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Dynamical Symmetries and Classical Mechanics*
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It is shown that all classical dynamical problems involving n degrees of freedom automatically possess
invariances under the 0„+l and SU„algebras, independent of the functional form of the Hamiltonian. For
spherically symmetric systems with three degrees of freedom, the existence of a vector constant of motion
is established.

INTRODUCTION

S a result of the many successful applications of
group theory to elementary-particle phenomena,

renewed attention has been given to an examination of
classical dynamical problems from a group theoretical
point of view. In this connection, the systems dis-
cussed most often are the nonrelativistic Kepler problem,
and the three-dimensional isotropic harmonic oscil-
lator. Both these systems possess rotational invariance,
but in addition are invariant under the larger groups
0(4) and SU(3), respectively. These higher symmetries
are usually called accidental syrmnetries, and for these
two systems the corresponding higher symmetries
carry over to quantum mechanics.

With respect to classical spherically symmetric po-
tentials, the following remarkable result has recently
been proved: All such Hamiltonians automatically
possess both an 0(4) and an SU(3) synunetry. ' This
has been established for either expression for the kinetic
energy, relativistic or nonrelativistic. Thus, in the con-
text of classical mechanics, the existence of these higher
symmetries has been shown to be a characteristic of all
spherically syrrnnetric potentials, and not really special
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to the Kepler and oscillator systems. Bacry et al.
(Ref. 2) have stated that invariance under the Lie
algebras of 0(4) and SU(3) should obtain for all
three-dimensional systems.

In this paper, me give an explicit construction mhich
demonstrates that the above results are valid for all
classical dynamical systems with three degrees of
freedom. Speci6cally, we shall show that, given any
Hamiltonian as a function of three (generalized) co-
ordinates and their conjugate rnomenta, we can find (i)
a set of constants of motion whose Poisson bracket
algebra coincides with the Lie algebra of the group
0(4); (ii) a set of constants of motion whose Poisson
bracket algebra coincides with the Lie algebra of the
group SU(3). The existence of these symmetries will

be related to the fact that there are three degrees of
freedom; and these results mill be generalized to
systems involving an arbitrary, but 6nite, number of
degrees of freedom. For the special class of systems
possessing spherical symmetry (but whose Hamiltonians
are not necessarily of the form "kinetic energy" plus
"potential energy") we will demonstrate the existence
of a vector constant of the motion. We will throughout
restrict attention to Hamiltonians not explicitly de-
pendent on the time.

I. SYMMETRIES OF A GENERAL
HAMILTONIAN SYSTEM

We consider a classical mechanical system described
by e canonical coordinates q;, and their conjugate
momenta, p;, i=1, 2, , tt. The Hamiltonian of the
system is a function of the q's and p's:
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Given such a Hamiltonian, we can ask whether there
cxls'ts R dynam1cal variable (tllRt 18, a fllllc'tloll of tt;
and p~) canonically conjugate to II, namely a variable
Q(tt;,p;) obeying the equation

&II BQ BH 80
(s,n)—= Z( — )=i (2)

and whether H and 0 can be chosen as the first pair
of canonical variables of a new canonical set. ' The
answer to this question is in the afhrmative, as is clear
from the following theorem concerning functions of
2N canonical variables g;,P~4:

Tllcol'crll: Glvc11 2v+x ((2s) 111dcpclldcI1't functions

The functions II, Q, Q;, I'; will all be functionally
independent. Before returning to the case I=3, we
note two facts. (i) For any system with Is degrees of
freedom, there always exist 2e-1 time-independent
dynamical variables (including the Hamiltonian), which
are constants of the motion, and also independent
functions'; (ii) since any Hamiltonian can be made the
first coordinate of a canonical set of variables, and
since the transition from one canonical set to another
is by de6nition a canonical transformation, any two
Hamiltonians involving the same number of degrees
of freedom are (at least locally) canonical transforms of
one another. '

Restricting ourselves to the case n=3, we have the
additional independent constants of motion.

