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The isolation usually encountered in optics between the part of a field that is of interest and its source
motivates the consideration of a radiation mode weakly coupled to a quantum-mechanical source. After
the introduction of some refinements into the quantum mechanics of a damped radiation mode, the field
is expressed as the sum of two parts, one due to the source (the source field) and the other due to the loss
mechanism (the “vacuum” field). The characteristic function for the field is calculated up to second order
in perturbation theory. This function is then compared with the characteristic function for the field in the
presence of a classical source. A method is exhibited by which a classical source can be found such that the
two characteristic functions are identical when averaged over a half cycle. In particular, the two sources
yield the same expectation values for the instantaneous amplitude and energy of the field. The description
of the equivalent classical source must be given in statistical terms, in general, and requires only a knowledge
of (S®(£)) and (SO (#,))S© (¢)), where S© is the dipole-moment operator of the quantum-mechanical
source unperturbed by the mode under consideration (but otherwise arbitrarily complex, with the possibility
of strong coupling to other modes). The theory is illustrated by a consideration of several simple sources—a
two-level system, a harmonic oscillator, and a blackbody—for which equivalent classical sources are found.
The two-time correlation functions for the field obtained with the two types of sources are compared and are
shown to be the same up to first order in &r, where 7 is the difference between the two times and £ is the
inverse of the field relaxation time; the physical meaning of the second-order difference in the correlation
functions is discussed. A limiting process, in which both the coupling to the source and the damping become
small, is suggested as a method of adapting the results to free fields, but it is pointed out that for discussion
of a single mode, a free field is physically less satisfactory than a damped field. It is concluded that, within a
reasonable approximation scheme, the source field may bedescribed classically (the “vacuum?” field furnishing
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all the necessary quantum-mechanical properties of the total field).

INTRODUCTION

HERE has arisen considerable interest recently in
quantum optics, optics in which the field is de-
scribed quantum-mechanically. Although the interac-
tion between the quantum-mechanical electromagnetic
field and matter forms the subject of quantum electro-
dynamics, one usually deals in optics with a class of
phenomena which can be described by certain approxi-
mations in a greatly simplified manner. The basis for
these approximations is the fact that in optics the be-
havior of the source is largely independent of the proc-
esses associated with the detection, measurement, and
utilization of the field; these processes produce very
little effect on the source. One can say that the part of
the field which is of interest in optics reacts negligibly
back on the source, no matter how it is affected by con-
ceivable optical experiments. This isolation of the
pertinent part of the field from the source may be de-
scribed formally in several ways, and different experi-
mental situations may lend themselves most conve-
niently to different descriptions. Thus, the part of the
field that is of interest may be very far from the source,
so that isolation—or weak coupling—between this part
of the field and the source is of spatial origin. On the
other hand, the interesting part of the field may not be
localized in ordinary space but in wave-vector space;
it may consist of one or more modes that are weakly
coupled to the source. In the present article, only the
latter type of isolation will be considered, and for sim-
plicity of discussion, attention will be focused on a single
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mode. Generalization of the results to the case of a
larger number of modes will be obvious.

A theorem has been proposed! which simplifies the
concepts and formalism of quantum optics, and demon-
strates explicitly the extent of the difference between
quantum optics and classical optics. In the present con-
text, this theorem states that the effect of weakly
coupled sources on a radiation mode is approximately
the same as that of classical sources, so that the field of
modes weakly coupled to the source may be described
as the sum of a classical field and the ‘“vacuum” field.2
It is the purpose of the present article to exhibit a
method by which one may find the equivalent classical
source (as far as the field is concerned) for an arbitrary,
weakly coupled, quantum-mechanical source, and to
examine the extent of the approximations involved in
this equivalency. Incidentally, some refinements in the
quantum mechanics of a damped radiation mode will
be presented first.

I. QUANTUM MECHANICS OF A DAMPED
RADIATION MODE

As is well known, the quantum mechanics of the field
of a radiation mode is the same as the quantum me-

11, R. Senitzky, Phys. Rev. Letters 15, 233 (1965); 16, 619
(1966).

2 In the presence of damping, the true vacuum field is replaced
by the field arising from the fluctuations of the loss mechanism,
as indicated by the following discussion; the latter field will be
referred to as the “vacuum” field.
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chanics of a harmonic oscillator. Setting
=— (4rt)2u(r) p(@), (1.1a)
H= (4nc?h/w)?v Xu(r)q(t), (1.1b)

where u(r) describes the spatial dependence of the field
for the mode under consideration and is normalized
over a suitable volume, we have the result that ¢ and
p are the (dimensionless) coordinate and momentum,
respectively, of a harmonic oscillator—the radiation
oscillator—of (angular) frequency w. The method of
analysis of the damped oscillator to be used presently is,
basically, that developed in two previous articles.?
Certain refinements in the treatment of the damping
mechanism (some of which were developed in a subse-
quent analysis of the damped two-level system*) not
present there, however, will be included in the present
discussion.

The Hamiltonian of the coupled systems under con-
sideration is given by

H=HOSQ+HLM+H5+7ZP(O£S+F) 3 (1 28.)
where
Hoe=3%0(g%+p?) (1.2b)
and
[%p]=7:' (12C)

Hiym is the Hamiltonian of the loss mechanism (LM),
Hg is the Hamiltonian of the source, S and F are the
dynamical variables of the source and LM, respectively,
through which these systems couple to the radiation
oscillator, and « is a coupling constant. The coupling to
the oscillator has been chosen to occur through p, which
makes S and F the effective electric-dipole moments (in
appropriate units). No significant change in the results
would be obtained if source and LM coupled to the oscil-
lator through g (by their magnetic-dipole moments),
since ¢ and p are symmetrical, or through both ¢ and
$. In the discussion of the present Section, only the
coupling to the LM will be under consideration. The
coupling of the oscillator to the source is, so far,
arbitrary.

Some of the properties of the LM have been studied
in detail previously and will be only summarized here.
For the free (uncoupled) LM—indicated by the super-
script zero—the expectation values of a product of F’s
is given by?

(FO)FO (L) - FO(,))=0, nodd (1.3a)
and

(FO(H)FO(2,)- - -F(O)(tn»

=5 (FOEIFO@)) -

<F © (tJn,_l)F(O) (t]n)>7 n even) (1 '3b)

31. R. Senitzky, Phys. Rev. 119, 670 (1960); 124, 642 (1961).
Other discussions of the damped harmonic oscillator include those
of Julian Schwinger, J. Math. Phys. 2, 407 (1961), and M. Lax,
Phys. Rev. 145, 110 (1966).

41. R. Senitzky, Phys. Rev. 137, A1635 (1965).
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where jar_1< jor (the order is the same in each pair as
that in the original product), and where the summation
is taken over all the different arrangements into pairs.
Equations (1.3) describe a Gaussian stochastic variable,
and the order in each pair is significant because F© (¢)
is a quantum-mechanical variable. The expectation
value of a single pair is givea by

2 00
(FO()FO ()= - / do'[n(w’) cosw(li—1)

—ig(e) sine’(h—12)], (1.4a)
where
£(o') =1tz B(o)[1—exp(—hw' /ET)], (1.4b)
(0" =3rhZ 1 B(w)[14+exp(— 7w’ /kT)]; (1.4¢)
Z= / " 4B p(E) exp(—E/KT), (1.4d)
B(u)= / dE p(E-+1)o(EYF*( B+, E)
Xexp(—E/kT), (1.4e)

p(E) being the density of energy states of the LM (as-
sumed closely spaced), F2(E;,E;) being the average of
| Fix©(0)| 2 over small ranges of E; and Ej, and T being
the LM temperature. Since

£o) _1—exp(—i//kT)
() 1+exp(—he/ET)

Egs. (1.3), (1.4a), and (1.5) are sufficient to describe
the LM provided £(w’) and T are specified. £(w") may be
regarded, if one does not want to delve into the details
of the LM, as a phenomenological function describing
the LM. [As will become apparent, £(w’) is approxi-
mately the exponential decay constant of the expecta-
tion value of the amplitude of an initially excited oscil-
lator of (angular) frequency ’.] It is assumed to be a
slowly varying function of ' and much smaller than .
All final results will be expectation values with respect
to the LM. (This procedure can be justified by the
assumption that the LM may be considered to consist
of a large number of essentially independent systems,
each constituent system itself having the properties of
alLM.)

For simplicity, we introduce a shorthand notation in
writing expectation values of products of F©®’s of
different arguments; we replace F®(¢;) by the number
7. Thus, the left side of Eq. (1.3a) is written in short-
hand, as (12---x). The following theorem concerning
the expectation value of products will be useful:

12 (n=1) [n, n4+1](n+2) --- N)
=(n, n+1]){12 - (n—1) (0+2) --- N),

1.5)

(1.6)
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that is, a commutator may be replaced by its expecta-
tion value in the expectation value of any algebraic ex-
pression of F(©®’s. The proof of this theorem is given in
Appendix A. Since all final results will be expectation
values with respect to the LM, this theorem implies
that all commutators are effectively ¢ numbers; we thus
have

[FO(L),FO(t;)] — ([FO),FO)])
41
- / 8 sined (i—15), (1.7)

using Eq. (1.4a).

