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We have made a detailed study of the time evolution of the distribution function f(g,1,) of a labeled
(test) particle in a one-dimensional system of hard rods of diameter a. The system has a density p and is in
equilibrium at ¢#=0. (Some properties of this system were studied earlier by Jepsen.) When the distribution
function f at =0 corresponds to a delta function in position and velocity, then f(g,s,f) is essentially the
time-displaced self-distribution function f,. This function f, (which can be found in an explicit closed
form) and all of the system properties which can be derived from it depend on p and @ only through the com-
bination #=p/(1—pa).In particular, the diffusion constant D is given by D~1=lim,[{ (s) ] 1= (21rﬁm)1/’n
where |p(s) is the Laplace transform of the velocity autocorrelation function y (¢) = (v (£)v). An expansion of
[# (s)]7 in powers of %, on the other hand, has the form 3 Bn!/s"1, leading to divergence of the density
coefficients for />2 when s — 0. This is similar to the divergences found in higher dimensional systems.
Similar results are found as well in the expansion of the collision operator describing the time evolution of
f(g,»,1). The lowest-order term in the expansion is the ordinary (linear) Boltzmann equation, while higher
terms are O(p%1). Thus any attempt to write a Bogoliubov, Choh-Uhlenbeck-type Markoffian kinetic
equation as a power series in the density leads to divergence in the terms beyond the Boltzmann equation.
A Markoffian collision operator can, however, be constructed, without using a density expansion, which, e.g.,
describes the stationary distribution of a charged test particle in the system in the presence of a constant
electric field. The distribution of the test particle in the presence of an oscillating external field is also
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found. Finally, the short- and long-time behavior of the self-distribution is examined.

1. INTRODUCTION

HE nonequilibrium properties of a macroscopic
system ‘‘close” to equilibrium, such as linear
transport coefficients, may be determined from the time-
displaced distribution functions! (t.d.f.) (giving the
probability of finding particles in specified states at two
different times) in a manner similar to that in which
the equilibrium properties are determined from the
equilibrium distribution functions? (e.d.f.). Further-
more, some time-displaced distribution functions may
be obtained ‘“directly” from neutron-scattering experi-
ments and from molecular-dynamic computations.?
This, combined with the absence of any partition-func-
tion formalism for nonequilibrium systems, makes these
functions of central importance in the study of non-
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U. S. Air Force Office of Scientific Research Grant No. 508-66 at
Yeshiva University and in part by the U. S. Atomic Energy Com-
mission Computing and Applied Mathematics Center, Courant
Institute of Mathematical Sciences, New York Umver51ty, under
Contract No. AT(30-1)-1480 with the U. S. Atomic Energy Com-
mission and Grant No. AF-AFOSR-945-65 with the U. S. Air Force
Office of Scientific Research.

1L. Van Hove, Phys. Rev. 95, 249 (1954). Formal definitions for
classical systems, the only ones we are concerned with here, are
given in Appendix A.

2 M. S. Green, J. Chem. Phys. 22, 398 (1954); R. Kubo, J. Phys.
%gc ;aFan 1)2 570 (1957); R. Zwanzxg, Ann. Rev. Phys Chem.
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A Rahman, Phys. Rev. 136, A405 (1964). This paper also con-
tains some mterestlng approx1mat10ns for some t.d.f. L. Verlet (to
be published).
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equilibrium processes. Now, while the prescriptions for
determining the t.d.f. are as precise as those for the
e.d.f. (see Appendix A), their theoretical analysis is far
more complex. There are no virial expansions or approxi-
mate theories for the t.d.f. comparablet to the virial
expansions and approximate integral equations which
have proven useful for the e.d.f. The questions raised
recently®:® concerning (a) the divergencies in time of the
coefficients in the density expansion of various kinetic
equations and (b) the nonanalyticity in the density p of
transport coefficients are related directly to the proper-
ties of the t.d.f. and indicate their possible complexities.

In order to understand more fully the nature of these
divergences in the virial expansions and to develop a
feeling for how an approximate theory of the t.d.f. might
go, we have made an extensive study of the one solvable
fluid model.” This is a classical system of one-dimen-

¢ For some approximate theories, see G. H. Vineyard, Phys.
Rev. 110, 999 (1958) J. M. J. van Leeuwen and S. Yip, sbid. 139,
A1138 (1965), . G. de Gennes, Physica 25, 825 (1959); K. S.
Singwi, Phys. Rev. 136 A969 (1964); H. Mori, Progr. Theoret.
Phys (Kyoto) 34, 399 (1965)

5J. R. Dorfman and E. G. D. Cohen, Phys. Letters 16, 124
(1965); J. Weinstock, Phys. Rev. 140, A460 (1965); R. Goldman
and E. A Freeman, "Bull. Am. Phys. Soc. 11, 531 (1965); J. V.
Sengers, Phys. Rev. Letters 15, 515 (1965); K. Kawasaki and I.
Oppenhelm Phys. Rev. 139, A1763 (1965).