(~(IV',P')" 0.(V',P'),
41(9',P') "0.(V',P') "4.+.(V',P'),

obeying the Poisson bracket relations:

(3)

Big Bfp 8$ Bfp

rig; BP; BP; r)g;

(P,@p)=0 n,P ~& v+x

8-Ap)=~-p o,P&v

= 0 a&v, v&P&v+x

one can always And additional functions

4'+IR', P')" 4-(np'),
~"(~',p')" ~-(~',p'),

H-,A) =o
(4-A p}=o,
(lp,pp}=8 p, n,p&II

We remark that the 2e functions lt, p so determined
will be functionally independent, and the passage from
the variables q;, P, to the variables 1P, Q constitutes a
canonical transformation.

Let us apply this theorem to the case v =0, x=+1.We
choose the (negative of the) Hamiltonian II as the
function @~I=—QI(g, p) of the theorem. Then we are
assured of the existence of additional functions 0,
Q» Q» ' ' '

~ Qs—» I » I» ' ' '
~ &s—I of 5~ P~~ Obeying the

Poisson bracket relations':

Qll Q»I» I2 (g)

and every other constant of motion is some function of
II, Q;, and P,. We will now show how to construct
generators for the Lie algebras of the groups 0(4)
and SU(3) out of functions of II, Q;, and I';.I

A. Generators of O(4)

The Lie bracket relations for the group 0(4) are

{L;,L;}= egsLs,

{L;,A;) =e;;IAs,

(A;,AI}=evsLs, ij,k=1,2,3

We seek functions of q;, p; for the generators L;, A;,
and interpret the brackets on the left-hand side of (9)
as Poisson brackets. The L; generate an 0(3) sub-
algebra of the 0(4) algebra, while the A; transform as a
vector with respect to this 0(3) algebra. It is more
convenient to write (9) in the following form:

M,= ,'(I.;+A;), Ã;-= ,'(L; A;), -—

(II,Q}=+1,
(&,Q,) = {II,I';}=(Q,Q;}= {Q,P,) =0, s&tI 1—
(Q Q)=V' I'}=o
(Q;,I';}= 8;;, s,j&I 1. —

3 All these considerations are of a local nature; for instance, if
there was a point in phase space where II had an absolute mini-
mum, and if Eq. (2} were to remain valid in the neighborhood of
that point, we expect 0 to become singular or unde6ned there.

4See, for instance, I. P. Kisenhart, Con@NNONs Groups of

(M;,M, )= e,rsMs, (Xs,X;}= eosXs,

{M;,ItT,}=0,

TrulsfmmaHon (Dover Publications, Inc., New York, 1963},
Chap. VI, pp. 281-291.' Strictly speaking, all this is possible as long as we are not in a
region of phase space where IJ is stationary, i.e., where all the
derivatives 8H/pg;, BZ/pp; vanish. We will explicitly exclude this
possibility.

6 K. C. G. Sudarshan, University of Rochester Report No. NVO-
9680, 1961 (unpublished}. In this connection it must be remem-
bered that the most general canonical transformation consists of
an arbitrary change of variables from one set of coordinates q„
p, to a new set Q„E„the latter being arbitrary functions of the
former subject only to the requirement that the Poisson brackets
of the new coordinates with one another have the standard values.
Under such a general canonical transformation, the possible
values of an old coordinate and the corresponding new one may
not be the same, as is clear from the transformation

La P:(V'+P'), «u '(V/P)-j
which is familiar from the theory of the harmonic oscillator.

