to the beam line. The beam spot size was 1.5×1.8 in. at the hydrogen with the magnetic field near saturation. The central target and was centered to within $\frac{1}{8}$ in. The location of ified frequently with Polaroid p of the target at all laboratory angles.

B. The Magnetic Spectrometer

The spectrometer consisted of a $w\epsilon$ uniform field magnet with a 4-in. gap (see Fig. 2). The 25 in., the bendi was 41.78°, and the maximum central momentum was 570 MeV/ c . The magnetic field was continuously d with a nuclear-resonance m The central momentum was measured as tometer frequency by floating niques with an absolute accuracy of better the

The solid angle accepted by the spectrometer was 3.27×10^{-3} sr and was defined by a thin scintillatio uanta- counter placed near the rear edge of the magne t The momentum acceptance was defined by a seven el hodoscope located at the focal plane. Each channel of this hodoscope accepted a 1.51% momentu a- interval. In order to measure the solid angle an acceptance, a map of the magnetic field in the
hetry plane was made at values of the uniform
of 10 and 15 kG. The optical properties of the th symmetry plane was made at values of the uniform he field of 10 and 15 kG. The optical properties of the spectrometer were derived from the field-map data by numerical integration of the particle trajectories using he spectrometer were derived from the field-map data by numerical integration of the particle trajectories using a digital computer. The product of the solid angle and h momentum acceptance obtained in this way was for a 1.5 $\%$ variatio momentum calculated from the field maps agreed with the floating-wire measurements within 0.2% .

e floating-wire measurements within 0.2% .
The calculation of the spectrometer accepta complicated by pion decay. Typically, 20% of the pions
decayed in flight before reaching the last counter. Since pions and muons were indistinguishable in our counters. a Monte Carlo program was used to calculate the solid ngle for accepting pions which d tion also indicated that the decay proces entum resoluti the spectrometer.

Resolution functions for the seven momentum channels of the spectrometer at a typical setting are given in Fig. 3. The effects which have been included the resolution calculation are beam size, no magnetic optics, pion decay, and multiple sca e resolution in lab p these resolution functions varies from 15 MeV at the

¹⁴ R. Gomez, J. Pine, and A. Silverman, Nucl. Instr. Methods 24, 429 (1963).

smallest angle and lowest energy to 110 MeV at the largest angle and highest energy. More detailed information about the energy resolution of this experiment is presented in Fig. 4.

C. Counters

Ten scintillation counters and one Cerenkov counter were mounted on the spectrometer as shown in Fig. 2. The aperture counter (A) was made from $\frac{1}{8}$ -in. NE-102 plastic and was mounted on a long, thin Plexiglas light pipe. To eliminate events which result from particles passing through the light pipe or the phototube, a large scintillation counter (V) shielded the light pipe and phototube and was put into anticoincidence with A. Similarly, a counter ("fan") was mounted on each pole face to guard against charged particles scattered by the iron.

The remaining seven counters, placed near the momentum focus at the rear of the spectrometer, consisted of two scintillation counters S1 and S2, a Plexiglas threshold Cerenkov counter LC, and a four-counter, seven-channel hodoscope $Pⁱ$. Because of the defocusing effect of the magnet fringing fields, the rear counters were long (15 in.) in the direction parallel to uniform magnetic field. Counters LC, S1, and S2 had a phototube mounted at each end to improve the uniformity of pulse height and timing response.

D. Electronics

The electronics were divided into three independent subsystems: a fast logic system containing conventional coincidence modules; a pulse-height analysis system consisting of linear gates and discriminators; and a data-storage system which made use of a Nuclear Data 1024-channel pulse-height analyzer and a special integrated-circuit control system. For each event, nine digital signals from the fast-logic and pulse-heightanalysis systems defined a nine-bit binary number which completely specified the event. Events of each logic type were accumulated in the cell of the pulseheight-analyzer memory addressed by their binary number. The remaining half of the memory was used to collect a pulse-height distribution from any one of the counters for diagnostic purposes. After each run, the

FIG. 3. Momentum-resolution functions for the seven channels of the spectrometer. The upper curve is the sum of the other curves. These functions vary slowly with the central momentum P_0 , and these curves were calculated for $P_0=400 \text{ MeV}/c$.

