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The isolation usually encountered in optics between the part of a field that is of interest and its source
motivates the consideration of a radiation mode weakly coupled to a quantum-mechanical source. After
the introduction of some refinements into the quantum mechanics of a damped radiation mode, the field

is expressed as the sum of two parts, one due to the source (the source field) and the other due to the loss
mechanism (the "vacuum" field). The characteristic function for the Geld is calculated up to second order
in perturbation theory. This function is then compared with the characteristic function for the field in the
presence of a classical source. A method is exhibited by which a classical source can be found such that the
two characteristic functions are identical when averaged over a half cycle. In particular, the two sources
yield the same expectation values for the instantaneous amplitude and energy of the field. The description
of the equivalent classical source must be given in statistical terms, in general, and requires only a knowledge
of (S~'~(t)) and (S~'&(/I)S&'&(t2)), where S|'~ is the dipole-moment operator of the quantum-mechanical
source unperturbed by the mode under consideration (but otherwise arbitrarily complex, with the possibility
of strong coupling to other modes). The theory is illustrated by a consideration of several simple sources —a
two-level system, a harmonic oscillator, and a blackbody —for which equivalent classical sources are found.
The two-time correlation functions for the field obtained with the two types of sources are compared and are
shown to be the same up to Grst order in p7-, where v is the difference between the two times and ( is the
inverse of the Geld relaxation time; the physical meaning of the second-order difference in the correlation
functions is discussed. A limiting process, in which both the coupling to the source and the damping become
small, is suggested as a method of adapting the results to free fields, but it is pointed out that for discussion
of a single mode, a free field is physically less satisfactory than a damped field. It is concluded that, within a
reasonable approximation scheme, the source Geld may be described classically (the "vacuum" field furnishing
all the necessary quantum-mechanical properties of the total field).

INTRODUCTION

HERE has arisen considerable interest recently in
quantum optics, optics in which the field is de-

scribed quantum-mechanically. Although the interac-
tion between the quantum-mechanical electromagnetic
field and matter forms the subject of quantum electro-
dynamics, one usually deals in optics with a class of
phenomena which can be described by certain approxi-
mations in a greatly simplified manner. The basis for
these approximations is the fact that in optics the be-
havior of the source is largely independent of the proc-
esses associated with the detection, measurement, and
utilization of the field; these processes produce very
little eGect on the source. One can say that the part of
the field which is of interest in optics reacts negligibly
back on the source, no matter how it is affected by con-
ceivable optical experiments. This isolation of the
pertinent part of the field from the source may be de-
scribed formally in several ways, and dift'erent experi-
mental situations may lend themselves most conve-
niently to different descriptions. Thus, the part of the
field that is of interest may be very far from the source,
so that isolation —or weak coupling —between this part
of the field and the source is of spatial origin. On the
other hand, the interesting part of the field may not be
localized in ordinary space but in wave-vector space;
it may consist of one or more modes that are weakly
coupled to the source. In the present article, only the
latter type of isolation will be considered, and for sim-

plicity of discussion, attention will be focused on a single
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mode. Generalization of the results to the case of a
larger number of modes will be obvious.

A theorem has been proposed' which simplifies the
concepts and formalism of quantum optics, and demon-

strates explicitly the extent of the difference between

quantum optics and classical optics. In the present con-

text, this theorem states that the eGect of weakly
coupled sources on a radiation mode is approximately
the same as that of classical sources, so that the field of
modes weakly coupled to the source may be described

as the sum of a classical field and the "vacuum" field. '
It is the purpose of the present article to exhibit a
method by which one may find the equivalent classical
source (as far as the field is concerned) for an arbitrary,
weakly coupled, quantum-mechanical source, and to
examine the extent of the approximations involved in

this equivalency. Incidentally, some refinements in the
quantum mechanics of a damped radiation mode will

be presented first.

I. QUANTUM MECHANICS OF A DAMPED
RADIATION MODE

As is well known, the quantum mechanics of the field
of a radiation mode is the same as the quantum me-

' I. R. Senitzky, Phys. Rev. Letters 15, 233 (1965); 16, 619
(1966).' In the presence of damping, the true vacuum field is replaced
by the Geld arising from the fluctuations of the loss mechanism,
as indicated by the following discussion; the latter Geld will be
referred to as the "vacuum" Geld.
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chanics of a harmonic oscillator. Setting

E= —(4m-Aau) '"u(r) p(t), (1.1a)

H= (4s(,"A/ra)' 'V&&u(r)q(t), (1.1b)

where u(r) describes the spatial dependence of the field
for the mode under consideration and is normalized
over a suitable volume, we have the result that q and

p are the (dimensionless) coordinate and momentum,
respectively, of a harmonic oscillator —the radiation
oscillator —of (angular) frequency co. The method of
analysis of the damped oscillator to be used presently is,
basically, that developed in two previous articles. '
Certain refinements in the treatment of the damping
mechanism (some of which were developed in a subse-
quent analysis of the damped two-level system') not
present there, however, will be included in the present
discussion.

The Hamiltonian of the coupled systems under con-
sideration is given by

H=H.,+HLM+Hs+Ap(0(S+F), (12a)

i &—((o') sin(o'(ti —t2)], (1.4a)

where

$(ca') =-'m AZ 'B((a') [1—exp( —Ao)'/kT)],

))(cv') =—,'n-AZ 'B(co')[1+exp(—A(d'/kT)7;

(1.4b)

(1.4c)

dE p(E) exp( —E/kT), (1.4d)

where j» &(j» (the order is the same in each pair as
that in the original product), and where the summation
is taken over all the di6erent arrangements into pairs.
Equations (1.3) describe a Gaussian stochastic variable,
and the order in. each pair is significant because F(0'(t)
is a quantum-mechanical variable. The expectation
value of a single pair is given by

00

(p(') (ti)F(') (t2))=— d(0'[g((0') cos(0'(ti —t2)

where

and
(1.2b)

B((0')=

(1.2c)

dE p(E+ Ace') p(E)F'(E+ A(o', E)

&& exp( —E/k T), (1.4e)

HLM is the Hamiltonian of the loss mechanism (LM),
IIg is the Hamiltonian of the source, 8 and Ii are the
dynamical variables of the source and LM, respectively,
through which these systems couple to the radiation
oscillator, and 0. is a coupling constant. The coupling to
the oscillator has been chosen to occur through p, which
makes S and F the effective electric-dipole moments (in
appropriate units). No significant change in the results
would be obtained if source and LM coupled to the oscil-
lator through q (by their magnetic-dipole moments),
since q and p are symmetrical, or through both q and

p. In the discussion of the present Section, only the
coupling to the LM will be under consideration. The
coupling of the oscillator to the source is, so far,
arbitrary.

Some of the properties of the LM have been studied
in detail previously and will be only summarized here.
For the free (uncoupled) LM—indicated by the super-
script zero—the expectation values of a product of F's
is given by'

(F( )(t )F( )(t ) F("(t„))=0, n odd (1.3a)

and

(p(0) (ti)p(0) (t2). . .p(0) (t„))
—p (p(0)(t. )p(0)(t. )).. .

(F(') (t,„,)F(') (t;„)), n even, (1.3b)

' I. R. Senitzky, Phys. Rev. 119, 670 (1960};124, 642 (1961).
Other discussions of the damped harmonic oscillator include those
of Julian Schwinger, J. Math. Phys. 2, 407 (1961},and M. Lax,
Phys. Rev. 145, 110 (1966}.