We proceed now to the equations of motion based on
the Hamiltonian of Eqgs. (1.2). In the Heisenberg pic-
ture, which will be used throughout, these are

j=wptaS+F, (1.8a)
p=—awq, (1.8b)
S=(ih)"[S,Hs], (1.8¢)
Hgs=—iap[Hs,S], (1.8d)
F=(h)~{F,Hu], (1.8¢)
Huv=—ip[Him,F]. (1.81)

If we consider the coupling between oscillator and LM
to begin at i=0, then the last two equations are equiva-
lent to the integral equation

1 t t1
F(t)=F®(0)+- / dh f dixU (t—1,)
% Jo 0

X[F(t),[F (ts), Huim(t) 1p(t) JUT(t—1),  (1.92)

where

U(r)=exp[ (i/#)Hm(0)7]. (1.9p)

Approximations based on the assumption that the LM
is disturbed only slightly by the oscillator and that
quantum-mechanical correlation between oscillator and
LM in interaction terms of higher order than the second
may be neglected (these approximations have been dis-
cussed in detail previously®) yield

1 t t1
F()~F O (1) / iy / ity
2l

XU (t—t)[FO(4),[FO(t),Hrn @ 1]
XU t—t)p(t). (1.10)

Interchanging the order of integration and utilizing the
result—derived in Appendix B—that

/ dtU(t— 1) [F O (t1),[F O (t), H s @ PJU (i~ 11)

=—i[FO),FO@F)], (1.11)
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we obtain
t
F()=FO ()—i / A[FOW,FOn)Ip(), (112)
0
which, in view of Eq. (1.7), becomes

F()=FO ()
4 t 00
2 / i / A8 sine (i— 1) p(t).  (1.13)

From Egs. (1.82) and (1.8b) one obtains
bto?p=—w(aS+F)
and, after substitution from Eq. (1.13),
Ptwp=—w(@S+F®)

(1.14)

4 t 00
X / ih f do/ 6(0') sine (t— 1) p(8). (1.15)
™ 0 0

We concern ourselves only with p, for the moment,
since Eq. (1.8b) gives ¢ immediately, once p is known.
The integro-differential Eq. (1.15) can be rewritten as
an integral equation:

t
p=P+ / K (L0)p(H), (1.162)

where ’

4 00 t

K(tt)=- / de’£(w") / dt,

m™Jo 1

Xsinw(t— tz) sinw'(tz—— 11) N (116}))
t
P=pO— / AL FO () +aS(t)]

’ Xsinw(i—1t), (1.16¢c)

and p© satisfies the free-harmonic-oscillator equation
PpO+uw?p®©=0, (1.16d)

as well as the initial conditions. The kernel K(¢,4) is
evaluated—with some approximations based, essen-
tially on #(w)<<w—in Appendix C, to yield

K(th) =~ —2&(w)cosw(ti— i)+ 2e(w)sinw(t— 1),  (1.17a)
where
2 o'
(&) =@ / H)——do!.  (1.17D)
T Jo w'2—w?

The integral Eq. (1.16a) is now equivalent to the more
familiar differential equation

b+ 28p+w(1—2¢/w)p=—w@S+F®), (1.18)

where £ and e stand for £(w) and e(w), respectively. The
damping and reactive effects of the LM (contained in
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£ and e, respectively) have been separated from the
fluctuation effects (contained in F®), and the dynami-
cal variables of the LM are no longer unknown operators
to be determined by the equations of motion. The com-
plete set of these equations may now be written as

4=—2¢q+w(1—2¢/w)p+aS+F®, (1.19a)
p=—uq, (1.19b)
8= (i#)"'[S,H5], (1.19¢)
Hs=—iap[Hs,S], (1.19d)

where #(w’) (which, together with T, determines both
e and F®) is assumed known.

For purposes of the following discussion, we ignore
the reactive shift in frequency, assuming that e/w is
negligible compared to unity. We will also neglect ¢/w
compared to unity. Furthermore, we shift the time
origin to — w0, so that the coupling to the LM begins
then. As far as the source is concerned, however, we let
a=0 for <0, so that the coupling to the source still
begins at £=0. With the above approximations and time
shift, Egs. (1.19a) and (1.19b) yield

g=qrt4s, (1.202)
p=prt+ps, (1.20b)
where
t
gr= / dte ¥ FO(4) cosw(t—1),  (1.20c)

Il

(1.20d)

t
gs=a / dhe =5 (t) cosw(t—11),
0
t
pr=— f e E-DFO ) sino(i—t), (1.20€)
t

Ps’—"‘- _Ot/ dtle‘i(‘““)S(tl) sinw(l—- tl) . (120f)
0

It is to be noted that gr and pr are the coordinates
in the absence of a source, and for zero LM temperature
describe the ground state of the (damped) radiation
oscillator, or the zero-point field of the mode—the
“vacuum” field. Equations (1.20c) and (1.20e) show
that the expectation value of a product of ¢#’s and pp’s
can be expanded in the same manner as that of the
F®©’s namely, in terms of a product of expectation
values of pairs, as described in Egs. (1.3). The expecta-
tion value of these pairs can be derived by use of Eq.
(1.4a). This derivation is carried out in Appendix D, and
yields the relationships

(gr(t)gr(te))=pr(t)pr(te))
=Le-ttal[] sinw(fs— 1)

+(142¢) cosw(ti—1)], (1.21a)

SENITZKY
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{gr(ty) pr(ts))="%et10-5I[] cosw(tr—1s)

4 (142¢) sinw(ti—1)], (1.21b)
(pr(t)qr(te))=%e ¥t — 4 cosw(ts—12)
—(142¢) sinw(ti—12)], (1.21c)
where
o= [exp(fw/kT)—1]1. (1.21d)

It is seen that, for T=0, these expectation values be-
come identical with those for a lossless harmonic oscil-
lator in the ground state as either £ or #;—#; approaches
zero. A further consequence of Egs. (1.20) is the fact
that the commutators of the ¢r’s and pz’s are to be
regarded as ¢ numbers (equal to their expectation
values), in accordance with the reasoning of Eq. (1.7).
Thus, we have

Lgr(t),qr(ty) ]=eHlo—0l; sinw(fa— 1), (1.22a)
[pr(t),pr(t)]=etin—tli sinw(ta—t), (1.22b)
Lgr(t),prts) ]=efi—8li cosw(ti—t).  (1.22c)

These commutators approach the corresponding ones
for the lossless oscillator as either £ or £;—¢; approaches
zero.

It is convenient at this point to introduce the fre-
quently used non-Hermitian operators

a=2"12(g+ip), at=2"V2(g—ip).  (1.23)
From Egs. (19), we have
Lar(t),ar(t)1=[ar!(t),ar!(t)]=0, (1.242)
Lar(ty),art(ts)]=exp[—E|i—ts] —iw(ti—12)]. (1.24b)
Also,
(ar(ty)ar(te))=(art(t)ari(t:))=0, (1.25a)
{ar(t)art(t))
=(1+¢) exp[— | ti— o] —i(ti— 1) ], (1.25b)
(art(t)ar(t))
= ¢ exp[— & fi—fo| +iw(ti—1)]. (1.25¢)

It is obvious that the expectation value of a product of
ar’s and ar'’s can be expanded in terms of products of
the expectation values of pairs, in the same manner as
the gr’s and pp’s, or as the F(©’s [that is, according to
Egs. (1.3)]. It follows from Eqgs. (1.25a) that unless
there are an equal number of ap’s and ap'’s in any pro-
duct, its expectation value will be zero. Furthermore,
for T=0, we have ¢=0, and obtain

(@ot(t1)ao(t2))=0,

where the subscript F has been replaced by the sub-
script O to indicate that T=0. Since the order of a par-
ticular ar(#;) and ari(¢;) in a pair must be the same as
in the original product, Eqgs. (1.25a) and (1.26) show
that the expectation value of any product in which
there is an ar(t;) at the extreme right or an ¢p1(#;) at the

(1.26)
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extreme left is zero for 7=0.> We are not interested in
thermal effects in the present article; for the sake of
simplicity, therefore, we will consider only the case =0
in the following discussion (but retain the notation a).