FIG. 4. Resolution in lab photon energy (full width at half-maximum) versus pion lab angle.

contents of the memory were punched on paper tape and processed by an IBM 7094 computer.

Pions were separated from protons by crude time-offlight requirements, by dE/dx selection in counters S1 and S2, and by velocity selection in counter I.C. There was enough redundancy in the system to permit monitoring the pion and proton efficiencies for each run. In addition, accidentals in counter A and in the momentum hodoscope $Pⁱ$ were monitored during each run.

IV. EXPERIMENTAL TESTS

A. Backgrounds

The empty-target background was measured at each point. In each case, an empty-target run was made within a few days of the full-target run to correct for a possible buildup of solid substances on the Mylar cup of the target. The empty-target yield was typically 4% of the full-target yield, and in no case was it greater than 11% .

Several tests were made with the magnetic field reversed to look for electron contamination. Under these conditions, the only single-pion-photoproduction reaction which can contribute is

$\gamma + n \rightarrow \pi^- + p$,

and these events can be produced only in the target walls. Experimentally, it was found that about half of the reversed field events resulted from the empty target. The remaining events typically amounted to $1\n-3\%$ of the full-target π^+ rates, but for the highest energies this rate increased to as much as 10% . No satisfactory explanation for these events was found. It was demonstrated that only a small fraction of these events could be due to any one of the following sources: wide-angle pair production, conversion of high-energy photons from π^0 decay in the target structure, high-energy electrons from the Dalitz decay of π^{0} 's, conversion of low-energy photons in the aperture counter, or pions

FIG. 5. Photon excitation functions measured at 64.0° lab. The results for three of the seven momentum channels are shown. The smooth curves are calculated from the cross sections reported in Table I, the momentum-resolution functions of the spectrometer, and the bremsstrahlung spectrum computed by the program spAK I (Ref. 11).

from multiple-pion photoproduction which were counted because of the long tails of the momentumresolution function. It was possible that a small contribution from each of these factors could have explained these events. The difference between the full-target and empty-target reversed-field counting rates was assumed to be a smooth function of lab angle and was subtracted from the π^+ rate. This assumption was consistent with all the data taken with magnet field reversed. In order to indicate the possible errors of this procedure, an error of half of this correction was added in quadrature with the statistical error when the error flags of all cross sections were computed.

B. Photon Excitation Functions

Two photon excitation functions were measured during the course of the experiment. For these tests, the spectrometer momentum and angle were held constant and the counting rate in each of the seven channels was measured as a function of the synchrotron energy E_0 . The results for a typical case, shown in Fig. 5, indicate that the reaction has been properly identified, that a small $(1\pm1\%)$ background exists below threshold, and that the experimental resolution has been accurately calculated.

C. Nuclear Interactions

The inefficiency caused by nuclear interaction of pions was measured by inserting additional matter at various positions in the system. These measurements were made at 300 and 500 MeV/c. For matter between the hydrogen target and counter SI, the loss of events was drogen target and counter S1, the loss of events was
consistent with known total cross sections.^{15–19} The loss due to matter in the region near the momentum focus decreased approximately linearly with the distance to the last counter; the loss near counter S2 was approximately 0.4 of the loss at counter Si. The loss of events was approximately a factor of 2 greater at 300 MeV/ c than at 500 MeV/ c . The inefficiency was assumed to have the momentum dependence of the total cross section of pions scattered from an appropriate mixture of hydrogen and light nuclei, and was normalized to give the best fit to the 300- and 500-MeV/ c measurements. The result of this calculation is shown in Fig. 6. The accuracy of this procedure was 25% , which leads to a maximum error of 3% in the cross section.