4 I. R. Senitzky, Phys. Rev. 137, A1635 (1965).

p(E) being the density of energy states of the LM (as-
sumed closely spaced), F'(E, ,E),) being the average of

~
F;),"'(0)

~

' over small ranges of E, and E)„and T being
the LM temperature. Since

$(a)') 1—exp (—A(0'/kT)

))(&o') 1+exp(—A(d'/kT)

Eqs. (1.3), (1.4a), and (1.5) are sufficient to describe
the LM provided $((0') and T are specified. $(&a') may be
regarded, if one does not want to delve into the details
of the LM, as a phenomenological function describing
the LM. [As will become apparent, $(~') is approxi-
mately the exponential decay constant of the expecta-
tion value of the amplitude of an initially excited oscil-
lator of (angular) frequency a&'.] It is assumed to be a
slowly varying function of co' and much smaller than ~.
All final results will be expectation values with respect
to the LM. (This procedure can be justified by the
assumption that the LM may be considered to consist
of a large number of essentially independent systems,
each constituent system itself having the properties of
a LM.)

For simplicity, we introduce a shorthand notation in
writing expectation values of products of P&'&'s of
different arguments; we replace F("(t;) by the number

j.Thus, the left side of Eq. (1.3a) is written in short-
hand, as (12 n). The following theorem concerning
the expectation value of products will be useful:

(1 2 . (n 1) [n, n+1](n+2) . 1V)—
= ([n, n+1])(1 2 (n —1) (n+2) 1V), (1.6)
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0
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P(0)(t~) P(0)(t,.)])[F("(t'),F"'(t;)] (L

4i
dkjo( k)osinko (t, t, , — 717)

P(t)=P(0)(t)

t

dko
' ' — tl . (1.13)dt~ Ao codko'(( ') sin(0'(t —tl) p( 1).

using Eq,. (1.4a).
f motion base on

I h H' bt ' ofE s. (1.2. noni
ture e used throug ou,ture, which will be u

F (1.8aj=kdp+nS+F,

ron . a and (1.8b) one obtainsFrom Eqs. (1.8a) an

p+ ko'p = —ko(nS+F)

E . 1.13),and, after su s ibstitution from Eq. ( .

p+kd'p = —ko(nS+ P (0)

(1.14)

P= Mg~

S= (i') '[S»s],
IIs lnPP——Z—s,S],

P=(iA) &[F»LM],

+LM ~P[+LM) ]~

)

(1.8b)

(1.8c)

(1.8d)

(1.8e)

(1.8f)

dtl dko $ ko slnko') sinko'(t —tl) p(tl) . (1.15
0
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$ and e, respectively} have been separated from the
fluctuation effects (contained in F"&), and the dynami-
cal variables of the LM are no longer unknown operators
to bc determined by thc cquatlons of motion. Thc coIQ-
piete set of these equations may now bc written as

{qc (t~)p~(t~)}=-;e-&~cc "~L~ cosce(t~—tm)

+(1+2+) 81Ilco(tg—tg)j, (1.21b}

(p (t)q (t))=-' '" "E—' (t-t)
—(1+2') sino){tg—tm) J, (1.21c)

q= 2$—q+co(i 2e—/co) p+nS+F co&, (1.19a)
where

y=—t exp(Aced/kT) —Q '. (1.21d)

de &cc "'F&'&(tg) coso(t—tg), (1.20c)

qe=a dtqe &c' '»S(tq) cosco(t—t~},

d4e &cc "'Fc"(tg) since{t—tg), (1.20e)

Ps= cc dhe—~cc c»S(tc) sino&{t—tq}. (1.20f)

It is to be noted that qp and pp are the coordinates
in the ahsence of a source, and for zero LM temperature
describe the ground state of the (damped) radiation
oscillator, or the zero-point 6eld of the mod- the
"vacuum" Geld. Equations (1.20c) and (1.20e) show
that the expectation value of a product of q~'s and p~'s
can be expanded in the same manner as that of the
F&'}'s, namely, in terms of a product of expectation
values of pairs, as described in Eqs. (1.3).The expecta-
tlon vRlUc of these pRlls CRQ bc dellvcd by Usc of Kq.
(1.4a). This derivation is carried out in Appendix D, and
yields the relationships

=-,'e ~~'c-"~f~ since(t~ —t~)

+{1+2q}cosco{tg tg) 1,—(1.21a)

(1.19b)

(1.19c)

(1.19d)

where $(co') (which, together with 2; determines both
e and F&+) is assumed known.

For purposes of the foHowing discussion, wc ignore
the reactive shift in frequency assuming that o/M is
negligible compared to unity. We will also neglect $/co

compared to unity. Furthermore, we shift the time
origin to —00, so that the coupling to the LM begins
then. As far as the source is concerned, however, we lct
n=O for t&O, so that the coupling to the source still
begins at t= O. With the above approximations and time
shift, Eqs. (1.19a) and (1.19b) yield

(1.20a)

(1.20b)

It is seen that, for T=O, these expectation values bc-
colTlc ldcntlcal w'1th those fol R losslcss harmonic oscil-
lator m the ground state as either P or 4—

tm approaches
zero. A further consequence of Eqs. (1.20) is the fact
that the commutators of the qg's and pc's are to be
regarded as e numbers (equal to their expectation
values), in accordance with the reasoning of Eq. (1.7).
Thus, we have

Lq p(t,),qc,(tg)$= e-&~'&—c&4 sino)(tg —tg), (1.22a)

Qg{tg),pp(tp}j=e &~" cc~i sinco(to —tg), (1.22b)

Lq~(t~), P~(tm)]=e 8'c cc~i cosco(tc—t2). (1.22c)

These commutators approach the corresponding ones
for the lossless oscillator as either $ or tc—t~ approaches
zero.

It ls convenient Rt this point to lDtloducc thc fle-
quently used non-Hermitian operators

a=2 ' I( q+ip), at=2 't'(q —ip).

From Eqs. (19), we have

Lag(tc), ay(t2) $= )apt(tg), aF t(t2)] =0, (1.24a)

Lap(tg), ac t(t2))=expt —]( tg—tg) —cco(tg —t»)j. (1.24b)

Also,

(ap(tg)aF(t2)}=(apt(tc)ac t(tm)}=0, (1.25a)

(ap(tg)apt(t2))

=(1+~) eWE—t)ti—t. (
—~(ti—t.)&, (1.25b}

(apt(tg)aF(tg))
= «xpL —

~1 t&
—t, l+~(t,—t,)J. (1.25c)

It ls obvious that thc cxpcctatlon vRlUc of R ploduct of
uy's and upt's can be expanded in terms of products of
thc cxpcctRtlon vRhlcs of pairs~ ln thc sRHlc HlRQQcr' Rs

the q~'s and p~'s, or as the Fc@'s Lthat is, according to
Eqs. (13)j. It follows from Eqs. (1.25a) that unless
there are an equal number of ap's and eg~'s in any pro-
duct, its expectation value wiB be zero. Furthermore,
for 7=O, we have y =O, and obtain

(ao'(t~)«(tm)}=o (1.26)

where the subscript Ii has been replaced by the sub-
scllpt 0 to lndlcatc that, T=O. Slncc thc ordcl of a pR1"-

ticular a~(t~) and a~t(t;) in a pair must be the same as
in the original product, Eqs. (1.25a) and (1.26) show
that the expectation value of any product in which
there is an ac (t;) at the extreme right or an ac t(t;) at the
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extreme left is zero for T= 0.' We are not interested in
thermal effects in the present article; for the sake of
simplicity, therefore, we will consider only the case T=0
in the following discussion (but retain the notation as).