'I %e concern ourselves only with constructing realizations of
Lie algebras, not of the Lie groups. Even when we talk of invari-
ance under the 0(4} group, for example, we really intend invari-
ance under the algebra.
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B. Generators of SU(3)

The Lie bracket relations for the generators of SU(3)
are

i{&,';&—2'}= b2'-4,' 6,'&2'—,
3

(A &)*=A.' P A '=0. (12)

A particular solution for the A;~ may be obtained as
follows: Define the variables

a;=(P, iQ;)/v2, a,*=—(P,+iQ, )/v2, i=1, 2

2

Ã=Q a~ a~.
i=1

(13)

The a; obey the Poisson bracket relations

{a,,a,}=0, {a;,a;*}= —i8,,
Set

A,1'= a, *a,—X/38,', ij=1,2

A,'= (X—1V) '"a;, A 2' ——P.—E)"'a,*,
A3' ——-', X—E.

(14)

Here X can be chosen to be any (real, positive) function
of the Hamiltonian H. The Poisson bracket relations
(12) can now be checked to be true, by using the basic
relations (7).

We have thus shown the existence of both 0(4) and
SU(3) symmetries for any system with three degrees

H. Bacry (Ref. 1);E. C. G. Sudarshan and N. Mukunda (Ref.
1); N. Mukunda, L. O'Raifeartaigh, and E. C. G. Sudarshan,
Phys. Rev. Letters 15, 1041 (1965); E. C. G. Sudarshan, N,
Mukunda, and L. O'Raifeartaigh, Phys. Letters 19, 322 (1965).

making explicit the 0(3)&0(3) structure of the 0(4)
algebra.

A particularly simple solution for 3f;, E, as functions
of P, Q1, Q2, P1, and P, is the following:

3E1——(j1'—Q1')' ' sinP1,

3f2 (j12———Q12) '~2 cosP1,

N2=Q1,

ilT1—(g22 Q 2) lt2 sinP2,

il 2= (j2 —
Q2 ) COSP2

E3——

Here we may choose j&' and j&' to be any two real
positive functions of the Hamiltonian H. That the
expressions (11) obey the Poisson bracket relations
(10) may be verifred by using the basic Poisson bracket
relations of Eq. (7).

An algebraically different-looking solution for the
generators of 0(4) will be described later on.

of freedom. The solution (15) for the SU(3) generators
can be thought of as the generators of the non&mari-

arsce group' SU(3) for an isotropic two-dimensional
harmonic oscillator in the variables Q1, Q2, P1, and P2.
While the generators for the 0(4) algebra given by
Eq. (11) are a particular solution to that problem, one
could have proceeded in a slightly different fashion. One
could consider a Hamiltonian for the two-dimensional
Kepler problem in the variables Q1, Q2, P1, and P2, and
one could then construct the generators of the non-
i22oaria22ce grouP 0(4) for this system. [Note that
though in both the SU(3) case and the 0(4) case one
considers the noninvariance group for an auxiliary
Hamiltonian in the variables Q1, Q2, P1, and P2, one
ends up with generators of i2221aria22ce groups for the
original Hamiltonian, since all these generators are
functions of Q1, Q2, P1, P2 (and P), alone]. This
method of construction of invariance groups permits an
immediate extension to systems with any number n of
degrees of freedom. According to the theorem quoted
earlier, there are in the general case the 2n-2 additional
constants of motion Q1 P„1. By considering an
(u —1) dimensional isotropic harmonic-oscillator Hamil-
tonian in the variables Q1 P 1, we could construct
the generators of the noninvariance group SU(22) for
this system. Similarly, by considering a Kepler-type
Hamiltonian in (22—1) dimensions in Q1 P~ 1, we

could construct the generators of the noninvariance

group 0(22+1) for this system. As before, these gener-
ators give rise to ineariance groups of the original
Hamiltonian H. Thus we reach the conclusion that all

systems with n degrees of freedom certainly possess
invariance under both the SU(22) and the 0(22+1)
groups. (Strictly speaking, we have only realizations of
the I.ie algebras of these groups by means of functions
that are constants of motion; in general it does not
immediately follow that this can be used to generate
Gnite canonical transformations yielding a realization
of the group).