¹⁵ N. I. Petrov, V. G. Ivanov, and V. A. Rusakov, Zh. Eksperim.
i Teor. Fiz. 37, 957 (1959) [English transl.: Soviet Phys.—JETP

^{10, 682 (1960)].&}lt;br>¹⁶ A. G. Meshkovskii and Ya. Ya. Shalamov, Zh. Eksperim. i ¹⁶ A. G. Meshkovskii and Ya. Ya. Shalamov, Zh. Eksperim. i
Teor. Fiz. 37, 978 (1959) [English transl.: Soviet Phys.—JETP

^{10, 697 (1960)].&}lt;br>¹⁷ M. P. Balandin, O. I. Ivanov, V. A. Moiseenko, and G. L.
Sokolov, Zh. Eksperim. i Teor. Fiz. 46, 415 (1964) [English transl. :
Soviet Phys.—JETP 19, 279 (1964)].

¹⁸ J. W. Cronin, R. Cool, and A. Abashin, Phys. Rev. 107, 1121 (1957).

^{951).&}lt;br>¹⁹ F. Jacob and G. Chew, Strong Interaction Physics (W. A. Benjamin, Inc., New York, 1964).

D. Reproducibility

In order to test the reproducibility of cross-section measurements in this experiment, a standard point was measured every few days during the second data-taking period. A Plexiglas target with the same geometry as the liquid-hydrogen target was used to increase the counting rate. A total of 18 such runs were taken. The standard deviation of the results was 2.06% when 1.23% was expected from the counting statistics alone. No satisfactory explanation of this discrepancy was found. A random error of 1.65% was added in quadrature with the statistical error of each run to correct for this effect.

V. RESULTS AND CONCLUSIONS

The data are tabulated in Table I and are plotted in Fig. 7. These data are plotted in the form of energy

> σ uc.

ROS

FIG. 6. Loss of events due to nuclear interactions with the matter through which the detected pions passed.

FIG. 7. The differential cross section in the c.m. system for the reaction
 $\gamma + p \rightarrow \pi^+ + n$. Smooth $\gamma+p\rightarrow \pi^++n$. curves have been drawn through some of the data for purposes of comparison with other experiments in Fig. 8. See Table II for a discussion of experimental errors.