II. CONTRIBUTION OF THE SOURCE

We come now to a consideration of the part of the
field due to the source —that is, q, and p, given by Eqs.
(1.20d) and (1.20f), or a, and a, t given by

dt S(t )e 'o« '» (2.1a)

0.
a,t=— dt,S(t,)e'"'« &»- (2.1b)

where

0—=oi—z$. (2.1c)

~ It is interesting to note the resemblance between the present
results and field theory of a single (lossless) mode. For instance,
the expansion in terms of the expectation value of pairs corre-
sponds to Wick's theorem, and the vanishing of the expectation
value of a product for a0 at the extreme right or ap at the extreme
left corresponds to a~0l=(0~at=0. The present results, however,
are not derived from consideration of the lossless harmonic oscil-
lator, but, mainly, from consideration of the I M.

6 Note that k is inserted in the coupling term of the original
Hamiltonian, Eq. (1.2), for dimensional reasons only.

This is, in fact, the motivation for treating the field quantum
mechanically when studying the mutual interaction between the
Geld and quantum-mechanical systems.

We want to compare the contribution of a quantum-
mechanical source with that of a classical source. As far
as the contribution of a quantum-mechanical source is
concerned, there is no difhculty except a computational
one; all that is needed is a solution of the equations of
motion, Eqs. (1.19).As far as a classical source is con-
cerned, however, the equations of motion themselves
become inconsistent. It is not the form of Eqs. (1.19c)
and (1.19d) that is troublesome, since the commutator
bracket would be replaced, for a classical source, by the
Poissom bracket multiplied by iA.6 It is the fact that
the source is coupled to the Geld, and that its time de-
velopment is aBected by the field, which leads to incon-
sistencies, since, if the source is iriitially classical, it
will acquire quantum-mechanical properties from the
quantum-mechanical field as time progresses. Thus, the
coupling of quantum-mechanical and classical systems
results, in general, in inconsistencies. There are, how-

ever, approximations with which one can treat a clas-
sical source coupled to a quantum-mechanical field. If
the effect of the field (of the mode under consideration)
on the source is negligible, then He in Eq. (1.19d) be-
comes negligible, and a classical source will remain clas-
sical, since its equations of motion involve only classical
variables. This is the situation that will be considered
in the present article; that is, we will consider the case

in which the mode under consideration affects the
source only slightly. One should not conclude that this
is the oely situation in which a source may be treated
consistently as classical. Where the quantum-mechani-
cal aspects of the Geld are negligible, the equations of
motion for the (classical) source and field become clas-
sical equations of motion that form the basis of classical
radiation theory, of course. In our equations of motion
for a single mode, Eqs. (1.19), this situation occurs when
F& & (for T=O) is negligible compared to otS for non-
vanishing $, or when the "vacuum" field is negligible
compared to the part of the field due to the source. The
case we consider in the present article, however, is that
in which the source Geld is small compared to the
"vacuum" field, a case in which the total field must
be treated quantum-mechanically if, ultimately, its
interaction with quantum-mechanical systems is
investigated.

The reaction of the generated field back on the source
is assumed to be negligible. Second-order perturbation
theory may therefore be used, and our calculation will

neglect all terms in q and p containing powers of u higher
than the second. ' Just as Eqs. (1.8e) and (1.8f) led to
Eq. (1.9), Eqs. (1.8c) and (1.8d) lead to

S=S "&+— dti
A p

dtz V(t—ti)

X [S(t ), [S(t,), H, (t,) jp(t,)]V-'(t —t,), (2.2)

where

V(r) —=exp[(iltz)Hs(0) Tj.
We are interested in S only for the purpose of inserting
it into the expression for q, and p„and can therefore
neglect higher orders than the Grst in o.. Thus,

Since pz commutes with the other variables in the
integrand, and since the result of Eq. (1.11) can be ap-

' This is the case usually encountered in optics, where not the
entire field (all modes) is of interest, but only that part of the field
which couples significantly to the detector. It may be necessary
to partition the field into modes in a judicious manner in order to
end up with modes that are negligibly coupled to the detector and
modes that are significantly coupled. The latter usually a8'ect the
source negligibly. For a "single mode" laser, for instance, the field
should be resolved, approximately, into two modes, one inside the
laser cavity and one outside. Only the outside mode is coupled
significantly to the detector, and this mode is coupled weakly to
the laser.' Second-order perturbation theory will account for the action
(formally) of the "vacuum" field on the source, but not for the
reaction of the generated field (the part of the field due to the
source) back on the source. As indicated later, a quantum-
mechanical source without the "vacuum" field is too "bare" to be
physically meaningful.

0.
S=S&"+— dt dt V(t t)—

p p

&& LS"'(t ) LS"'(t )»e'"lP (t )3V '(t—t ) (2 3)
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plied to any system, we have, up to first order,

S=S&'& —in dk, LS(')(t),S(')(t,)]pv(tg). (2.4)

os —g(&)+g (2)

where
gs[—g[(&)+g$(» (2.5b)

Substituting into Eqs. (2.1), we obtain the first- and
second-order parts of a and a[ (the zeroth-order parts
are av and av[),

(2.5a)

Now, A &'& commutes with A p, and the commutator of
A &'& and A &" is a third-order term and negligible in our
approximation scheme. We can therefore write

expi(A v+A &'&+A ('&)

= expiA &'& expi(A v+A (») (2.10)

One notes that (A v,A&'&] is a second-order term that
contains only source variables; it commutes with A p,
and its commutator with A(') is of order higher than
second, and negligible. Ke utilize the fact that if
LO(,02] commutes with both 0( and 02, there exists the
relationship

~(&)(~)=

gt(&) (~)=

d&[S(')(t)e '"&' '»

d] S(0)(i )(&i&&+(t-tg)

t tI

(2.5c)

(2.5d)

&l(ot+02) —1((&o&goy&i
—1/2[01,Oil+&)ogeoy&ll/2[op, o2&) (2.11)

Applying this relationship to the second exponent on
the right of Eq. (2.10), and dropping terms of higher
order than the second, we obtain

expi(A v+A &'&) =e'"v+ ~~i {e'"v,A &'&}, (2.12)

g(»($) = —x(», (y& d[2e '(&« '»LS( )($y) S& )(t2)]
0 ~ 0

Xfuv(4) —av')(t2)], (2.5e)
t t1

ot( )(i)=—'~' dh, d[,(.""«-»LS(')(t&),S(')([,)]
0 0

XEav([2) —~vt([,)]. (2.5f)

Utilizing Eqs. (1.25), one can show that

&ave[(»)+ &(&:(»a'&v)+ &&&,
(&)a["&)= &a[(')a(») (2.6)

a relationship that will be useful later. "
The physical interpretation of a quantum-mechanical

result must be made in statistical terms, and such an
interpretation is most easily obtained by an examina-
tion of the pertinent characteristic function. We con-
sider, therefore, the characteristic function

where the symmetrized product notation, {A,B}=AB
+M., is used. Thus up to second order,

expi(A v+A &'&+A &»)

=-',{expiA v, (1+iA "&—-', A &"'+iA &")}, (2.13)

where the symmetrization with the first three terms has
no signi6cance, of course.

To obtain the characteristic function, we must take
the expectation value of the right side of Eq. (2.13).
Since A ~ and A(" are expressed in terms of variables of
different (uncoupled) systems, the expectation value of
a product of a function of A~ and a function of A(') is
given by the product of the expectation values of the
functions. Ag and A('), however, both contain cp and
up~, and care must be exercised in evaluating the expec-
tation value of the product of exp(iAv) and A &'&. It is
shown in Appendix E that one obtains the result

f(/i )=&exp (K+ p))
= &equi({ ~+{*a'))=f({Z*),— (2.7) so that

&{e' v A(')})=&e'"v)i&{AvA&'&}) (2.14)

where
2&/2(~ &v) (2.8)

(expi(A v+A &'&+A &'&))= &expiA v)(1+i&A &'&)

—-,'(A '"')——',&{A A '"})). (2.15)

A= /iq+vp= —{a+i*a[— (2.9b)

'o This relationship is consistent with the requirement

L~{/),&)*(/)3= [.