II. CONTRIBUTION OF THE SOURCE

We come now to a consideration of the part of the
field due to the source—that is, ¢, and p, given by Eqgs.
(1.20d) and (1.20f), or @, and a,! given by

a rt
as=&/o dS(ty)em -t (2.1a)
a rf *
GST=6/(, At1S(#y) e =t | (2.1b)
where
Q=w—ik. (2.1c)

We want to compare the contribution of a quantum-
mechanical source with that of a classical source. As far
as the contribution of a quantum-mechanical source is
concerned, there is no difficulty except a computational
one; all that is needed is a solution of the equations of
motion, Egs. (1.19). As far as a classical source is con-
cerned, however, the equations of motion themselves
become inconsistent. It is not the form of Egs. (1.19¢c)
and (1.19d) that is troublesome, since the commutator
bracket would be replaced, for a classical source, by the
Poissom bracket multiplied by ##.% It is the fact that
the source is coupled to the field, and that its time de-
velopment is affected by the field, which leads to incon-
sistencies, since, if the source is initially classical, it
will acquire quantum-mechanical properties from the
quantum-mechanical field as time progresses. Thus, the
coupling of quantum-mechanical and classical systems
results, in general, in inconsistencies.” There are, how-
ever, approximations with which one can treat a clas-
sical source coupled to a quantum-mechanical field. If
the effect of the field (of the mode under consideration)
on the source is negligible, then Hg in Eq. (1.19d) be-
comes negligible, and a classical source will remain clas-
sical, since its equations of motion involve only classical
variables. This is the situation that will be considered
in the present article; that is, we will consider the case

5 It is interesting to note the resemblance between the present
results and field theory of a single (lossless) mode. For instance,
the expansion in terms of the expectation value of pairs corre-
sponds to Wick’s theorem, and the vanishing of the expectation
value of a product for gy at the extreme right or a,! at the extreme
left corresponds to a¢|0)=(0|af=0. The present results, however,
are not derived from consideration of the lossless harmonic oscil-
lator, but, mainly, from consideration of the LM.

6 Note that % is inserted in the coupling term of the original
Hamiltonian, Eq. (1.2), for dimensional reasons only.

7This is, in fact, the motivation for treating the field quantum
mechanically when studying the mutual interaction between the
field and quantum-mechanical systems.
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in which the mode under consideration affects the
source only slightly.® One should not conclude that this
is the only situation in which a source may be treated
consistently as classical. Where the quantum-mechani-
cal aspects of the field are negligible, the equations of
motion for the (classical) source and field become clas-
sical equations of motion that form the basis of classical
radiation theory, of course. In our equations of motion
for a single mode, Egs. (1.19), this situation occurs when
F© (for T=0) is negligible compared to aS for non-
vanishing &, or when the “vacuum” field is negligible
compared to the part of the field due to the source. The
case we consider in the present article, however, is that
in which the source field is small compared to the
“vacuum” field, a case in which the total field must
be treated quantum-mechanically if, ultimately, its
interaction with quantum-mechanical systems is
investigated.

The reaction of the generated field back on the source
is assumed to be negligible. Second-order perturbation
theory may therefore be used, and our calculation will
neglect all terms in ¢ and p containing powers of « higher
than the second.? Just as Eqs. (1.8¢) and (1.8f) led to
Eqg. (1.9), Egs. (1.8¢c) and (1.8d) lead to

a " it
S= S(O) +— / dh/ dtzV(t—' tl)
% 0 0

XLS(@), LS (), Hs(t) 1p() IV1(t— 1), (2.2)

where
V(r)=exp[(¢/%)H 5(0)7].

We are interested in S only for the purpose of inserting
it into the expression for ¢, and p,, and can therefore
neglect higher orders than the first in a. Thus,

o t t1
SzS(O)—i—— / dt1/ dtzV(l’—'ll)
% 0 0

XSO (), [SO (1), Hs O pr(te) V10— 1), (2.3)

Since pr commutes with the other variables in the
integrand, and since the result of Eq. (1.11) can be ap-

8 This is the case usually encountered in optics, where not the
entire field (all modes) is of interest, but only that part of the field
which couples significantly to the detector. It may be necessary
to partition the field into modes in a judicious manner in order to
end up with modes that are negligibly coupled to the detector and
modes that are significantly coupled. The latter usually affect the
source negligibly. For a “single mode” laser, for instance, the field
should be resolved, approximately, into two modes, one inside the
laser cavity and one outside. Only the outside mode is coupled
significantly to the detector, and this mode is coupled weakly to
the laser.

9 Second-order perturbation theory will account for the action
(formally) of the “vacuum” field on the source, but not for the
reaction of the generated field (the part of the field due to the
source) back on the source. As indicated later, a quantum-
mechanical source without the “vacuum” field is too “bare” to be
physically meaningful.
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plied to any system, we have, up to first order,
11
S=SO—_iq / ALSOW),SOn)Ipr(t).  (24)
0

Substituting into Egs. (2.1), we obtain the first- and
second-order parts of ¢ and a' (the zeroth-order parts
are ar and arpt),

as=aM4-a® (2.5a)
agt=atM4-gt® | (2.5b)
where
o t
e (=" / SO () g2 | 2.50)
0
o t
Q== / SO (1)e* w1 (2.50)
1]

t 21
4D () = —la? / dt / dtae= 2SO (1) SO (15)]
0 40
X[ar(t)—art(®)],

12 t1
Ot = —1a? / it / e D[S O (1), SO (15)]
0 0

(2.5¢)

X[ar(tz)—ar'(tz)]. (2.5
Utilizing Egs. (1.25), one can show that
(arat D)+ (aDat )+ (@Dt )= (atDa®) | (2.6)

a relationship that will be useful later.10

The physical interpretation of a quantum-mechanical
result must be made in statistical terms, and such an
interpretation is most easily obtained by an examina-
tion of the pertinent characteristic function. We con-
sider, therefore, the characteristic function

flup)=(epilugtrp))
= (expiGat+E¥at))= e,

¢=2"%(u—iv). (2.8)

This function contains all the statistical properties of
the oscillator (at a given time), since the expectation
value of a product of 7 ¢’s and » ’s, in any order, can be
obtained from the commutation relations and the terms
up to p™» in the power series of (u,). We will derive an
expression for the characteristic function in terms of the
source variable up to second order.
We begin with the expansion

Flup)=Fs*) = (expi(Ar+AD+A4®)), (2.92)

where

2.7

where

A=pgtvp=tat*at. (2.9b)

10 This relationship is consistent with the requirement

Le®),e*(®)1=1.

R. SENITZKY

155

Now, 4™ commutes with 4, and the commutator of
AW and 4 is a third-order term and negligible in our
approximation scheme. We can therefore write

expi(A p+-A O A®)
=expid D expi(4dr+4®). (2.10)

One notes that [4r,A®7] is a second-order term that
contains only source variables; it commutes with A4,
and its commutator with 4® is of order higher than
second, and negligible. We utilize the fact that if
[01,05] commutes with both O; and O, there exists the
relationship

€(01+02) = 1(£01502¢—1/2[01,02] | £02,0161/2[01,021) | (2.11)
Applying this relationship to the second exponent on

the right of Eq. (2.10), and dropping terms of higher
order than the second, we obtain

expi(d p+A4 D) =eidr{-Lifeidr A D} |
where the symmetrized product notation, {4,B}=A4B
-+ BA, is used. Thus up to second order,
expi(d r+ 4D+ AD)
=3{expid p,(14+iA D —FA D244 @)}, (2.13)

where the symmetrization with the first three terms has
no significance, of course.

(2.12)

To obtain the characteristic function, we must take
the expectation value of the right side of Eq. (2.13).
Since 4 r and AV are expressed in terms of variables of
different (uncoupled) systems, the expectation value of
a product of a function of 4 and a function of 4™ is
given by the product of the expectation values of the
functions. 4r and 4®, however, both contain ar and
art, and care must be exercised in evaluating the expec-
tation value of the product of exp(i4r) and 4A®. It is
shown in Appendix E that one obtains the result

({e4r,A®})=(e4r)i({Ar,A®}),  (2.14)
so that
(expi(Apt+ AV 4 A D))= (expid p)(14{4A D)
—5AO)—3({4r,A®})). (2.15)
Equations (2.5) and (2.9b) yield
t
(4 (1)>=% f dhe (SO (1))
0 XB-e——iw(t—t;)_l_g-*eiw(t—t;):l; (2.16)

taking also Eq. (1.25) into consideration, we obtain,
with some calculation,

¢ L
(A(1)2>—|—<{AF,A(2)})=042/ dtlf dts
0 0

Xet (2t—t1—tz)B—e~l’w(t—t1)+§-*eiw(t-z1)]
XUSO(t)SO (t))5e =

FSOL)SO ()i *eiot—m ], (2.17)
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Equations (2.15)-(2.17) constitute the expression of the
characteristic function in terms of the source variable up
to second order.

We consider only those cases where the source has
frequencies of oscillation that lie in the neighborhood of
the oscillator frequency w. In that event, there will be
resonant contributions in the integrations involved in
Egs. (2.16) and (2.17); that is, there will be terms in the
integrands which do not oscillate, or oscillate very
slowly, with respect to the variables of integration, and
yield the main contribution toward the integrals. The
contributions of rapidly oscillating terms in the inte-
grand will be neglected. Furthermore, in Eq. (2.16) the
resultant integral will oscillate with frequency w, and
in Eq. (2.17) the integral will have, in general, a non-
oscillating part, and may also have a part which oscil-
lates with frequency 2w. We assume that the double-
frequency part is of no interest, and can be neglected;
in other words, we obtain the average over a half cycle
of the expression in Eq. (2.17) or Eq. (2.15). (Note that
(exp4 r) has no time variation.) This leads to the sim-
pler form

t t1
(A4 ({4 5, AD})=52 / A f dty
0 0

X e k== (SO (4) SO (4,))

X gt tr—ta) L <S(0) (tZ)S(O) (t1)>eiw(t1—tz)j , (2.18a)
where, for simplicity of notation, we have set
a=alf]. (2.18b)

Since the integrand is invariant with respect to an
interchange of #; and f, we can write Eq. (2.18) in an
alternative form as

t t
(A(1>2)—{—({AF,A(2>})=&2/ dt1/ diy
0 0

X exp[— £Q2i—t—t) — iw(ti— 1) ]
X (SO (1)SO(1y)).