θ lab (deg)	W (MeV)	k (MeV)	$\theta_{\rm c.m.}$ (\deg)	$d\sigma/d\Omega$ $(\mu b/sr)$	θ lab (deg)	W (MeV)	k (MeV)	$\theta_{\rm c.m.}$ (deg)	$d\sigma/d\Omega$ $(\mu b/sr)$	θ lab (deg)	W (MeV)	k (MeV)	θ _c .m. (\deg)	$d\sigma/d\Omega$ $(\mu b/sr)$
34.0	1354 1359 1364 1369 1374 1380 1386	508 $\begin{array}{c} 515 \\ 522 \end{array}$ 530 538 546 555	48.6 48.8 48.9 49.1 49.2 49.4 49.6	9.79 ± 0.29 9.29 ± 0.28 $9.58 + 0.28$ 9.25 ± 0.27 9.63 ± 0.27 $10.03 + 0.27$ $9.77 + 0.26$		1462 1469 1477 1485 1494 1502 1511	670 682 694 706 720 734 748	80.5 80.8 81.0 81.3 81.6 81.9 82.3	$8.48 + 0.38$ 9.15 ± 0.39 8.96 ± 0.39 $10.03 + 0.40$ $8.59 + 0.37$ $9.58 + 0.38$ $7.40 + 0.32$		1655 1668 1682 1697 1712 1728 1746	991 1014 1039 1065 1093 1123 1155	107.1 107.6 108.0 108.5 108.9 109.4 109.9	$\substack{2.88 \pm 0.17 \\ 2.40 \pm 0.16}$ $2.13 + 0.14$ $1.69 + 0.13$ $1.31 + 0.12$ 0.72 ± 0.11 0.66 ± 0.12
	1392 1397 1403 1409 1415 1421 1428	564 572 580 589 598 608 617	49.7 49.9 50.1 50.2 50.4 50.6 50.8	10.50 ± 0.29 9.76 ± 0.29 10.54 ± 0.29 10.71 ± 0.29 9.71 ± 0.27 10.95 ± 0.29 $10.41 + 0.27$		1522 1530 1539 1548 1558 1558 1568 1578	765 779 793 808 825 841 859	82.6 82.9 83.3 83.6 83.9 84.3 84.6	$\begin{array}{c} 7.04\pm0.26 \\ 5.56\pm0.23 \end{array}$ 4.89 ± 0.21 $3.95 + 0.18$ $3.29 + 0.17$ $3.06 + 0.16$ $2.37 + 0.14$	84.0	1339 1345 1352 1358 1365 1372 1380	487 496 505 514 524 535 545	106.2 106.4 106.6 106.8 $\begin{array}{c} 107.1 \\ 107.3 \\ 107.6 \end{array}$	4.79 ± 0.26 4.24 ± 0.23 4.69 ± 0.24 4.24 ± 0.22 4.23 ± 0.21 4.31 ± 0.21 4.30 ± 0.20 $3.98 + 0.20$
	$\begin{array}{c} 1435 \\ 1441 \\ 1447 \end{array}$ 1454 1461 1468 1475	629 638 648 658 668 679 690	51.0 51.2 51.3 51.5 51.7 51.9 52.1	11.02 ± 0.38 $10.51 + 0.38$ $10.43 + 0.37$ 10.66 ± 0.36 11.09 ± 0.36 $11.98 + 0.37$ 11.65 ± 0.36	64.0	1346 1351 1357 1363 $\frac{1370}{1376}$ 1376	496 504 513 521 531 540 550	85.4 85.7 85.9 86.1 86.3 86.6 86.8	$6.51 + 0.29$ $7.00 + 0.28$ $6.53 + 0.27$ 6.26 ± 0.26 $6.37 + 0.26$ $6.59 + 0.26$ $6.32 + 0.25$		1387 1394 1402 1409 1418 1426 1435	556 567 578 589 602 615 628	107.9 108.1 108.4 108.7 109.0 109.3 109.6	4.74 ± 0.20 4.44 ± 0.20 3.79 ± 0.18 $4.31 + 0.18$ $4.39 + 0.18$ 4.72 ± 0.19 $4.48 + 0.18$
40.0	1366 1371 1376 1382 1388 1394 1400	525 533 540 549 557 566 576	57.0 57.1 57.3 57.5 57.7 57.9 58.1	$9.76 + 0.44$ $9.67 + 0.43$ $9.05 + 0.40$ $8.94 + 0.41$ $8.58 + 0.38$ 8.95 ± 0.39 $9.38 + 0.37$		1391 1397 1404 1411 1418 1425 1433	562 571 581 591 602 614 626	87.1 87.4 87.6 87.9 88.2 88.4 88.7	6.56 ± 0.20 $6.18 + 0.20$ 5.86 ± 0.19 $6.93 + 0.20$ 6.26 ± 0.19 $6.55 + 0.19$ 6.99 ± 0.19		1446 1454 1463 1473 1483 1493 1504	645 658 672 687 702 719 736	109.9 110.2 110.5 110.9 111.2 111.6 111.9	5.32 ± 0.25 5.32 ± 0.25 5.22 ± 0.25 5.22 ± 0.25 6.02 ± 0.26 5.84 ± 0.25 6.46 ± 0.26 5.78 ± 0.24