This function contains all the statistical properties of
the oscillator (at a given time), since the expectation
value of a product of m q's and n p's, in any order, can be
obtained from the commutation relations and the terms
up toy, v" in the power series of (/i, v). We will derive an
expression for the characteristic function in terms of the
source variable up to second order.

We begin with the expansion

f(&M,v) =f({'g'*)=&expi(A v+A &'&+A (»)), (2.9a)

vrhere

Equations (2.5) and (2.9b) yield

a
&A &'&)=— (Q &&

—[(i—ii)&S(0)([ ))

XD ()
—ial(t—i» yf ilgial(t —tg)] ~ (2 1$)

&A"")+&{AvA"'})=~'
0 0

X&, [(2t 4 ts)D (, i—w(( —(g)+—f il(, i(o—(t t»-]-
XL(S"'([)S'"([))f~'"" "'

+&S(0)([2)S(0)([&))gi'(&iw(t—tg)] (2 17)

taking also Eq. (1.25) into consideration, we obtain,
with some calculation,
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Equations (2.1S)—(2.17) constitute the expression of the
characteristic function in terms of the source variable up
to second order.

%e consider only those cases where the source has
frequencies of oscillation that lie in the neighborhood of
the oscillator frequency ~. In that event, there will be
resonant contributions in the integrations involved in
Eqs. (2.16) and (2.17); that is, there will be terms in the
integrands which do not oscillate, or oscillate very
slowly, with respect to the variables of integration, and
yield the main contribution toward the integrals. The
contributiens of rapidly oscillating terms in the inte-
grand will be neglected. Furthermore, in Eq. (2.16) the
resultant integral will oscillate with frequency ~, and
in Eq. (2.17) the integral will have, in general, a non-
oscillating part, and may also have a part which oscil-
lates with frequency 2'. WVe assume that the double-
frequency part is of no interest, and can be neglected;
in other words, we obtain the average over a half cycle
of the expression in Eq. (2.17) or Eq. (2.15). (Note that
(expA) ) has no time variation. ) This leads to the sim-

pler form

(A &"')+({A);A (')})=u' dhr dhm

Xs r(2( 4—&2) [—(S—(0) (hr) S(O) (h2) )

obtain

—(s&')(h))(s&" (h )q
Xexp[—g(2h —h,—h,)—z~(h, —h,)],

= (DD') & 0,

where

(2.21a)

D=()( chl[s") (hp) —(S&') (h)))]
0

Xexp[—$(h —hr) —i&oh)]. (2.21b)

(A (1))2 1&x2 Chr Chm(,
—$ (2t—t&—t2) (S(0)(h~))

0 0

X(s(0)(h2))[s ~~(ti &2)—+(,&s&(&s ta)—7
t t

dh) d4 exp[—$(2h —hr —h2)

0 0

—i~(hl hm)](s") (h&))(s")(h2)), (2.20)

which, together with Eq. (2.19) yields

(A ('»)+ ({A„A(»)—(A ('))2

t t

=0&' dhy dh, [(s&"(h&)s"'(h2))

Xs—(~«~—~»+. S(0)(h2)s(»(h&) s(~(~~—~» (2 18a)
III. COMPAMSON WITH CLASSICAL SOURCE

where, for simplicity of notation, we have set

~—=n)f'). (2.18b)

Since the integrand is invariant with respect to an
interchange of h~ and h2, we can write Eq. (2.18) in an
alternative form as

t t

(A &')')+({A) A &"})=()(' ch& ch2

Xexp[—$(2h —
h&
—h,)—i~(h) —h2)]

x(s&')(h )s&')(h )). (2.»)

Equations (2.15), (2.16), and (2.19) constitute the de-
scription of the characteristic function f(f,i ~) (with
double-frequency terms discarded), carried as far as
possible without going into the details of the source.
Special cases in which the source is a taro-level system,
a harmonic oscillator, and a blackbody will be con-
sidered later.

Before concluding the discussion of a general source, we
calculate the expression (A&')')+({A);,A&"})—(A&")'
which will be of interest in connection with the following
discussion. Using Eq. (2.16), and again dropping double-
frequency terms (or averaging over a half cycle), we

It is our purpose to compare the above fields to those
generated by classical sources, and to Gnd classical
sources which produce equivalent GeMs. Since the physi-
cal meaning of the above 6elds (and sources) can only
be stated in statistical terms, it is clear that the classical
sources will also have to be described in statistical
terms. Let us consider, therefore, a radiation mode
driven by a weakly coupled classical source which is
described statistically. The coordinates may be ex-
pressed as

q'=q +q p'=p +p. ,

where q, and p, are (stochastic) c-number terms of first
order, and represent the contribution of the classical
source. q, and p, must, of course, be described in terms
of an ensemble, but this ensemble is a classical statis-
tical ensemble and is unrelated to the quantum-
mechanical ensemble with which q); and p). are de-
scribed. Our expectation-value notation will refer to
either or both ensembles, depending on the quantities
which are being averaged. In accordance with the
earlier discussion, we assume that the effect of the
radiation mode under consideration on the classical
source is negligible, and we regard the source as pre-
scribed. One might argue that our classical source is
more "prescribed" than the quantum-mechanical
source, for which we not only considered q&'), p&')
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(which correspond to q„p,), but also q&'&, p&'&. In a
sense, this is true. q&'& and p('&, describe the eRect of
the "vacuum" field on the source. In the description of
the behavior of a classical source, the "vacuum" field

(for T=O) may not and need not be considered, as
discussed previously, but in the case of a quantum-
mechanical source, the eQect of the "vacuum" field on
the source must be considered even in lowest order. For
example, the spontaneous emission power radiated by
a quantum-mechanical source cannot be calculated cor-
rectly without consideration of the "vacuum" field.
(Note that ({A&,A &'& })does not vanish, in general, and
is of the same order of magnitude as (A '"').)

We construct, next, the characteristic function of q'

and p
q(tI, ,&)=(expi(pq'+& p'))

= (expi (f'a'+ f'*at') )
P(i,—t *)

It is clear that, up to second order, we have the re1.a-
tionship

v(t ~)—= ((tf')=(~'")(+ ( )—2& '))

where
A a= pqc+I—Pe= 1 (to+I—(Ic

If we now choose A, in such a manner that

dt e '"(' ")S (t ) (3 g)

Equation (3.7a) requires that

dt&e '"&' '»(5, (tI))= dt&e '"&' "'(5&'&(tI)), (3.9)

and Eq. (3.7b) requires that

dt, dt, e «2™-&~«)(5-(tI)5,(t,))e-'-('I-«)
0 0

dt2(, t( &2««)&5(0)(t()5(0)(t2))P—~'~(«—«)

0 0

(3.10)

Equations (3.9) and (3.10) are the only conditions
that need be imposed on the specification of S„and, if
they are satisfied, the fields produced by S and by S,
are equivalent (within our approximation framework).
If we expand the real function (5 '&(tI)) in the manner

for both sources at any given time. If the classical vari-
able corresponding to S is designed by S, (a real c num-

ber), we have

&A )=&A"') (3.4a) &5(0&(t )) P. (& s~cu;«+. & es (~,«) . —
(3 11)

and
(A ') = (A &'&')+ ({Ap A &') }) (3.4b)