It appears plausible from the above that there is a
relation between the number of canonical degrees of
freedom, and the Lie algebras for which we may obtain
realizations in terms of functions of those canonical
variables. For example, we can show that a Hamiltonian
system with three degrees of freedom cannot possess
invariance under the groups 0(5) or G2. (These algebras,
with 0(4) and SU(3), are the only four semi-simple
Lie algebras of rank two. j More details on this and
related points will be discussed elsewhere. '

II. SYSTEM WITH SPHERICAL SYMMETRY

We now consider Hamiltonians involving three
degrees of freedom, and which are spherically sym-
metric. We denote for definiteness the Cartesian

' N. Mukunda, J. Math. Phys. (to be published); P.Chand, C.L.
Mehta, N. Mukunda, and E. C. G. Sudarshan (to be published).
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coordinates and momenta by q;, p;, respectively. In this
case, we can prove on general grounds the existence of
three constants of motion which transform as a vector
under rotations, and are linearly independent of the
angular momenta. No assumption is made for the
functional form of the Hamiltonian beyond its ro-
tational invariance; for instance, it need not have the
form

p'/2m+ V(q)

quantities:

LLi tanip3+LiL3E2=-
L(L'—L32) 'i2seciP3

(L2 L 2) 1/2

K3=— cost/i~.

LL2 tantp3+LiLS
E]

L(L'—L32) '"sec/~

(23)

or the relativistic analog of this expression. In previous
work, the existence of such a vector constant of motion
for spherically symmetric potentials was used as a
starting point for the construction of the symmetries
0(4) and SU(3) of the Hamiltonian. '

%e note 6rst that for a spherically symmetric B, we
can choose the canonically conjugate variable 0 to be
likewise spherically symmetric. (In practice this may be
achieved by starting with any variable canonically
conjugate to H, and then averaging it over the rotation
group. ) The generators of rotations are

It is clear that the E s are constants of the motion.
In addition one 6nds

(4,&;)= r')Ar,
(E;,E;}=0,

Z'=1, L K=O.
(24)

Thus the IC; transform as a vector under rotations, and
together with the angular momenta L; they generate
the algebra of the Euclidean group E(3) in three
dimensions.

&ijkqjpk

and obey the Poisson bracket relations

(L;,L;}= e;pLi, .

In addition we have

(18)

(L,,H}= (L;, 0) = (L;,L }=0,
L'= Li2+L2'+ La'.

(19)

Now consider the five functions of q,p, :

Z, 0, Lg, tan '(Li/L2), L. (20)

Ke may use them in the theorem in Sec. I, taking the
case v= 2, f(:= 1, m=3, and setting

i' H, i' Ls, —— ——
Ci ——Q, C2 ——tan '(Li/L2), C'3=L. (21)

One may verify that all the conditions of the theorem
are satisfied; therefore the existence of a variable
iraq(q, p) canonically conjugate to L is guaranteed. It
obeys the Poisson bracket relations

QI. CONCLUSIONS

It has been shown that all classical mechanical
problems involving three degrees of freedom automati-
cally possess both O(4) and SU(3) symmetry. For
centrally symmetric systems, a vector constant of
motion (distinct from the angular momentum) has
been explicitly constructed. It seems clear that these
facts are purely consequences of rather detailed proper-
ties of Poisson brackets which are the Lie brackets
relevant for classical mechanical realizations of Lie
algebras. Therefore, it is unlikely that these sym-
metries survive when one makes the transition to
quantum mechanics, except for some special systems.
It would be interesting to explore the extra conditions
that must be imposed on a classical Hamiltonian in
order that some of the higher symmetries carry over to
the quantum-mechanical problem. It is also interesting
to examine under what circumstances a Poisson bracket
realization of a Lie algebra could lead to a realization of
the corresponding group by 6nite canonical trans-
formations, and whether this is related to the quantum-
mechanical problem.
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