	$\begin{array}{c} 1407 \\ 1412 \\ 1418 \\ 1425 \\ 1431 \\ \end{array}$ 1438 1445	585 594 603 613 623 633 644	58.3 58.5 58.7 58.9 59.1 59.3 59.5	$9.11 + 0.44$ $9.71 \!\pm\! 0.44$ $10.48 + 0.44$ $9.60 + 0.41$ $9.30 + 0.41$ 10.24 ± 0.43 9.66 ± 0.41		1442 1449 1457 1465 1474 1482 1491	639 650 662 675 688 702 716	89.0 89.3 89.6 89.9 90.2 90.5 90.9	7.50 ± 0.24 6.97 ± 0.24 7.24 ± 0.24 7.86 ± 0.24 8.07 ± 0.24 8.34 ± 0.25 8.31 ± 0.24		1516 1526 1537 1549 1561 1574 1587	756 773 791 810 830 851 874	112.3 112.7 113.0 113.4 113.8 114.2 114.6	$\begin{array}{c} 5.70\pm0.24 \\ 5.08\pm0.23 \end{array}$ 4.26 ± 0.20 $3.70 + 0.19$ 3.46 ± 0.17 2.92 ± 0.17 2.87 \pm 0.15
	1453 1459 1466 1473 1480 1488 1496	656 666 677 688 699 711 723	59.8 60.0 60.2 60.4 60.6 60.9 61.1	$10.68 + 0.37$ 11.16 ± 0.39 11.43 ± 0.38 11.29 ± 0.37 11.34 ± 0.37 11.85 ± 0.38 10.34 ± 0.35		1501 1510 1519 1528 1538 1548 1559	732 746 760 776 792 809 826	91.2 91.5 91.8 92.2 92.5 92.9 93.3	$8.08 + 0.27$ 7.13 ± 0.25 $6.40 + 0.24$ 5.44 ± 0.21 4.55 ± 0.19 $4.08 + 0.18$ $3.58 + 0.17$		1601 1613 1627 1641 1656 1672 1689	896 918 941 966 993 1021 1051	115.0 115.4 115.8 116.3 116.7 117.2 117.7	2.80 ± 0.17 2.95 ± 0.17 2.91 ± 0.16 3.08 ± 0.16 $3.07 + 0.16$ $3.02 + 0.16$ 2.42 ± 0.14
48.0	1345 1350 1356 1361 1367 1373 1379	496 503 510 518 527 535 544	66.5 66.7 66.9 67.1 67.3 67.5 67.7	9.00 ± 0.42 $7.97 + 0.39$ 8.75 ± 0.39 $8.17 + 0.38$ 8.21 ± 0.39 $8.21 + 0.38$ $7.98 + 0.36$		$\begin{array}{c} 1572 \\ 1582 \end{array}$ 1592 1603 1615 1627 1640	847 864 882 901 921 942 964	93.7 94.1 94.4 94.8 95.2 95.6 96.0	2.72 ± 0.12 $\begin{array}{c} 2.61\pm0.11 \\ 2.30\pm0.11 \end{array}$ 2.11 ± 0.10 $2.01 + 0.10$ $2.33 + 0.10$ 2.06 ± 0.09		1707 1724 1741 1759 1778 1799 1820	1085 1114 1146 1180 1216 1255 1297	118.2 118.7 119.2 119.7 120.2 120.8 121.3	$1.62 + 0.09$ $1.02 + 0.08$ 0.76 ± 0.07 $0.44 + 0.06$ 0.41 ± 0.06 0.38 ± 0.06 0.37 ± 0.06
	1386 1391 1397 1404 1410 1417 1424	554 563 571 581 591 601 611	67.9 68.1 68.3 68.6 68.8 69.0 69.3	$7.90 + 0.41$ $8.35 + 0.41$ 8.49 ± 0.40 8.40 ± 0.40 8.20 ± 0.39 9.23 ± 0.41 $8.37 + 0.38$	74.0	1333 1338 1344 1350 1356 1363 1370	477 485 493 502 511 521 531	95.8 96.0 96.2 96.4 96.7 96.9 97.2	6.14 ± 0.37 $5.67 + 0.36$ 5.59 ± 0.34 $5.78 + 0.35$ 5.85 ± 0.33 5.32 ± 0.34 $5.44 + 0.31$	94.0	1371 1378 1385 1393 1401 1410 1419	532 542 553 565 577 590 603	116.7 116.9 117.2 117.4 117.7 118.0 118.3	$\begin{array}{c} 4.16\pm0.25 \\ 3.93\pm0.25 \\ 3.67\pm0.23 \end{array}$ $3.45 + 0.23$ $3.33 + 0.22$ 4.21 ± 0.24 $4.09 + 0.22$