[the double-frequency terms are considered dropped
from the left side as well as from the right side of Eq.
(3.4b); henceforth, double-frequency terms will be ne-

glected in all second-order quantities], then the two
characteristic functions are identical within our approxi-
mation scheme. In order that Eqs. (3.4) have (classical)
statistical meaning as far as A, is concerned, we must
have

(A, ') ~&(A,)'. (3.5)

This inequality is assured by Eq. (2.21). Since (without
the double-frequency terms)

(A, ') = 2
i
t'

i
'(a,a,*), (3.6a)

arid

(A (I)2)+({AF A (2)))—~1 ~
2[({(I(I)ot(I)) )

+&a&(I&('))+&&I(')a+&)]= 2
~ t ~

'(at("a(") (3.6b)

from Eq. (2.6), we can see that Eqs. (3.4) are equivalent
to

&~ )=&o("), (3.7a)

&(I g @)—(&It(I)(I(I)) (3.7b)

(Note that a, and a,* commute, but a(I) and at(I) do
not. ) The physical interpretation of Eqs. (3.7) is very
simple: The complex fieM amplitudes and the energy
contributions must have the same expectation values

where the summation may be replaced by an integra-
tion, if necessary, it becomes clear that the requirements
of Eq. (3.9) are met by

(S,(t ))=P ' (s e*' "+s *e-'" ' ) (3.12)

where the primed summation need be extended, for
t&)co ', only over those frequencies which lie in the
neighborhood of co. This neighborhood can be defined by

(
I

1——«—
I
1+-

/

(0 (0 E (0)

It might be said that Eq. (3.9) requires that (S,(tI))
= (5"&(t&)) in a narrow frequency range about ru Equa-.
tion (3.10), however, should not be interpreted as im-

posing a similar relationship between (S,(tI)S,(t2)) and

(S"&(tI)S&'&(t2)). In fact, (S"&(t&)S&'&(tl)) is complex, in
general [although the integral of Eq. (3.10) is real],
while (5,(tI)5, (t2)) is reaL

The requirement on (5,(t&)5,(t2)) imposed by Eq.
(3.10) may be obtained from the following considera-
tion. Since S&'&(t) is Hermitian, ({5")(tI),5")(t,)}) is
real and ([S&"(tI),5&'&(tm)]) is pure imaginary. Further-
more, the syrnrnetrized product is even in t~—t~ while
the commutator is odd. We can therefore expand these
expressions in the form

({S('&(t,),S&') (t,)))
—P, Q, (+)(e(~g (« «)+(, ~ ra~ (&x «')) —

(3 '14'a)—



QUANTUM OPTICS. I 1395

([s(' (t,),s " (t,)])
G (—)( iut(tl —tt) e—

trent (tt—tt)) (3 14b)

where the G s are real, the o&, 's are a set of (positive) fre-
quencies in which both the symmetrized product and
commutator can be expanded, and where the summa-
tion may be replaced by an integration if necessary. In
general, the G, 's are functions of ti+to, but there will

always exist terms in which the G, 's are constant, as
shown in Appendix F. Since 2(S(o&(ti)S(o&(t2)) is the sum
of the symmetrized product and the commutator, we
can write

(S"&(t )S&"(t ))
[g .&+)eire!(tl—t2&+g ( )e i(s)(tl——tt&—] (3 15)

mhere o +) and 0;( ' are real quantities given by

g.(+)—r(G(+)+.G(—)) g .(+) —L(G(+) G(—)) (3 16)

It is clear that, for t))~ ', the 0,' ) terms make no sig-
nihcant contribution to the integral on the right side of
Eq. (3.10), the main contribution coming from the con-
stant (or approximately constant) g +' terms for which
cg; is sufficiently close to co. Now, (S,(ti)S,(t2)) is a real
quantity, and is even with respect to t~—t2. We must
therefore have

(S,(t,)S,(t,))
—P!t&r. (+)[et~i(tt—tt)+e—catt(tt —tt)] (3 17)

where the double prime indicates that only the terms
with o +) approximately constant and co, near co need
be included in the summation. "Thus, the character-
istic function for the Geld in presence of the classical
source is the same (in accordance with our approxima-
tion scheme) as that in presence of the quantum-
mechanical source, provided Eqs. (3.12) and (3.17) are
satisfied. These two equations may be regarded as de-
scribing the equivalent classical source. "It is seen that
the only information needed about the quantum-
mechanical source is (S"'(t)) and (S&"(ti)S "&(to))
(which furnish s; and g +&).

Before we go on to speciGc illustrations, it is of inter-
est to examine the approximation of discarding double-
frequency terms. Such an approximation makes the

computations simpler, of course, but is it significant
from a physical viewpoint? It should be pointed out,
Grst of all, that if we mere to ask for a classical source
that yields the same expectation values for the (com-
plex) amplitude and energy of the field, then the above
results would be obtained without reference to double-
frequency terms, since neither the amplitude nor the
energy contain such terms for sources near resonance.
Equations (3.7), the equations which essentially define
the equivalent classical source, are, ia. fact, the equality
conditions for instantaneous amplitude and energy ex-
pectation values, as mentioned previously. As far as
the equality of characteristic functions is concerned,
however, the situation is somewhat diGerent. It is best
illustrated by a calculation for a simple quantum-
mechanical source in which the double-frequency terms
are retained, which follows.

We consider a two-level system with the matrix ele-
ments of S("(t) given by

and

(S( &(t))=p»e'" + pore (3.19)

(S(o)(ti)S(o)(to))=piie '"&" 'tp)p coed(tt tt) (3.2())

Substituting into Eq. (2.16) and retaining in the inte-
grand only terms which do not oscillate with respect to
the variable of integration (resonant terms), we obtain

(A & &)o= (cc/$)
~ pro~ 2(1—e Ct)2

X [1+cos2(&et+8)], (3.21)

where 0 is determined by the phases of p» and t'. Sirni-
larly, we obtain from Eq. (2.17)

(A'"')+({A~A"'})=(~/&)'p»(1 —e ")' (3 22)

Now, the equivalence of the classical and the quantum-
mechanical source is obtained by setting (A,)=(A&'&)
and (A ') =(A&"')+({As,A "&}).As pointed out previ-
ously, this is statistically meaningful, that is, the clas-
sical source can be described statistically, only if
(A, ') & (A,)'. In the present instance, we have

(0)—S (o) cc e i~t S —(0) S (0) 0 (3 18)

and the state of the system speciGed by the density
matrix p. This gives us

"In the present notation,

(g"')=2 "'(~/5)Zt' st D+t'(~t ~)/6
gg—io&~t(I g

—$t+i(cg~—g))t)

and

(gt&'&g&'&)=-', (a /P)P "o &+&[1 2e &' c"os(tet —tt)t+e-
where (co;—co)'/(2 has been neglected compared to unity, and
where a possible small time variation in the 0.;(+)'s has been
ignored."It should be noted that not al/ the statistical properties of the
equivalent classical source are determined by Eqs. (3.12) and
(3.j.l), but only the erst two moment functicns. Statistical dis-
tributions satisfying these two equations will, therefore not be
unique, in general.