Equations (2.15), (2.16), and (2.19) constitute the de-
scription of the characteristic function f(¢,¢*) (with
double-frequency terms discarded), carried as far as
possible without going into the details of the source.
Special cases in which the source is a two-level system,
a harmonic oscillator, and a blackbody will be con-
sidered later.

Before concluding thediscussion of a general source, we
calculate the expression (4 M2)4-({4 5,4 @})—(4 D)2,
which will be of interest in connection with the following
discussion. Using Eq. (2.16), and again dropping double-
frequency terms (or averaging over a half cycle), we

(2.19)
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obtain
t ¢
(AD)2= %&2/ dh/ dlpg ¥ @t (GO (7))
0 0
X (S 0) (t2)>[6—-iw(t1—22) +eiw(t1—t2)] R
t ¢
=&2/ dt1/ dtz exp[— E(Zf-— h—' tz)
0 0

—iw(l— 1) US @ (1)} S O (1)),
which, together with Eq. (2.19) yields
(A4 (Ar,A@)—(AO)

(2.20)

t t
ﬂﬂwaﬂwmwwm
0 0

— (SO NSO (1))]
Xexp[— £(2t— fl— tz)—' ’I:w(tl— t2)] )

=(DD")20, (2.21a)

where

DE&/JM{S®UO—KSmUOﬂ

Xexp[— E(t—t)— iwt]. (2.21b)

III. COMPARISON WITH CLASSICAL SOURCE

It is our purpose to compare the above fields to those
generated by classical sources, and to find classical
sources which produce equivalent fields. Since the physi-
cal meaning of the above fields (and sources) can only
be stated in statistical terms, it is clear that the classical
sources will also have to be described in statistical
terms. Let us consider, therefore, a radiation mode
driven by a weakly coupled classical source which is
described statistically. The coordinates may be ex-
pressed as

p'=prtp., (3.1)

where ¢, and p, are (stochastic) c-number terms of first
order, and represent the contribution of the classical
source. ¢, and p. must, of course, be described in terms
of an ensemble, but this ensemble is a classical statis-
tical ensemble and is unrelated to the quantum-
mechanical ensemble with which ¢r and pp are de-
scribed. Our expectation-value notation will refer to
either or both ensembles, depending on the quantities
which are being averaged. In accordance with the
earlier discussion, we assume that the effect of the
radiation mode under consideration on the classical
source is negligible, and we regard the source as pre-
scribed. One might argue that our classical source is
more ‘“‘prescribed” than the quantum-mechanical
source, for which we not only considered ¢, p®

¢'=qrt4qe
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(which correspond to g., p.), but also ¢, p®, In a
sense, this is true. ¢» and p®, describe the effect of
the “vacuum” field on the source. In the description of
the behavior of a classical source, the “vacuum” field
(for T=0) may not and need not be considered, as
discussed previously, but in the case of a quantum-
mechanical source, the effect of the “vacuum” field on
the source must be considered even in lowest order. For
example, the spontaneous emission power radiated by
a quantum-mechanical source cannot be calculated cor-
rectly without consideration of the “vacuum” field.
(Note that ({4 r,4 ®}) does not vanish, in general, and
is of the same order of magnitude as (4 V2).)

We construct, next, the characteristic function of ¢’
and p":

()= (expilug'+»p’))

(expi(¢a’+*al’))
=o(5,6%). 3.2)

It is clear that, up to second order, we have the rela-
tionship

oup)= (5% =(eMr)(1+i(d)—3(4.7)), (3.3)

where

4 cEP'Qc"I" VPCE g‘ac+§*a’c* .
If we now choose 4. in such a manner that

(Ae)=(4D), (34a)

and
(AR=(AD)+({Ar,AD}) (3.4b)

[the double-frequency terms are considered dropped
from the left side as well as from the right side of Eq.
(3.4b); henceforth, double-frequency terms will be ne-
glected in all second-order quantities], then the two
characteristic functions are identical within our approxi-
mation scheme. In order that Eqgs. (3.4) have (classical)
statistical meaning as far as 4. is concerned, we must
have

(A2 2 (4.)2. (3.5)

This inequality is assured by Eq. (2.21). Since (without
the double-frequency terms)
(A2)=2[¢|¥aca*), (3.6a)
and
(AP (A5, AD))= ¢ L((,010))
+{arat@)+{a@apt)]=2{¢|HatPa®) (3.6b)

from Eq. (2.6), we can see that Egs. (3.4) are equivalent

to
(ac)={(aV), (3.72)
(acac*)=(atPa®), (3.7b)

(Note that a, and a.* commute, but ¢® and at® do
not.) The physical interpretation of Egs. (3.7) is very
simple: The complex field amplitudes and the energy
contributions must have the same expectation values
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for both sources at any given time. If the classical vari-
able corresponding to S is designed by S, (a real ¢ num-
ber), we have

o t
to=— [ dnenws, (). (3.3
@A y : )

Equation (3.7a) requires that

¢ t
/ dtle—iﬂ(t—t1)<sc(t1)>=/ dtxe_m(‘—“)<5(°)(t1)), (3.9)
0 0

and Eq. (3.7b) requires that

¢ ¢
/ dt / Ao 8@t (§ (1)) (§) Y0 (1=t
0 0

ot ¢
—_.—/ dh/ dt2e—i(2t—!1—t2)<5(0>(tl)S(O)(12)>6—iw(t1—t2).
0 0
(3.10)

Equations (3.9) and (3.10) are the only conditions
that need be imposed on the specification of S, and, if
they are satisfied, the fields produced by S and by S,
are equivalent (within our approximation framework).
If we expand the real function (S (#;)) in the manner

(SO(0)=2; (sjeieiitsi*eiit),  (3.11)

where the summation may be replaced by an integra-
tion, if necessary, it becomes clear that the requirements
of Eq. (3.9) are met by

(Se(t))=27 (sjeivitits;*eieit)

where the primed summation need be extended, for
>w™l, only over those frequencies which lie in the
neighborhood of w. This neighborhood can be defined by

ws

O—%<J<O+%.

o/ o )

It might be said that Eq. (3.9) requires that {S.(t1))
=(5©(4))) in a narrow frequency range about w. Equa-
tion (3.10), however, should not be interpreted as im-
posing a similar relationship between (S.(t1)S.(#s)) and
(SO(4)SO (1)), In fact, (SO (4)SO©(t,)) is complex, in
general [although the integral of Eq. (3.10) is real],
while (S.(¢1)S.(t2)) is real.

The requirement on (S.(f1)S.(t:)) imposed by Eg.
(3.10) may be obtained from the following considera-
tion. Since S®(¢) is Hermitian, ({S©(t1),S®(f)}) is
real and ((S©@(#),S©(t)]) is pure imaginary. Further-
more, the symmetrized product is even in #—¢, while
the commutator is odd. We can therefore expand these
expressions in the form

{SO(t),SO(t2)})

= ZJ. Gj(+) (eimj(t1—-tz)+e—-iwj(t1——tz)) ,

(3.12)

(3.13)

(3.14a)



155 QUANTUM

and

(LSO (1),S (1) )

=3 GO (givitu—t) — gmivjti—m)) - (3.14b)

where the G;’s are real, the w,’s are a set of (positive) fre-
quencies in which both the symmetrized product and
commutator can be expanded, and where the summa-
tion may be replaced by an integration if necessary. In
general, the G/’s are functions of #1145, but there will
always exist terms in which the G/s are constant, as
shown in Appendix F. Since 2(S© ()5 (4,)) is the sum
of the symmetrized product and the commutator, we
can write

(SOW)SO (1))

=>; [o—j(+)eiwj(t1—t2)+o—j(—)e—iwj(tl—m)] , (3'15)

where ¢;" and ;¢ are real quantities given by
o =LGCHH+GO), ¢;P=LGH—-G). (3.16)

It is clear that, for £>w™!, the ¢;¢™ terms make no sig-
nificant contribution to the integral on the right side of
Eq. (3.10), the main contribution coming from the con-
stant (or approximately constant) ¢;* terms for which
w; is sufficiently close to w. Now, (S.({1)S.(t2)) is a real
quantity, and is even with respect to 1—i. We must
therefore have

(Se(t)So(t2))
=3 ;P [elwithi—t) f g—iviti—t)] = (3.17)
where the double prime indicates that only the terms
with ¢;*) approximately constant and w; near w need
be included in the summation.!* Thus, the character-
istic function for the field in presence of the classical
source is the same (in accordance with our approxima-
tion scheme) as that in presence of the quantum-
mechanical source, provided Egs. (3.12) and (3.17) are
satisfied. These two equations may be regarded as de-
scribing the equivalent classical source.!? It is seen that
the only information needed about the quantum-
mechanical source is (SO(¥)) and (SO(#)SO(¢))
(which furnish s; and ¢;).
Before we go on to specific illustrations, it is of inter-
est to examine the approximation of discarding double-
frequency terms. Such an approximation makes the

11 Tn the present notation,
(@®)y=2712(a/5) 3 si[1+ilw—w)/E]
and
(aTWa®) =~ (o2/E)E;" 0;D[1—267 cos(wj—w)i+e 2],

where (wj—w)?/£% has been neglected compared to unity, and
where a possible small time variation in the ¢;("’s has been
ignored.