	1431 1437 1444 1451 1459 1466 1474	622 632 642 653 665 676 689	69.5 69.7 70.0 70.2 70.5 70.7 71.0	9.21 ± 0.48 $10.77 + 0.52$ $9.85 + 0.50$ 9.53 ± 0.48 $9.57 + 0.46$ 10.65 ± 0.49 10.39 ± 0.47		$\begin{array}{c} 1377 \\ 1383 \end{array}$ 1390 1397 1404 1412 1420	541 550 560 571 582 594 606	97.4 97.7 97.9 98.2 98.5 98.7 99.0	$5.10 + 0.27$ 5.29 ± 0.26 $5.36 + 0.26$ $5.31 + 0.25$ $5.28 + 0.25$ 5.19 ± 0.25 $5.30 + 0.24$		$\begin{array}{c} 1427 \\ 1436 \end{array}$ 1445 1454 1464 1475 1486	617 630 643 658 674 690 708	$\begin{array}{c} 118.6 \\ 118.8 \end{array}$ 119.1 119.4 119.7 120.1 120.4	4.16 ± 0.23 4.02 ± 0.23 4.21 ± 0.23 $\begin{array}{c} 4.66\pm0.23 \\ 4.64\pm0.23 \end{array}$ 5.54 ± 0.24 $4.93 \!\pm\! 0.23$
	1483 1490 1498 1506 $\frac{1514}{1523}$ 1523	703 715 727 739 753 767 781	71.3 71.6 71.8 72.1 72.4 72.7 73.0	$\begin{array}{c} 10.97\pm0.31 \\ 10.15\pm0.30 \end{array}$ 10.24 ± 0.29 9.46 ± 0.27 $7.63 + 0.24$ 7.29 ± 0.23 6.10 ± 0.21		1429 1437 1445 1453 1462 1471 1481	620 631 644 657 670 685 700	$\begin{array}{c} 99.4 \\ 99.7 \\ 100.0 \end{array}$ 100.3 100.6 100.9 101.2	5.56 ± 0.22 5.66 ± 0.23 5.83 ± 0.23 5.98 ± 0.22 $6.81 + 0.23$ $\begin{array}{c} 6.93 \pm 0.23 \\ 6.76 \pm 0.22 \end{array}$		1499 1510 1521 1533 1545 1558 1572	729 746 764 783 804 825 848	120.8 121.2 121.5 121.9 122.2 122.6 123.0	$\begin{array}{l} 5.79\pm0.26\\ 4.53\pm0.24\\ 4.24\pm0.23 \end{array}$ $4.10 + 0.22$ $3.63 + 0.20$ 3.20 ± 0.19 $2.87 + 0.18$
56.0	1366 1371 1377 1383 1390 1396 1403	525 533 542 551 560 570 580	77.0 77.2 77.4 77.6 77.9 78.1 78.4	$7.84 + 0.36$ 7.43 ± 0.34 $7.71 + 0.34$ $7.09 + 0.33$ 7.26 ± 0.32 7.20 ± 0.32 7.47 ± 0.32		1491 1500 1510 1520 1530 1541 1553	716 730 746 762 779 797 816	101.6 101.9 102.3 102.6 103.0 103.4 103.8	7.71 ± 0.22 6.91 ± 0.21 $6.30 + 0.20$ $5.69 + 0.19$ $5.08 + 0.17$ $4.67 + 0.16$ 3.76 \pm 0.15		1588 1601 1616 1631 1647 1664 1682	875 898 922 948 976 1006 1038	123.5 123.9 124.3 124.7 125.1 125.6 126.1	$\begin{array}{c} 2.91 \pm 0.17 \\ 3.02 \pm 0.18 \end{array}$ $3.01 + 0.17$ $2.84 + 0.17$ $\begin{array}{c} 3.52 \pm 0.17 \\ 3.33 \pm 0.17 \\ 2.83 \pm 0.15 \end{array}$
	1411 1417 1424 1431 1438 1446 1454	592 601 611 622 633 645 657	78.6 78.9 79.1 79.4 79.6 79.9 80.2	$7.34 + 0.27$ $7.47 + 0.28$ $7.83 + 0.27$ $8.33 + 0.28$ 7.69 ± 0.26 8.14 ± 0.27 8.90 ± 0.27		1565 1576 1587 1599 1612 1625 1639	836 854 873 894 915 938 962	$\substack{104.2 \\ 104.5}$ 104.9 105.3 105.7 106.2 106.6	$\begin{array}{c} 3.26\pm0.17\\ 2.80\pm0.16\\ 2.43\pm0.14 \end{array}$ $2.62 + 0.15$ 2.61 ± 0.14 2.58 \pm 0.14 $2.51 + 0.14$		1699 1717 1735 1755 1776 1798 1822	1070 1102 1135 1172 1212 $\frac{1254}{1300}$	126.6 127.0 127.5 128.0 128.5 129.0 129.6	$\begin{array}{c} 2.22\pm0.12\\ 1.66\pm0.11\\ 0.95\pm0.09\\ 0.71\pm0.08\\ 0.59\pm0.07\\ 0.57\pm0.07\\ 0.51\pm0.08 \end{array}$