(A ('&')+({A&;A &'&})—(A(")'= (cc/&)'(1 —e
—C')'

X[poo—
~
pro~ (1+cos2o&t)] t (3.23)

where we have set 8=0 for simplicity. Now, the in-
equality p»&

~
p»~' always holds, but the inequality

p2o&2
~ p»~ does not always hold. Thus, Eqs. (3.4) will

give statistically meaningful results for all states (pure
states as well as mixtures) only if we consider Eq. (3.4b)
to be a relationship for quantities averaged over a half
cycle. (This procedure amounts to dropping the dou-
ble-frequency terms. There are no higher frequency
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germs. ) In other words, we set the requirement on the
classical source to be

and (3.17) show that we can consider the classical sys-
tem to be described by

(A )=(A"'&

(A, ') =&A&'&'+ fAv At"
&&

where the average is defined by

(g XI2tl)

(3.24)

(3.25)

(S.(t)) =- p.bsb.e'"'+pb.s.be-'"',

(S.(tl)s, (t2)) =2pbb
~
Sab

~

' cosbl(tl —t2), (4.6)

where, it should be recalled, double-frequency oscilla-
tions are neglected. Setting

(X(t))-=-
—)r/2tl)

dr&X(t+r)). (3.26)
p. ,S,.= ) p.,S,.~.'2 (4.7)

In the present example, averaging on the right side of
Eq. (3.25) has no effect, of course, since the expression
contains no double-frequency terms. If (A,) is not zero,
however, (A.') will contain double-frequency terms as
well as a nonoscillating term. It is only the latter that
is prescribed by &Ai"'+(Av, A&2&)&. The manner in
which this occurs will be shown explicitly in the next
section.

The neglect of the double-frequency terms may be
built into the equivalence condition for the classical and
quantum-mechanical sources by approximating our
characteristic functions for both sources with an average
over a half cycle. Thus, the equivalence requirement in
terms of the characteristic function may be stated as

(expi(tbq+vp)&, = &expi(tbq'+vp')), , (3.27)

according to the definition of Eq. (3.26). It is obvious
that the relationships among slowly varying and among
single-frequency terms is essentially unaffected by this
averaging.

we can rewrite Eq. (4.5) as

(S.(t))=2I „,S,„l.o.( t+tl).

If we take S.(t) to be given by

(4 g)

and
Il=2pbb't2]s b[ (4.10)

P(v) = pbb '"Ll p. bl ~(b —tt)

+(2 ) '(p» —lp.bl)], (411)
will give the expectation values of Eqs. (4.8) and (4.6).
t P(b2) meets all the requirements of a probability dis-
tribution; it is positive, since pbb&

~ p b~, and normal-
ized. ] We have thus displayed a classical, statistically
described, sinusoidal oscillator which has essentially the
same effect on the radiation mode as a quantum-
mechanical system with a single resonant pair of levels.

S.(t) =8 cos(~t+ ip), (4.9)

where y is a random variable with a probability distri-
bution P(ip), then it is easily seen that"

IV. ILLUsrRATIOms

The application of the preceding theory will be illus-

trated by the consideration of three types of sources:

(1) a system with only a single pair of energy levels in
resonance with the mode; (2) a harmonic oscillator; (3)
a blackbody.

1. Source with Single Resonant Energy Interval

Let the state of the system be described by the den-

sity matrix p. The matrix elements of S") are given by

S; "()=S, '"" A =E P. . (4.1.)—

2. Harmonic-Oscillator Source

We consider the source to be a lossless harmonic
oscillator of frequency &u, with (dimensionless) co-or-
dinates Q, and P, . The variable S(t) should. be iden-
tifmd (except for an irrelevant constant which can
be chosen to be unity) with Q(t). There is, obviously,
only one frequency, eo;=co, involved in the determina-
tion of s; and 0, &+&, and the summations of Eqs. (3.12)
and (3.17) need only single terms. It is easily seen that

8, =-'(Q8(O) —iP8(O)) =—2 "'&ti'8'(O) &, (4 12)
and

Only a single pair of levels, E, and Eb are related by

Eb Ea= AM ) (4 2)

;+&=-,'(Q, (o)+P, (o)—1&

=-'&ti' '(o) ti' (o)&.

Consider now a classical oscillator

(4.13)

~j pabb-) ba )

~ +'=PbblS bl'

(4.3)

(4.4)

Only the a and b levels enter into the result, and the
eGect of the source on the mode is identical to that of
a two-level system with levels a and b Equations (3.1. 2)

all other frequencies falling outside the neighborhood of
co, as described by Eq. (3.13). Some calculation shows

that, for use in Eqs. (3.12) and (3.17),

(t) —2 1t2(P+8icat+I3—8-irot) (4 14)

where 8 is a random complex variable. Equations (3.12),
(3.17), (4.12), and (4.13) imply that

&Il*&= (tt'8'(O) &, (4.15a)

&73*I3) (=(Inl*))= «t '(O) tt (o)& (4 15b)
Since

« '(«(O))~ « '(o)&«(o)), (4.16)
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Eqs. (4.15) describe a classical stochastic variable B.
Thus, if we know the state or density matrix of the
quantum-mechanical harmonic-oscillator source, the
right sides of Eqs. (4.15) are known, and we can obtain
a statistical description of the equivalent classical oscil-
lator from the classical expectation values of Eqs. (4.15).
As is to be expected, 8 vanishes with the excitation en-

ergy; the theory leads to a natural elimination of the
zero-point energy in Eq. (4.13).

Although the problem of finding an equivalent clas-
sical oscillator has been reduced to a purely classical
problem, it is of some interest to look. at two simple
types of quantum-mechanical states and Gnd their
classical equivalents. For an energy state

I I& we have

X~'"&" "'+b(~')+&(~')js '""""') (422b)

(S.(i))=0, (4.23)

and, by comparing Eq. (4.22b) with Eqs. (3.15) and
(3.17), we can write immediately

where g(a&') and $(~') are now defined in terms of the
source properties in the same manner as g(»u') and f(&o')

are defined by Eqs. (1.4b)—(1.4e) in terms of the LM
properties. We have thus,

(&*&=(
I 6' '(o)I )=o, (4.17a) do)'[g(»»') —&(»»')] cos»»'(ti —t2),

&&~*&= &i» I
&i' s"(0)es(0) I»»& = r», (4.17b)

which shows that the amplitude of the equivalent clas-
sical oscillator is given by

4 $(&0 ) COSM (fi—f2)
8M

o exp(AM'/k T)—1
(4.24)

(4.18)

and all phases are equally probable. For an oscillating
wave packet —or "coherent" —state, defined by"

where the relationship between $(~') and g(~') given by
Eq. (1.5) has been utilized. As far as the effect on. the
radiation oscillator is concerned, only the ~' interval in
the neighborhood of co is significant, and we also have

es(0) l~&=~I~&,

where n is a complex number, we have

&&*&=& l~.t(0)l &=-*,

(4 19)

(4.20a)

(S,(ti)S,(4)&=4&(~)[exp(Aa&/kT) —1] '8(ti —t2) . (4.25)

Equations (4.23) and (4.24) [or (4.25)] are just the
equations for a "classical" blackbody that obeys
Planck's radiation law.

&~~*&=&~I+st(0)Ss(0) Ia)= Ial', (4.20b)

which shows that the equivalent classical oscillator is
described by

(4.21)

3. Blackbody Source

In the case of a blackbody, the source has the same
properties as the LM, and nS(i) is similar to F(t), except
for the coupling strength. '» If we replace F(t) by S(t)
in Eqs. (1.4) [a drops out when F" in Eq. (1.4e) is re-

placed by S'$, we obtain

(S&»(i,)& =0, (4.22a)

"E.Schrodinger, Naturwiss. 14, 664 (1927); Julian Schwinger,
Signal Corps Report, Contract No. SC64531, 1956 (unpublished);
R. J. Glauber, Phys. Rev. 131, 2766 (1963).