12 Tt should be noted that not a/l the statistical properties of the
equivalent classical source are determined by Eqgs. (3.12) and
(3.17), but only the first two moment functicns. Statistical dis-
tributions satisfying these two equations will, therefore not be
unique, in general.

Xemiust(] —mitHilow)t),
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computations simpler, of course, but is it significant
from a physical viewpoint? It should be pointed out,
first of all, that if we were to ask for a classical source
that yields the same expectation values for the (com-
plex) amplitude and energy of the field, then the above
results would be obtained without reference to double-
frequency terms, since neither the amplitude nor the
energy contain such terms for sources near resonance.
Equations (3.7), the equations which essentially define
the equivalent classical source, are, in fact, the equality
conditions for instantaneous amplitude and energy ex-
pectation values, as mentioned previously. As far as
the equality of characteristic functions is concerned,
however, the situation is somewhat different. It is best
illustrated by a calculation for a simple quantum-
mechanical source in which the double-frequency terms
are retained, which follows.

We consider a two-level system with the matrix ele-
ments of S©(¥) given by

S190 =Sy O *= e—i‘"t, S11@ =S50 =0 , (318)

and the state of the system specified by the density
matrix p. This gives us

<S(0)(z))=pmeiwt+p2le—-iwt, (319)

and

(SO 1) SO (1)) = praeie =t - pygeiv(ti—in) . (3.20)

Substituting into Eq. (2.16) and retaining in the inte-
grand only terms which do not oscillate with respect to
the variable of integration (resonant terms), we obtain

(A®)=(a/5?| prz| (1 — 782
X [14cos2(wt+6)],

where 8 is determined by the phases of p1s and ¢. Simi-
larly, we obtain from Eq. (2.17)

AOY+({ArADY) = @/ Yipn(1— 0.

Now, the equivalence of the classical and the quantum-
mechanical source is obtained by setting (4 ,)= {4 ®)
and (4.%)= (A D24 ({4 5,4 ®}). As pointed out previ-
ously, this is statistically meaningful, that is, the clas-
sical source can be described statistically, only if
(A2)> (4.2 In the present instance, we have

(AW ({Ap, AP} — (A V)= (a/£)*(1—et)?
X [p22— 1p121 2(1+C052wt):| ’

where we have set §=0 for simplicity. Now, the in-
equality ps>|p12|? always holds, but the inequality
p222>2|p12| does not always hold. Thus, Egs. (3.4) will
give statistically meaningful results for all states (pure
states as well as mixtures) only if we consider Eq. (3.4b)
to be a relationship for quantities averaged over a half
cycle. (This procedure amounts to dropping the dou-
ble-frequency terms. There are no higher frequency

(3.21)

(3.22)

(3.23)
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terms.) In other words, we set the requirement on the
classical source to be

(4e)=(4®),
<Ac2>av: <A D24 {AF’A (2)}>av )

where the average is defined by

(3.24)
(3.25)

%) 7r/2w
D))oy f dr(X@+n).  (3.26)
—7 /20

™

In the present example, averaging on the right side of
Eg. (3.25) has no effect, of course, since the expression
contains no double-frequency terms. If {4,) is not zero,
however, (4.2 will contain double-frequency terms as
well as a nonoscillating term. It is only the latter that
is prescribed by (4®24-{A4r,A®}). The manner in
which this occurs will be shown explicitly in the next
section.

The neglect of the double-frequency terms may be
built into the equivalence condition for the classical and
quantum-mechanical sources by approximating our
characteristic functions for both sources with an average
over a half cycle. Thus, the equivalence requirement in
terms of the characteristic function may be stated as

(expi(ug4vp)av=(expi(uq’+vp"))ay, (3.27)

according to the definition of Eq. (3.26). It is obvious
that the relationships among slowly varying and among
single-frequency terms is essentially unaffected by this

averaging.
IV. ILLUSTRATIONS

The application of the preceding theory will be illus-
trated by the consideration of three types of sources:
(1) a system with only a single pair of energy levels in
resonance with the mode; (2) a harmonic oscillator; (3)
a blackbody.

1. Source with Single Resonant Energy Interval

Let the state of the system be described by the den-
sity matrix p. The matrix elements of S are given by

Sjk(o)(t)=Sjk6i“’fkt, hwjk=Ej——Ek. (41)
Only a single pair of levels, E, and E; are related by
Ey—E,=1w, (4.2)

all other frequencies falling outside the neighborhood of
w, as described by Eq. (3.13). Some calculation shows
that, for use in Eqgs. (3.12) and (3.17),

Sj=PabSba, (4-"3)
aj(+)=pbblSabl2. (44)

Only the a and b levels enter into the result, and the
effect of the source on the mode is identical to that of
a two-level system with levels ¢ and b. Equations (3.12)
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and (3.17) show that we can consider the classical sys-
tem to be described by

(Se(®))= pabSsa’*+ praSare? (4.5)

and
<Sc(t1)Sc(fz)>= 2006 I Sabl 2 cosw(t1—t2) , (4.6)

where, it should be recalled, double-frequency oscilla-
tions are neglected. Setting

PavSa= | patSsal €? 4.7
we can rewrite Eq. (4.5) as
(Se(®))=2|pasSsa| cos(wt+6). 4.8)
If we take S.(#) to be given by
S¢(f)=B cos(wi+ o), (4.9)

where ¢ is a random variable with a probability distri-
bution P(¢p), then it is easily seen that!?

B=20,41"2|Sus|, (4.10)
and
P(@)=pos™ [ | pas| 8(o—0)
+Q2r) " pos2— | par] )], (4.11)

will give the expectation values of Eqgs. (4.8) and (4.6).
[P(¢) meets all the requirements of a probability dis-
tribution; it is positive, since pys>> | pas|2, and normal-
ized.] We have thus displayed a classical, statistically
described, sinusoidal oscillator which has essentially the
same effect on the radiation mode as a quantum-
mechanical system with a single resonant pair of levels.

2. Harmonic-Oscillator Source

We consider the source to be a lossless harmonic
oscillator of frequency w, with (dimensionless) co-or-
dinates Q, and P,. The variable S(f) should be iden-
tified (except for an irrelevant constant which can
be chosen to be unity) with Q(¢). There is, obviously,
only one frequency, w;=w, involved in the determina-
tion of s; and o;"), and the summations of Egs. (3.12)
and (3.17) need only single terms. It is easily seen that

. 5i=35(0s(0)—iPs(0))=2"Y%(as!(0)), (4.12)
an
0; P =1Qs*0)+Ps*(0)—1) (4.13)
=3(@s1(0)@s(0)).
Consider now a classical oscillator
So(t)=2-12(B*giat-t Be—iat) (4.14)

where B is a random complex variable. Equations (3.12),
(3.17), (4.12), and (4.13) imply that

(B*)={az'(0)), (4.15a)
(B*B) (=(BB*))=(@s'(0)@s(0)).  (4.15b)

Since
(@s'(0)as(0)) 2 (ast(0))as(0)),  (4.16)
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Eqgs. (4.15) describe a classical stochastic variable B.
Thus, if we know the state or density matrix of the
quantum-mechanical harmonic-oscillator source, the
right sides of Eqs. (4.15) are known, and we can obtain
a statistical description of the equivalent classical oscil-
lator from the classical expectation values of Egs. (4.15).
As is to be expected, B vanishes with the excitation en-
ergy; the theory leads to a natural elimination of the
zero-point energy in Eq. (4.13).

Although the problem of finding an equivalent clas-
sical oscillator has been reduced to a purely classical
problem, it is of some interest to look at two simple
types of quantum-mechanical states and find their
classical equivalents. For an energy state |#) we have

(B*)=(n| as'(0)|n)=0, (4.17a)
(BB*)=(n| @s'(0)@s(0)|n}=n,  (4.17b)

which shows that the amplitude of the equivalent clas-

sical oscillator is given by
| B| =nt'?, (4.18)

and all phases are equally probable. For an oscillating
wave packet—or “coherent”—state, defined by!?

Gs(0)|a)=cla), (4.19)

where « is a complex number, we have
(B¥*)={a| @st(0) |a)=0*, (4.202)
(BB*)=(a| @51(0)@5(0) |a)= |2, ~ (4.20b)

which shows that the equivalent classical oscillator is
described by

B=a, 4.21)
that is, it has a precisely defined phase as well as a pre-
cisely defined amplitude. In this case, all members of
the (classical) statistical ensemble describing the source
are identical, or, better yet, no statistical description of
the source is necessary.