M. J. van Leeuwen and A. Weyland, Phys. Letters 19,

562 (1965) This work is most closely related to ours as it treats
the diffusion of a single particle moving in a random array of fixed
spheres; see, however, Appendix C.

7The exact t.d.f. for a harmonic crystal are given in Ref. 1.
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sional hard rods of diameter a. A beautiful formulation
of this problem for the case where ¢=0, i.e., impenetra-
ble points in one dimension, was given by Jepsen,® who
also computed explicitly some properties of this system.
A more general formulation, especially applicable to
systems with finite diameters, is given in Appendix B.
For many purposes, however, adding a finite diameter
does not introduce any new complications; it merely
requires the replacement in certain expressions of the
actual volume per particle p~! by the reduced volume
p1—a,lie., p— p/(1—pa)=n. (We are always speaking
here of the limit of an infinite system with fixed p.)

This system of hard spheres is special, or pathological,
in that its whole dynamics consists of pairs of neighbor-
ing particles interchanging velocities at each collision.
Hence the fraction of particles at a given velocity is con-
stant in time. Furthermore when ¢=0 all properties of
the system which are independent of particle labeling,
i.e., functions which are symmetric in all particle coor-
dinates and velocities, are identical to those of an ideal
gas where the particles pass each other without inter-
actions. It is only the distributions of specified (labeled)
particles which exhibit normal kinetic behavior, i.e.,
diffusion and approach to equilibrium. This is true in
particular (see Appendix B) of the conditional self-dis-
tribution function f,(g—¢, v, {/v") which will be our
primary concern here. fi(¢—¢’, v, ¢/v") gives the proba-
bility density for a particle, in an equilibrium system, to
be at position ¢ with velocity v at time ¢ when this par-
ticle was known to be at ¢’ with velocity " at t=0. The
behavior of f; is identical to that of a single impene-
trable particle moving in an ideal gas of particles with
the same mass and density # (a special case of Rayleigh’s
problem done exactly).

Integrating f,(¢—¢’, v, t/v") over ¢ and averaging over
¢’ (the latter being unnecessary for the uniform system
considered here), we obtain the conditional velocity
distribution function

oot/ ) = / Fgt/v)dg. (L.1)

Multiplying %,(v,¢/") by ko(v’) ,the equilibrium velocity
distribution function?

ho(v) = (27/Bm) 1% exp[—Bmv?/2] (1.2)

yields the time-displaced self-velocity distribution func-
tion. This may be used to compute the velocity auto-
correlation function

Y(O)=(o(t)v)y= / hs(0,t/9Vho(v o' dvdy’  (1.3)

which may be obtained from Jepsen’s result by the

8D. W. Jepsen, J. Math. Phys. 6, 405 (1965). [For some earlier
work on this system see also H. L. Frisch, Phys. Rev. 104, 1
(1956).]

® For this gas any velocity distribution function is stationary and
all our general results apply to an arbitrary %(v). For explicit re-
sults with a non-Maxwellian %,(v) see Sec. 7.
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transformation p — p/(1—pa)=n. The self-diffusion co-
efficient D is then found immediately to be®

- f " y0di= tim 46

_.2 ;

where {¥(s) is the Laplace transform of ¢(f), which de-
cays asymptotically as 3. D may also be obtained from
the conditional positional distribution function

ns(q,t)—(4nDt)~1/2 exp[—q%/4Dt], as

It is seen from (1.4) that, unlike the situation in two
and three dimensions,5-¢ D=1 (or pD) is here an analytic
function of p. This is so despite the fact, shown explicitly
in Sec. 3, that an expansion of {~1(s,p) in powers of p has
the form

¢“(s,p)=ﬂmS{1+é B‘[(T::%;;)Tm]l} (1.5)

with the B; pure numbers. It is seen from (1.5) that the
coefficients of p! for /> 2 are even more singular here, as
s— 0, than they are in two or three dimensions (where
the singularity is logarithmic in s). This shows that
small s (or large t) divergences of the kinetic virial co-
efficients do not necessarily lead to a nonanalyticity of
the transport parameters.

A similar, related, result is found when we consider
the kinetic equation describing the time evolution of the
distribution f(g,,f) of a test particle in the system, i.e.,
a test particle with the same properties as the other par-
ticles of the system,

{— oo,

fgnd)= / Fa=¢, 5, Y)W 0)dgd’, (16)

where f(g,v,0) is arbitrary, and the rest of the system is
in equilibrium at /=0 with respect to the distribution of
the test particle.