TABLE I. The differential cross section in the c.m. system for the reaction $\gamma + p \to \pi^+ + n$. W is the invariant mass, k is the label photon energy, and $\theta_{e,m}$, is the pion c.m. angle relative to the photon. See Table II

TABLE I. (continued).								
V)	k (MeV)	$\theta_{\rm c.m.}$ (deg)	$d\sigma/d\Omega$ $(\mu b/sr)$	θ lab (deg)	w (MeV)	k (MeV)	$\theta_{\rm c.m.}$ (deg)	$d\sigma/$ (µb/
1	577	139.1	$2.74 + 0.19$		1541	796	151.9	$2.38 \pm$
$\bf{0}$	590	139.4	2.60 ± 0.19		1555	820	152.2	$2.06 \pm$
9	604	139.6	$3.33 + 0.20$		1571	846	152.4	$2.16 +$
9	619	139.8	$2.95 + 0.19$		1588	874	152.7	$2.51 +$
9	635	140.1	$3.19 + 0.19$		1606	905	153.0	$2.51 \pm$
0	651	140.3	2.97 ± 0.19		1625	938	153.3	$2.50 \pm$
2	669	140.6	$3.50 + 0.19$		1646	974	153.6	$2.17 +$
5	690	140.9	$3.62 + 0.21$		1666	1010	153.9	$2.41 \pm$
6	707	1419	3.07 \pm 0.22		1697	1047	1.51.9	0.00 L