3. Blackbody Source

In the case of a blackbody, the source has the same
properties as the LM, and &S () is similar to F(f), except
for the coupling strength.!* If we replace F(¢) by S(#)
in Egs. (1.4) [« drops out when F? in Eq. (1.4e) is re-
placed by S?], we obtain

(SO(#))=0, (4.222)

13 F, Schrédinger, Naturwiss. 14, 664 (1927); Julian Schwinger,
Signal Corps Report, Contract No. SC64531, 1956 (unpublished);
R. J. Glauber, Phys. Rev. 131, 2766 (1963).

14 The perturbation theory applied to the source coupling is not
of high enough order to affect the damping of the radiation oscil-
lator. The source coupling must therefore be assumed to be con-
siderably smaller than the LM coupling; sufficiently smaller, in
fact, so as to play a negligible role in the damping.
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1 00
(SOWSO (1) =— / 4’ (L)~ E)]
m™Jo
X e’ (=) 4 [ () E(w’) Je—’ )} | (4.22b)

where 7(w’) and £(w’) are now defined in terms of the
source properties in the same manner as 7(w’) and ¢ (")
are defined by Eqs. (1.4b)—-(1.4€) in terms of the LM
properties. We have thus,

<Sc(t)>= 0, (4‘23)
and, by comparing Eq. (4.22b) with Eqgs. (3.15) and

(3.17), we can write immediately

2 e -
(Se(t1)Se(t))=— / do'[7(w")—E(w)] cosw’(h—1)

_4 / " gt cos ) (4.24)
0

™ exp(fw'/kT)—1
where the relationship between £(w’) and 7(w’) given by
Eq. (1.5) has been utilized. As far as the effect on the
radiation oscillator is concerned, only the o’ interval in
the neighborhood of w is significant, and we also have

(Ss(t)S.o(ts) Y= 4E(w) [exp(fics/ RT)— 11718 (t1—15) . (4.25)

Equations (4.23) and (4.24) [or (4.25)] are just the
equations for a “classical” blackbody that obeys
Planck’s radiation law.

V. CORRELATION FUNCTIONS

So far, we have studied the characteristic function of
the field in the presence of a (arbitrary) quantum-
mechanical source, compared it to the characteristic
function in the presence of a classical source, and found
classical sources which yielded approximately the same
expression for the characteristic function as the quan-
tum-mechanical sources. In other words, we have re-
placed the quantum-mechanical source by an approxi-
mately equivalent classical source. The approximations
consisted in going only up to second order in perturba-
tion theory, and in discarding double-frequency terms
in the characteristic function (or in averaging over a
half cycle). Now, the characteristic function involves
the various moments of the field, which, in the notation
of Eq. (2.9b), may be written as {(47). As Eq. (2.15)
shows, however, the contribution of the source, because
of the weak coupling, is involved only in the factors
(AWY (4D and ({Ar,A®}). All other factors in
(A™) are due only to the ‘“vacuum” field. We can express
this fact by the statement that only (4) and {42) need
concern us, and these only up to second order.

One should note that the moments of A are not the
most general statistical expressions referring to 4. They
may be regarded as equal-time correlation functions of
A, and special cases of the general correlation functions
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(A(t1)- - - A(n)). Up to second order, the source will be
involved only in the factors (4 M (2;)), (A D (#)A D)),
and (A p(;)A@(1;)+A(1,)Ar(t;)), which is somewhat
similar to the case of the moments. It is of interest,
therefore, to investigate whether the equivalence of the
classical and quantum-mechanical sources that holds
for (42()) also holds for (4()A(t+7)).

Since the first-order part of (4()A(t+7)) vanishes,
we have

(ADA+7))=(ADA(t+7)®

HADOAW+7)®, (5.1a)
where, neglecting double-frequency terms,
(ADAGH)O= (45O A5(+1)

=|¢|Xar(Dart@+7)), (5.1b)
and
(AOA@+)® =5 |*[ar(at® (1))
@D Qar (i) O a0 (H-0))
+(@t®®a®(+7))]. (5.1

The computation is aided by the following decomposi-
tion:

O (17)= %D ()

o t+7
42 / dheRE—SO ) | (5.20)
21/ 2 .

tH+r t1
e (t+1) =g () —1a? / dty / dt
t 0

X -8tk [SO (1) SO (1) ]
X[ar(ty)—art(t)],

and the corresponding conjugate equations. Substitut-
ing from Egs. (5.2) and utilizing Eq. (2.6), one obtains,
after some calculation, the result,

(5.2b)

AMAU+7))@=Cr+CotCs, (5.3a)
where
Cr= (£ 1t O () () e7)
=& cosar / i / SO )SO (1)
o Jo
Xexp[— £+ 7—ti— ) —iw(h—12)], (5.3b)
Ca=3 coswr / i f (SO W)SO (1)
A
X expl— Q47— ti—ty) — iw(ts— )], (5.3¢)
Ci=1a / " i / Y 501,59 @)
XexpliQ*(r— 1), (5.3d)
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for 7>0. We have, of course, the relationship
(A@+1A0)=(AWA+7))*, (54)

which can be used to obtain an expression for
(A(H)A(t—7)). The symmetrized product and commu-
tator are also of interest. Cy is obviously real. The
resonant contribution to C, (we ignore the other contri-
butions), as shown by Eq. (3.15), is also real. The sym-
metrized product is therefore given by

<{A ®,4 (t+T)}>=2C1+2€2+263’ , (5.5a)
where
Cy'=3(Cs+Cs*)
Hr t1
1 / an / LSO (1),5O (1))
t t
X [6i9*<1—h+ t2) e—iﬂ(r—lr{'tz)] , (S'Sb)
and the commutator is given by
{L4®,A(t+7)])=Cs—Cs*. (5.6)

We consider now the correlation function of the field
A’ in the presence of a classical source. From

A'=ArtA., (5.7
we obtain
Q' DA (7)) =(Ar@)Ar(t+7))
F{4D)A(t+7)). (5.8)

The relationship A.=¢a.+{*e.* together with Eq.
(3.8) and the neglect of double-frequency terms yields

(A A(tH1)) =K1+ K, (5.92)
where
K= || ¥a()a*(t)) (e e i2*r) (5.9b)
and
t+r t
K,=1a? / dt f di2(Se(t1)S.(8))
t 0
Xg—£(2t+r—t1—tz>[eiw(r—t1+¢z)+e—iw(f—u+tz)]_ (5.9C)
Equation (3.7b) shows that
Ci1=K;. (5.10)

Furthermore, Egs. (3.15) and (3.17) show that the reso-
nant contributions in the integrals of Cs'and K are the
same. This is particularly easy to see in the case of
exact resonance, where both C; and K are equal to

t+r t
a2 %7 coswr / dh / digg~tQt-ti—)g) | (511)
t 0

Neglecting other than resonant contributions, we have,
therefore,

Co=Ko. (5.12)
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Thus, the only difference between (4(f)A4(t+7)) and
(4’() A’ (14 7)), that is, between the correlation func-
tions in the presence of the quantum-mechanical and
the classical source, is the term Cs.

It is significant to look at the orders of magnitude of
the terms Ci, Cs, and Cs. This can be done very simply
in the case of a source with one frequency at resonance
and no other frequencies near resonance, the case we will
now consider. The essential aspects of the argument
which follows also apply to the somewhat more compli-
cated situation where there may be more than one fre-
quency near resonance. Utilizing the expansion of Eq.
(3.15), we obtain from Egs. (5.3), with the usual
approximations,

Ci1=(a2/£9)eMei7(1— e ¥)2 coswr, (5.13a)
Co=(@/8)o P (1—e ) (1—e¥) coswT, (5.13b)
Cy=3(@/ ) (e P —aO)[1—et(1+£r) Jerer,  (5.13¢)

where the index has been dropped from the ¢’s for
obvious reasons. Now, the physical significance of a
product such as A(¥)A4(t+7) (or its symmetrized ver-
sion) lies in the fact that it occurs in the expression for
an elementary detection processes of the field. Thus,
the lowest-order expression for the rate at which a
number of atoms absorb energy from the field (which
might be considered the description of an idealized de-
tection process) depends on the field through the term

fdt1fn(i,t1)<{ﬁ(t),?(h)}), (5.14)

—o0

where fp(/,t) is determined by the atoms.'® A physi-
cally meaningful measuring device needs a response time
short compared to &, which implies that fp(¢t)
should be such that the significant contribution to the
above integral comes from the values of # for which
£(1—t1)<1. The important values of 7, therefore, are
those for which £7<1, and in this range we can write

Ci= (@2/£)a P (1—e~¢)2 coswr, (5.15a)
Com er(@2/ 8o (1—e ) coswr,  (5.15Db)
Cam1(£n)2(@2/£) (e —aD)etor.  (5.15¢)

It is seen that the two correlation functions,
(A A(tH17)) and (A’ ()4’ (4 1)), differ only by a term
of second order in £7, a difference that is negligible as
far as field detection processes are concerned.