~4 The perturbation theory applied to the source coupling is not
of high enough order to affect the damping of the radiation oscil-
lator. The source coupling must therefore be assumed to be con-
siderably smaller than the LM coupling; sufficiently smaller, in
fact, so as to play a negligible role in the damping.

that is, it has a precisely defined phase as well as a pre-
cisely defined amplitude. In this case, all members of
the (classical) statistical ensemble describing the source
are identical, or, better yet, no statistical description of
the source is necessary.

V. CORRELATION FUNCTIONS

So far, we have studied the characteristic function of
the field in the presence of a (arbitrary) quantum-
mechanical source, compared it to the characteristic
function in the presence of a classical source, and found
classical sources which yielded approximately the same
expression for the characteristic function as the quan-
tum-mechanical sources. In other words, we have re-
placed the quantum-mechanical source by an approxi-
mately equivalent classical source. The approximations
consisted in going only up to second order in perturba-
tion theory, and in discarding double-frequency terms
in the characteristic function (or in averaging over a
half cycle). Now, the characteristic function involves
the various moments of the Geld, which, in the notation
of Eq. (2.9b), may be written as (A"). As Eq. (2.15)
shows, however, the contribution of the source, because
of the weak coupling, is involved only in the factors
(A&'&& (A&'&'& and &{Ai,A&")&. All other factors in

(A "& are due only to the "vacuum" Geld. We can express
this fact by the statement that only (A & and (A') need
concern us, and these only up to second order.

One should note that the moments of A are not the
most general statistical expressions referring to A. They
may be regarded as equal-time correlation functions of
A, and special eases of the general correlation functions
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Thus, the only difference between. (A(»)A(»+r)) and
(A'(»)A'(»+r)), that is, between the correlation func-
tions in the presence of the quantum-mechanical and
the classical source, is the term C3.

It is significant to look at the orders of magnitude of
the terms C&, C2, and C3. This can be done very simply
in the case of a source with one frequency at resonance
and no other frequencies near resonance, the case we will

now consider. The essential aspects of the argument
which follows also apply to the somewhat more compli-
cated situation where there may be more than one fre-
quency near resonance. Utilizing the expansion of Kq.
(3.15), we obtain from Eqs. (5.3), with the usual
approximations,

Ct ——(n'/$')&r(+)e»'(1 —e &')' cosa&r, (5.13a)

Cs ——(n'/$') &o+& (1 e—&) (1 e t—') cosa&r, (5.13b)

C,=—'(ns/P) (&r(+)—&r(
—

&)[1—e
—t~(1+tr)]e'~~ (5.13c)

where the index has been dropped from the 0's for
obvious reasons. Now, the physical significance of a
product such as A(»)A(»+r) (or its symmetrized ver-
sion) lies in the fact that it occurs in the expression for
an elementary detection processes of the 6eld. Thus,
the lowest-order expression for the rate at which a
number of atoms absorb energy from the field (which
might be considered the description of an idealized de-
tection process) depends on the field through the term

«tf~(», »t) (fp(»), P(»t)) ),

where fr&(», »t) is determined by the atoms. "A physi-
cally meaningful measuring device needs a response time
short compared to $ ', which implies that fn(», »t)

should be such that the signiicant contribution to the
above integral comes from the values of t~ for which

$(»—»t)«1. The important values of r, therefore, are
those for which )r«1, and in this range we can write

Ct= (ns/P) o &+& (1 e t') s c—oso&r, (5.15a)

Cs= $r(n'/P)a &+&(1 e t') coso&r, —(5.15b)

mechanical product), which we proceed to do as follows:
Consider a classical field which is suddenly generated at
time tp and is allowed to decay freely in presence of the
quantum-mechanical source that has been under con-
sideration all along. This 6eld is described in zeroth
order (that is, in the absence of coupling to the source)
by

n(») =n(»s)e-'"«-'»

n(») =0, $gfp.
(5.16)

We take a(»s) to be a random number with all phases
having equal probability. I.et us now derive an expres-
sion for that part of (A (»e)A (»p+T)) which is due to the
interaction between u(») and the source. [The generation
of a(»s) is assumed to be independent of the source under
consideration. ) This will be a second-order term given
by (A(»s)A(')(»s+r)), where A&'& is determined by

a(s) (»&&+r) = ——',n' dt~ dt2

Xe-'" 'o+'-' [S ' (»t),S ' (»s)][u(»s) —u*(»s)], (5.17)

[from Eq. (2.5e)] and the corresponding conjugate
equation. Substitution yields

t0+r t1

(A(»o)A (»o+r))= —rsn «r dt2

X([S"'(») S""(»)])[fe '"'"+-"'

+f'*e'"""+-"']([f~(»o)+f*n*(» )]
X[@(»)s—co(fs-to) &)4(» )ceo+(ts-tp)]) (5 1g)

where the last expectation value calls for the averaging
over the a's. Due to the randomness of the phases, the
squares of a and a* drop out. Furthermore, noting from
Eq. (3.14b) that([S("(»t), S(')(»s)])involvestheexponen-
tials of &io&(»t—»s), we retain only the same exponen-
tials of the remaining factors of the integrand [that is,
we drop the exponentials of +no(»r+»s)], for only these
will give a resonant contribution to the integral. The
result is

Cs=-', (&r)'(n'/(')(o + —o--))e'"' (5.15c) (A(»p)A ' (»p+ ))=s({A(»s)A ' (»p+r)))

It is seen that the two correlation functions,
(A(»)A(»+r)) and (A'(»)A'(»+r)), differ only by a term
of second order in fr, a difference that is negligible as
far as 6eld detection processes are concerned.

It is instructive, nevertheless, to examine the physi-
cal origin of the difference of the two correlation func-
tions, Cs (or, rather, Cs', since a classical product should
really be compared to a symmetrized quantum-

'5 See, for instance, I. R. Senitzky, Phys. Rev. 119, 1807 (1960),
Eqs. (72) and (21) (P~'~ in these equations has the meaning of the
present p as far as the detection process is concerned), which show
that fo(t, tr) has the form P c cos&u (t—t&), where a& is the
atomic frequency associated with the absorption by the mth atom.

= -', n'(u(»s)a*(»p) )
tp+r

«t d» ([S('&(» ),S(')(»s)])

(n(»p)n*(»p)) = —,'. (5.20)

Now, ca* is the energy in units of Ace of the classical
field described by a. Furthermore, an energy of ~~~ is
just the minimum energy which may be associated with

X [ceo (r—tl+ts) s—&o(r—ts+)s)] (5 19)

We compare, now, the expression of Eq. (5.19) with
that of Cs' in Eq. (5.5). We note that the two are iden-
tical if we identify tp with t, provided
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the disturbance of the (quantum-mechanical) field pro-
duced by a measurement at to. We can therefore
interpret the diGerence between the expression for
({A(t),A(t+r)}) and ({A'(t),A'(t+r}) with the state-
ment that the quantum-mechanical source responds to
the disturbance of the field produced by a measurement
at t—this response accounting for C3'—while the clas-
sical source does not. In other words, the difference be-
tween the two correlation functions may be regarded as
being due to a disturbance of the source by an ideal
measurement of the field. Since the field is treated
quantum-mechanically, the disturbance of the 6eld by
a measurement is unavoidable, of course. Furthermore,
the absence of a response of the classical source to the
Geld is to be expected, since it was built into the speciG-
cation of the source in the present treatment, in ac-
cordance with our earlier discussion.