distributions at fixed angles. The angular distributions are in good agreement with previous data²⁰ and are not presented here.

In calculating these cross sections, the effects of the long tails of the momentum-resolution function were unfolded. This correction was based on the observed energy dependence of the cross section and the tails of the resolution function computed by the Monte Carlo method. The magnitude of this correction was less than 3% in the worst case.

The systematic error not included in the error bars is estimated to be 5% , and this error is to be interpreted in the sense of a standard deviation. The three largest contributors to this error are the quantameter calibration (3%) , the correction for nuclear interactions (3%) , and the bremsstrahlung spectrum (2%) . A complete list of the experimental errors is presented in Table II.

A comparison with other data^{6-8,10,11,21-23} is presente in Fig. 8. In general, our data agree satisfactorily with the previous results. There are, however, two serious

Random errors included in error flags							
Counting statistics Field-reversed background Reproducibility Unfolding	$3 - 5\%$ $0 - 5\%$ 1.65% 1%						
Systematic errors in addition to error flags							
Nuclear interactions Ouantameter calibration Bremsstrahlung spectrum Magnet calibration Decay correction Hydrogen-target parameters Electronic efficiency							
Total (assuming Gaussian statistics)							

²¹ R. L. Walker, J. G. Teasdale, V. Z. Peterson, and J. I. Vette, Phys. Rev. 99, 210 (1955).

²² A. V. Tollestrup, J. E. Keck, and R. M. Worlock, Phys. Rev.

99, 220 (1955).

²⁰ S. D. Ecklund and R. L. Walker, in *Proceedings of the International Symposium on Electron and Photon Interactions at High Energies, edited by G. Hohler (Deutsche Physikalische Gesell-Schaft, Hamburg, 1966), Vol. II.* 42, California Institute of Technology, Pasadena, California, 1966 unpublished).

²³ J. Bizot, J. Perez y Jorba, and D. Trielle, in *Proceedings of the International Symposium on Electron and Photon Interactions at High Energies, edited by G. Hohler (Deutsche Physikalische Gesellschaft, Hamburg, 1966)*

FIG. 8. A comparison of the data of this experiment with those of other experiments. The data are taken from Refs. 6, 7, 8, 10, 11, 21, 22, and 23. The smooth curves are also shown in Flg. 7.

discrepancies. The first occurs in the region between 400 and 600 MeV, where there is only a limited amount of data. The two early experiments at Caltech done by of data. The two early experiments at Caltech done **k**
Walker *et al.*21 and Tollestrup *et al.*22 give systematical ²⁰—50% smaller results than our data. We believe that in the early experiments the synchrotron energy was too close to k, and that their results are in error at 440 and 470 MeV. An experiment covering the energy region of 400 to 600 MeV and a wide angular range should be done to check this discrepancy and to 611 a gap in the data. This experiment cannot be performed at Caltech at the present time because of difhculties with operating the synchrotron at low energies.

Our data at a lab angle of 134' are in serious disagreement with the data of Hand and Schaerf at 135°.8 The two experiments agree on the energy dependence of the cross section, but the data of Hand and Schaerf must be multiplied by a scale factor of 1.5 ± 0.1 to be brought into agreement with our data. A photon excitation curve was measured at 134° lab near a k of 700 MeV (see Sec. IV B). The below-threshold background at this point was $1\pm1\%$, which demonstrates that no serious background is included in our data. Thus, we believe that their data are incorrectly normalized. The same scale factor of 1.5 should be used for their 180' data and the later data of Schaerf.⁹

ACKNOWLEDGMENTS

I am very grateful to my supervisor, Professor R.L. Walker, for his support and helpful criticism. I wish to thank M. G. Hauser, who contributed many useful discussions and spent many hours taking data. I would like to acknowledge several enlightening conversations with S.D. Ecklund, Dr. J.O. Maloy, Dr. J.H. Mullins, and Dr. C. Peck. The assistance of the synchrotron technical staff was greatly appreciated.

Professor J. Pine helped with the quantameter calibration. I would also like to thank D. Quinn and the staff of the Mark III linear accelerator at Stanford University for their cooperation during this calibration.

Finally, I gratefully acknowledge the financial support of the National Science Foundation and the U. S. Atomic Energy Commission.