It is instructive, nevertheless, to examine the physi-
cal origin of the difference of the two correlation func-
tions, C3 (or, rather, C3’, since a classical product should
really be compared to a symmetrized quantum-

16 See, for instance, I. R. Senitzky, Phys. Rev. 119, 1807 (1960),
Egs. (72) and (21) (P19 in these equations has the meaning of the
present p as far as the detection process is concerned), which show
that fp(¢,4) has the form 3 m ¢m COSwm(i—£1), where wn is the
atomic frequency associated with the absorption by the #th atom.
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mechanical product), which we proceed to do as follows:
Consider a classical field which is suddenly generated at
time /o and is allowed to decay freely in presence of the
quantum-mechanical source that has been under con-
sideration all along. This field is described in zeroth
order (that is, in the absence of coupling to the source)
by

a(t)=a(tp)e -t

a(?)=0,

220

5.16
t<ty. ( )

We take @(f,) to be a random number with all phases
having equal probability. Let us now derive an expres-
sion for that part of (4 ({,)A4 ({,+ 7)) which is due to the
interaction between &(f) and the source. [The generation
of @(ty) is assumed to be independent of the source under
consideration.| This will be a second-order term given
by (4 (to)A ®(ty+7)), where A® is determined by

totr t1
a® (io+ 1‘) = —%azf dt1f dlz
to to

X gm0 lotr=[ SO (1), SO (1) J[a(t2) —a*() ], (5.17)

[from Eq. (2.5¢)] and the corresponding conjugate
equation. Substitution yields

tot+7 t1
(A(t) AP (tyt7))=—1a2 / dt / dt
to to

XALSO(#1),SO (8,) P e @ ot
+§-*eiﬂ* (to+r—t1)]<|:§-d(to) +§.*&«*(t0):|

X [a(te) e R0 —g* (1) 0], (5.18)

where the last expectation value calls for the averaging
over the @’s. Due to the randomness of the phases, the
squares of @ and @* drop out. Furthermore, noting from
Eq. (3.14b) that ([.S©(#,),S©(¢s) ])involves the exponen-
tials of Ziw(f1—12), we retain only the same exponen-
tials of the remaining factors of the integrand [that is,
we drop the exponentials of 2=iw(#1-+7)], for only these
will give a resonant contribution to the integral. The
result is

(A ) AP (tet7))=3{A(t0),A® (ts+7)})

totr t1
— 16a(t)a* (1)) / dt / (LSO (1),5O (1))

X [eiﬂ* (r—t1+t2) — e—iﬂ(f—ter):l . (519)

We compare, now, the expression of Eq. (5.19) with
that of Cy in Eq. (5.5). We note that the two are iden-
tical if we identify ¢, with ¢, provided

(@(to)a*(t0)=%. (5.20)

Now, @a* is the energy in units of %w of the classical
field described by @. Furthermore, an energy of 1%w is
just the minimum energy which may be associated with
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the disturbance of the (quantum-mechanical) field pro-
duced by a measurement at f. We can therefore
interpret the difference between the expression for
{A@),A(t+7)}) and ({A4'(t),A’(1+7}) with the state-
ment that the quantum-mechanical source responds to
the disturbance of the field produced by a measurement
at /—this response accounting for Csy'—while the clas-
sical source does not. In other words, the difference be-
tween the two correlation functions may be regarded as
being due to a disturbance of the source by an ideal
measurement of the field. Since the field is treated
quantum-mechanically, the disturbance of the field by
a measurement is unavoidable, of course. Furthermore,
the absence of a response of the classical source to the
field is to be expected, since it was built into the specifi-
cation of the source in the present treatment, in ac-
cordance with our earlier discussion.

VI. FREE FIELDS

If one wants to take advantage of the simplicity
afforded by the discussion of a single mode, considera-
tion of a lossless field is less satisfactory, from a physical
viewpoint, than that of a damped field. In any real
situation, losses usually play an important role. Also,
the choice of initial conditions is not clearly indicated in
the lossless case, since any disturbance produced in the
remote past will remain in existence indefinitely. Fur-
thermore, the consideration of steady-state resonant
sources is impossible, since these will produce an indefi-
nite increase in field strength, a completely unrealistic
situation. As a matter of fact, most of the discussion, in
the literature, of the lossless field in quantum optics
leaves sources entirely out of consideration, and treats
various states of the free field without reference to their
generation.

In this connection it is worth noting that the field of
a free mode, uncoupled from both sources and LM,
cannot exhibit properties which are frequently of in-
terest in optics, no matter what the state of the radia-
tion oscillator may be. Thus, (random) fluctuations in
time, which are often referred to as noise or incoherence,
can be exhibited by the oscillator only while it is under
the influence of external systems. In order to describe
a free mode, we set « and F equal to zero in Egs. (1.8a)
and (1.8b) to obtain

(1) tree= q(to) cosw(i—to)+p(to) sinw(i—1o),  (6.1a)
P tree= —q(to) sinw(t—to)+p(to) cosw(t—1o), (6.1b)
which leads to the relationship
(gD treeg(t4 7)trec} dar=15(q*(l0) +p*(t)) coseor,  (6.2)

where the averaging in accordance with Eq. (3.26)
merely removes double-frequency terms. Now, this is
a correlation function for a purely sinusoidal oscillation,
regardless of the state of the free field. On the other
hand, the corresponding expression for a damped mode
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in equilibrium with the LM at temperature T is, from
Eq. (1.21a),

{gr(®),qr(t+7)})

=2{[exp(fiw/kT)— 1144} ¢ coswr, (6.3)

just the type of correlation function expected in the
presence of Gaussian noise.

The description of the field of an undamped mode
coupled to a source can be obtained immediately from
the present results by taking the limit as & vanishes,
provided the mode is initially unexcited and the gen-
erated field does not become sufficiently large to react
significantly back on the source. gr and pr then de-
scribe the true vacuum field. The arguments concerning
the equivalent classical source remain unchanged. It is
also possible to obtain a free (excited) field in this case
by terminating the coupling to the source at some time
ty, with the field being specified from then on by Egs.
(6.1). Tt is clear from these equations that the free field
is described by the superposition of the true vacuum
field and a classical field.

Another, and perhaps preferable, method of approach-
ing the idealization of a free field is to view it as one that
is very weakly coupled to a source and very weakly
damped. We let & and # become very small (but not
zero) in such a manner that o/ § remains constant. After
the source has been acting for a sufficiently long time,
the field is almost the same as an excited free field. The
arguments of the present article apply, of course, with
gr and pp having properties that are almost those of the
true vacuum field.

VII. CONCLUSION

The present analysis may be regarded as a discussion
of spontaneous emission in a general sense. Only the
lowest-order processes are involved in the weak interac-
tion between the source and the radiation mode under
study, but the source may be arbitrarily complex and be
coupled strongly to other radiation modes, so that
high-order interactions play an important role in its
behavior. The above results show that spontaneous
emission from a quantum-mechanical system may be
described classically, within a reasonable approximation
framework, the total field being the superposition of a
classical field due to the source and the “vacuum” field.
The total field is, of course, fully quantum-mechanical,
since the “vacuum” field furnishes the necessary quan-
tum mechanical properties.'® The classical field may be
regarded as being generated by a classical source and a
description of this equaivalent source is obtained from
Eqgs. (3.12) and (3.17); the only information needed
about the quantum-mechanical source are the values of

16Tt is clear that if one considers expressions in which the
“yacuum” field makes no contribution—such as those for (lowest-
order) induced emission and absorption—then only the classical
field need be considered.
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(SO()) and (SO (#;)S®(¢s)), quantities that are inde-
pendent of the interaction between the source and the
mode under study. The description of the classical
source (as well as the classical field) will, in general, be
statistical.

APPENDIX A
The theorem of Eq. (1.6), which states that

12 (n—1) [, n+1] (n+2) --- N)
=([n,n+11)12--- (n—1) +2) --- N) (A1)

will be proved. We assume N to be even, since for odd
N both sides vanish, according to Eq. (1.3a). Equation
(1.3b) may be written, in the shorthand notation, as

12 N)=3% (jije)dsje) - - Un—agn),  (A2)

where the summation is over all the different arrange-
ments fije, ¢ Jar—1for, * - Jjn—1jn, into pairs, with
Jor—1< jor. The order in which the pairs themselves are
arranged is immaterial. Two arrangements are con-
sidered different only if at least one pair in one arrange-
ment is different from any pair in the other arrange-
ment; all numbers from 1 to NV must occur once, and only
once, in each arrangement. The requirement jor—1< jor
provides that the order of the two numbers in each pair
be the same as the order of these two numbers in the
expectation value (12---%k---N).
Consider now the two expectation values

Xi={12---(n—1) n (n+1) (0+2)---N), (A3)
nd
: Xo=(12--(n—1) (n+1) n (n+2)---N), (A4)

and let them be expanded according to Eq. (A2). The
only terms in one sum that will be different from the
terms in the other sum are those containing the pairs
{n(n+1)) and {(n+1)%). The sum corresponding to X
will contain terms with the former and the sum corre-
sponding to X, will contain terms with the latter. Thus,

X1—Xo=[{n(n+1))—{(n+1)n)]
X2 {Gage)- - - (Gn-1jn), (AS)
where the primed summation indicates a summation
over all different arrangements into pairs with # and
n~+1 omitted. Since
> (jage)- - - {Gn—1jn)
—(12-+-(ni—1) (+2)---N),

the relationship in Eq. (A1) is proved.