VI. FREE FIELDS

If one wants to take advantage of the simplicity
a6orded by the discussion of a single mode, considera-
tion of a lossless field is less satisfactory, from a physical
viewpoint, than that of a damped field. In any real
situation, losses usually play an important role. Also,
the choice of initial conditions is not clearly indicated in
the lossless case, since any disturbance produced in the
remote past will remain in existence indefinitely. Fur-
thermore, the consideration of steady-state resonant
sources is impossible, since these will produce an inde6-
nite increase in field strength, a completely unrealistic
situation. As a matter of fact, most of the discussion, in
the literature, of the lossless 6eld in quantum optics
leaves sources entirely out of consideration, and treats
various states of the free field without reference to their
generation.

In this connection it is worth noting that the Geld of
a free mode, uncoupled from both sources and LM,
cannot exhibit properties which are frequently of in-

terest in optics, no matter what the state of the radia-
tion oscilla, tor may be. Thus, (random) fluctuations in
time, which are often referred to as noise or incoherence,
can be exhibited by the oscillator only while it is under
the inQuence of external systems. In order to describe
a free mode, we set n and F equal to zero in Eqs. (1.8a)
and (1.8b) to obtain

q(t)i...=g(to) cosa&(t—to)+P(to) sino&(t —fp) (6.1a)

P(t)&„,=—q(to) sino&(t to)+P(to) cosa—)(t—to), (6.1b)

which leads to the relationship

({q(~)i-.,q(~+r)i-.}).= g(tt'(~0)+P'(to)) cos&or, (6.2)

where the averaging in accordance with Eq. (3.26)
merely removes double-frequency terms. Now, this is
a correlation function for a purely sinusoidal oscillation,
regardless of~the state of the free field. On the other
hand, the corresponding expression for a damped mode

in equilibrium with the LM at temperature T is, from
Eq. (1.21a),

({~~(&)a~(&+r) }&

=2{Lexp(A~/kT) —1] '+ —',}e—&' costs, (6.3)

just the type of correlation function expected in the
presence of Gaussian noise.

The description of the Geld of an undamped mode
coupled to a source can be obtained immediately from
the present results by taking the limit as $ vanishes,
provided the mode is initially unexcited and the gen-
erated 6eld does not become sufficiently large to react
significantly back on. the source. q~ and pi then de-

scribe the true vacuum 6eld. The arguments concerning
the equivalent classical source remain unchanged. It is
also possible to obtain a free (excited) field in this case

by terminating the coupling to the source at some time

$0, with the Geld being speciGed from then on by Kqs.
(6.1).It is clear from these equations that the free field

is described by the superposition of the true vacuum
field and a classical 6eld.

Another, and perhaps preferable, method of approach-
ing the idealization of a free Geld is to view it as one that
is very weakly coupled to a source and very weakly
damped. We let a and $ become very small (but not
zero) in such a manner that nj$ remains constant. After
the source has been acting for a su6iciently long time,
the 6eld is utmost the same as an excited free 6eld. The
arguments of the present article apply, of course, with

qi and p p having properties that are almost those of the
true vacuum 6eld.

VII. CONCLUSION

The present analysis may be regarded as a discussion
of spontaneous emission in a general sense. Only the
lowest-order processes are involved in the weak interac-
tion between the source and the radiation mode under

study, but the source may be arbitrarily complex and be
coupled strongly to other radiation modes, so that
high-order interactions play an important role in its
behavior. The above results show that spontaneous
emission from a quantum-mechanical system may be
described classically, within a reasonable approximation
framework, the total 6eld being the superposition of a
classical Geld due to the source and the "vacuum" field.
The total 6eld is, of course, fully quantum-mechanical,
since the "vacuum" field furnishes the necessary quan-
tum mechanical properties. "The classical 6eld may be
regarded as being generated by a classical source and a
description of this equaivalent source is obtained from

Eqs. (3.12) and (3.17); the only information needed
about the quantum-mechanical source are the values of

"It is clear that if one considers expressions in which the
"vacuum" Geld makes no contribution —such as those for (lowest-
order) induced emission and absorption —then only the classical
Geld need be considered.
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(S(0&(t)) and (S")(tI)S("(tu)), quantities that are inde-

pendent of the interaction between the source and the
mode under study. The description of the classical
source (as well as the classical f(eld) will, in general, be
statistical.

APPENDIX A

The theorem of Eq. (1.6), which states that

(1 2 (n—1) [n, n+1] (n+2) E)
= ([n, n+1])(1 2 (n 1) (n+2—) E) (A1)

will be proved. We assume E to be even, since for odd
X both sides vanish, according to Eq. (1.3a). Equation
(1.3b) may be written, in the shorthand notation, as

(1 2 E)=P (j1j2)(j3j,) &j&I,j&), (A2)

where

U(r) exp[(i/f)) H z M(0) r],
is presented in this Appendix. The Hamiltonian for the
uncoupled LM, HLM(o), is identical with ELM(0). (The
coupling is assumed to begin at I=0).The double com-
mutator under the integral sign is an operator referring
to the uncoupled LM only. U(t t1)—is therefore the
time displacement operator for the double commutator
which adds t—t» to all the time arguments. Thus,

«U(t —t )LF"'(t ),[F"'(t ),If. "']]U-'(t—t )

dt [F("(t),[F(')(tyt —tI),HLM("]]

where the summation is over all the diferent arrange-
ments j»j2, j2~»j», j~ »j~, into pairs, with

j»»& j». The order in which the pairs themselves are
arranged is immaterial. Two arrangements are con-
sidered different only if at least one pair in one arrange-
ment is different from any pair in the other arrange-
ment; all numbers from 1 to Emust occur once, and only
once, in each arrangement. The requirement j»»& j»
provides that the order of the two numbers in each pair
be the same as the order of these two numbers in the
expectation value (12 k iV).

Consider now the two expectation values

=ik dt1[F(0) (t),F ('& (t+ t,—t1)]

= —gg[F(o)(t) F(o)(t ) F(0)(t)]

= —ik[F "&(t),F('&(t2)].

APPENDIX C

We evaluate the kernel

(II2)

and
X1—=(12 . (n—1) n (n+1) (n+2) N), (A3)

X~=—(1 2 (n —1) (n+1) n (n+2) S), (A4)

and let them be expanded according to Eq. (A2). The
only terms in one sum that will be diferent from the
terms in the other sum are those containing the pairs
(n(n+1)) and &(n+1)n). The sum corresponding to X1
will contain terms with the former and the sum corre-
sponding to X2 will contain terms with the latter. Thus,

X —X.=[& (.+1))-&( +1).)]
XZ'&j j.) &j - j ), (As)

where the primed summation indicates a summation
over all diQerent arrangements into pairs with e and
n+1 omitted. Since

oo

K(t, t,)=- d(0'&((0') dtm

dt2 sinu&(t —t2) sin(0'(t2 —t1)

= (M +M) [g Slrl((0+(0)r COSMr

+sin'~I (a)'+(a) r sin(or] —((0'—co) '

X [~ sin(M' —&o)r coser —sin22 ((0'—u) r sinu&r],

Xsin&u(t —t2) sin&a'(t2 —tr), (C1)

in the integral equation (1.16a). Making use of the
relationship

Z'
&j1j2)" &i ~ &I)-

= (1 2 (n —1) (n+2) 1), (A6)
where v =—t—t», we can write

(C2)

the relationship in Eq. (A1) is proved.

APPENDIX 8
The derivation of the relationship

where

2
K»—

7l

K(t, t1) =Ka cos&u(t t1)+K2 sinu&(t —t1—), (C3)

d(0'(((0')

dtIU(t —t )[F('&(t ),[F("(t),ELM(')]]U '(t—t1)

=—ik[F(') (t),F(') (t )],
sin(a&'+(o)(t —t1) sin(d —a))(t—t1)

(0 +(0 07 —M

(C4a)
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