(A6)

APPENDIX B
The derivation of the relationship

/wwwmmwmmwmmmeW4o

=—iH[FO®W),FO®1)],
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where

U(r)exp[ (i/#)Him(0)7], (B1)

is presented in this Appendix. The Hamiltonian for the
uncoupled LM, H1m @, is identical with Hrm(0). (The
coupling is assumed to begin at =0). The double com-
mutator under the integral sign is an operator referring
to the uncoupled LM only. U(t—1) is therefore the
time displacement operator for the double commutator
which adds {—1; to all the time arguments. Thus,

/t AU (t—t)[F O (4),[F O (t2),H 1 @ JJU(t— 1)

2

t
= / AL[FO(1),[FO(t+ts—tr),Him O 1]
t

2

¢
il / ALFOW) FO(t-ty—1)]
i

2

= — [ FO(), FO(1,)—FO(#)]

=— [ FO(1),FO(t)]. (B2)
APPENDIX C
We evaluate the kernel
4 = :
K(t,t1)=—/ dw'&(w')/ dis
m™Jo ty
Xsinw(t—t;) sinw’(f,—t), (C1)

in the integral equation (1.16a). Making use of the
relationship

¢
/ dtz sinw(t— 12) sinw’(tg— tl)
t

= (w'+w)~[3 sin(w'+w)7 coswr
+sin?d (w'+w) 7 siner ]— (' —w)™!

X [% sin(w'—w)r coswr—sin?} (w'—w) 7 sinwr],

(C2)
where 7=1{—1;, we can write
K(t,ty) =K cosw(i—t1)+ Ko sinw(t—t1), (C3)
where
2 00
K1=—-/ do'E(w)
m™Jo
sin(w'+w)({—t) sin(w'—w)(i—#)
XI: ] (C4a)
w'+w o' —w
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and
2 1—cos(w'+w)(i—1y)
Ky=2 / dw’s(w’)[
T Jo w'+w
1—cos(w'—w)(t—t)
-+ :I (C4b)
o' —w

For {—t>>w™ (which implies that we are considering
w1t K1 and K can be easily approximated. In the
expression for Ky the contribution of the first term in
the square bracket is negligible, and the contribution of
the second term lies mainly in the neighborhood of w.
Since £(w') is a slowly varying function, we have

2 o sin(/—w)(i—t
Ki~—t(w) dw’w= —2kw).
™

—a0 w—w

(Cs)

A good approximation for K is given by

2 1 @
Kz;::—-/- dw'é(w')[ + :|=2€(w), (Ce)
T Jo w+tw o—ow

where
2 o
e(w)E—(P/ dw'£(w") . (ChH
T Jo w?—w
We obtain, thus,
K(tt) ~ —2%(w) cosw(i—t)+2e(w) sinw(t—1;). (C8)

The important assumption underlying the use of Eq.
(C8) is that the main contribution to the integral in the
integral equation (1.16a) comes from values of # such
that (—#>>w™. Since the kernel oscillates with fre-
quency w, this assumption is justified only if the signifi-
cant frequencies in p(#;) lie near w. Anticipating the
solution of the integral equation [or of the equivalent
differential equation (1.18)7, we can say that the sig-
nificant frequencies will lie near w when resonance
effects play an important role, or when the damping
constant #(w) is sufficiently small compared to w.

APPENDIX D

We consider the derivation of Egs. (1.21). From Eqgs.
(1.20) one has

(g(ri)g(r2))= | dn / diz exp[— E(ritTa—ti—12) ]
Xcosw(r1—11) cosw(re— ) (F O (L)F O (8)), (D1)
where, according to Eq. (1.4a),
2 0
(FO@)FO (1)) =~ / de!
T Jo
X [n(w") cosw’(t1—t:) —i£(w’) sinw’(h—t2)].  (D2)
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If one thinks of the time integration as being carried
out before the frequency integration, it is clear that
main contribution to the frequency integration will
come from the neighborhood of w'=w. Recalling that
£(v') and 7(w’) are slowly varying functions, we approxi-
mate by replacing them with #(w) and %(w), respec-
tively. Equation (D2) then becomes,?

@

17
<F<°><t1>F<°><t2>>~z[nwa(n—t2>——s(w) } (D3)

ti— 1y

We can approximate the second term on the right
side of Eq. (D2) somewhat differently than in Eq. (D3).
Instead of replacing £(w') by £(w), we replace £(w')/o’
by £(w)/w. Thus, for purposes of later time integration,

2 >
———f / do'[E(w')/w' T sinw’(li—15)
m™ Jo

2% *
~ =) /o] / 4ol sines (h—ts)
™ 0

=2i[£(w)/w]d" (1),

and

(FO(1)F O (1))~ 2{n(w)8(la—t2)
il £(w)/w]d (h— 1)} .

Equation (D4) is not only simpler to use for some com-
putational purposes than Eq. (D3), but, as has been
pointed out by Lax? yields the relationship [¢r(¥),
pr(t)]=1 exactly, while Eq. (D3) yields the same rela-
tionship approximately, the approximation being the
neglect of £/w compared to unity.

Using either Eq. (D3) or (D4), noting the relationship
between 7 and £ given by Eq, (1.5), and neglecting
terms of the order £/w compared to unity, we obtain

(gr(t)qr(ts))="2e b=t (14-2¢) cosw(ti—t2)
+’L sinw(tg—— tl)_-_l )

which is Eq. (1.21a). The other relationships in Egs.
(1.21) are obtained similarly.

(D4)

(DS)

APPENDIX E
The equation
({e4r, 4@} )= (e4r)i{{Ar,AP}), (E1)
which is Eq. (2.14) of the text, will now be derived. We
recall that

t
(ZF=2_1/2/ dllF(O) (tl)e—“’("“) y (E2)
0

and

A=¢a+{*at. (E3)
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Equations (E2) and (E3) yield

t
Ar(t)= / HLFO (1), (E4)
0
where
¢(t1)E 2—1/2[3‘6—*'9(‘—‘1)+§'*e"'“*(‘—’1)] ,
and from Egs. (2.5) we obtain
t tx 1294
A(2)(t)=/ di[/ dtII/ dtIII
0 0 0
Xe(tntintin)F @), (ES)

where

§0(tI,tII,tI H) = 2—3/2a2[§-8—iﬂ(t—t1)+§-*eiﬂ*(t—tx):]
X [ Crrt1in — @Gt LSO (£1) SO (411) .

Substituting from Egs. (E4) and (ES) into the rela-
tionship )

w0 17

(6474 @)= %" ——;(A PPA®Y,

n=0 7.

(E6)
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we have
w n o
(€ArA®y=3 — | dty-- / dl,./ dix
n=07! /o 0 0
t1 1384
X / diry / dirrp ()« - Y () (e (trtintrrn))
0 0
XEFO (L) - FOLYFO(t11)).  (ET)

From the expansion rule for expectation values of pro-
ducts of F©’s, Eq. (1.3), we obtain [using the short-
hand notation introduced in connection with Eq. (1.6)]

(1 -nIIT)y= z G-+ (G—=1)(+1)- - -n). (ES)

Now, for purposes of integration in Eq. (E7) all #s are
equivalent, that is, they may be interchanged arbi-
trarily. We can therefore write under the integral sign

A n D =n{l-- - (n—1))}n III), (E9)
so that

© ,,:n—l t t t t1 (284
(e AFADYy=1 Y / dty- - / dtn[ dth/ dlu/ diri(t) - - Y(ta){eUr,tin,tirn) )1+ - - (n—1) }nIII),
n=1(n—1)!Jo 0 0 0 0
0 in——l
=12 (A1) (4rA®), (E10)
n=1 (p—1)!
= (e 4F)i({ApA®).
Similarly, we have (A @eidry=(gi4r)yi(A DA p), (E11)
and thus obtain Eq. (E1).
APPENDIX F If we set
wr=%|optwil (F3)

We consider expressions for ({S©(t),S©(¢)}) and
({[SO(#),S®(t)]). For the sake of simplicity, we as-
sume that the source has a discrete spectrum. Let the
density matrix p describe the state of the source. Using
the relationship

(S @ (1)) =Sie™ir, (F1)
where

Sip=Si®(0),
one obtains

(SO@E)SO(t))=2" pisSieSki
ik

ﬁwjk= Ej- Ek )

X el 2i(wik—wir) (trtt2) gl/2i(wjktwin) (i—t2) |

(F2)

then it is easily seen that, according to the definitions
of Egs. (3.14),

G (k) = pi;SipSyeet/2iwit—om (bt L

G (17k) = = piiSinS piet/2ilwit—win) (trtte) L ¢ ¢,

(F4)
(F5)

the plus or minus sign depending on whether w;z+wq
is positive or negative. The diagonal elements of the
density matrix yield constants for G, and G;. These
are

Gz(+) (Z’lk) = Zpiil Sikl 2, Gz(—)(i’ik) = :EZp,','I S,kl 2 , (Fé)

with w;=|wiz|, and the plus or minus sign depending on
whether w;;, is positive or negative.