The time evolution of f(g,v,t) will satisfy a generalized
linear kinetic equation of the form?®-1

af(q,v f) Bf—/ dt’/dq /dc

XB(q_q,’ t_t,; v, C)f(qucyt,)dc- (17)

The collision operator B, which again depends on 7, may
be found “explicitly”” for this model. Equation (1.7) will
lead to the velocity part of f(g,»,t) becoming Maxwellian
as {— o [the coordinate part tending to a uniform
value which may or may not be zero depending on the
normalization of f(g,»,0)]. Also B will decay, albeit non-
exponentially, as {— . An expansion of B in powers of

10 7, L. Lebowitz and P. Resibois, Phys. Rev. 139, A1101 (1965)
[see their Eq. (2.26)].
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n will however lead to divergences. Thus considering
for simplicity only the velocity part of B,

B(t—'t,; v, C)=/qu(q_q,7 t_tl; 7, 6) ’ (18)

which is all that enters when f(g,2,0) is spatially uni-
form, and expanding it in powers of » yields

0
B(@—1t;v,¢c,n)=> n'Bit—t'; v, c)
=1

=nd(t—1#) By (v,c)+n2B2(v,0)+---. (1.9)

The first term corresponds to the linear Boltzmann
equation while the second term is independent of {—¢’
[the term of order #! will be proportioanl to (¢—¢)*2].
The kinetic equation will thus not be Markoffian beyond
the lowest-order term in # and any attempt to obtain
an approximate Markoffian equation valid on some long
time scale in the manner of Bogoliubov!! will lead to di-
vergences similar to (but stronger than) those found in
higher dimensions.?'® More precisely, if we try to put our
kinetic equation (using the spatially homogeneous case
for simplicity) in the Bogoliubov, Choh-Uhlenbeck!?
form appropriate here, i.e., we have the collision term
depending only on the value of f at time ¢,

af(a)) '
Lg—)zgl nt / dc /0 By(t'; v,c)dtf(c,t)
~3 f B/ 00 f(eh)de,  (1.10)
=1
then
%1_210 B/ (¢; v,c)=0(@"1). (1.11)

We may, on the other hand, use the above procedure
without making any expansion in the density, writing

f—]:(%2'::/U(z),c)f(c,zf)dc, (1.12)
where ,
U(v,c)=lti£-/ B(; vc)dt . (1.13)

The operator U is linear in #, different from By, and
(1.12) leads to f(v,t) approaching ko(v) “monotonically”
as t— o, Equation (1.12) yields the correct diffusion
constant D while the Boltzmann equation does not
(see Ref. 14).

UN. N. Bogoliubov, Studies in Statistical Mechanics (North-
Holland Publishing Company, Amsterdam, 1962), Vol. I, p. 5.

25, T. Choh and G. E. Uhlenbeck, work done under U. S. Navy
Contract No. Nonr-1224 (15), University of Michigan, 1958
(unpublished).

13 The form appropriate here would be obtained by starting
with a mixture of particles of species « and 8 with densities p, and
pp=p (both species being hard rods of diameter a). The kinetic
equation for the one-particle distribution function of species « in
the limit po— 0 when species g is initially in equilibrium would
then coincide with (1.7).

14Tt is to be noted that D and other properties of this system
““coincide” with those given by the Enskog theory of hard spheres.
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The failure of the Bogoliubov method for this prob-
lem is no surprise since its underlying idea, the existence
of two time scales, is not valid here, The only time scale
available here is the mean free time between collisions
7m~ (p{| ] ))~. The shorter time scale corresponding to
the duration of a collision, 7,~a/(|v| ), never enters here
since ¢ and p only appear in the combination #, i.e.,
there is only one length, »~%, in our problem. It is there-
fore possible that in two and three dimensions the
operator corresponding to U in (1.13) will give a valid
description of the evolution of f(»,t) for £>..

2. THE SELF-DISTRIBUTION

The self-distribution f,(g,v,t/3") may be obtained
either by Jepsen’s method or from our general method,
given in Appendix B.

One finds that for ¢=0 (when @50, p is replaced by
7 everywhere)

1
fs(q,v,t/v’)=A(v,t)ﬁ(v—v’)é(q-—vt)-l-pho(v);

X / Fip,0,4/1) exp(iLelg—o/1) — e(si—g)T)do

=ho(v)L(g,t; v0'). (2.1)
Here €(2) is a step function
e(z)=0, 2z<0
(2.2)
=1, 2>0,
F(to,0,v) = exp{—tp[ (1 —cosf)u(v)—iv sind ]}, (2.3)
u()= / |v—w]| ho(w)dw , (2.9
and
1 2r
A, )=— / F(tp,0,v)d0o
2w Jo (2.5)

A I CTROS O

where I is the zeroth-order modified Bessel function of
the first kind. The function L is symmetric in v and o/
and satisfies the reflection symmetry

L(%t; 'u,'u')==L(—q,t; -9, —v,) . (26)

[Note that F(¢p,0,v) and A (v,) depend on ¢ only through
the combination #p, so that any expansion in p will have
infinite coefficients as ¢ — o.]

The quantity 4(z,£), which coincides with 4 ,0(1,f) of
Jepsen, is the probability that a particle having velocity
v at ;=0 will also have velocity v at time ¢, either because
it had no collision up to £ (this has probability e—t##(»)) or

In that theory D is obtained from its value for a dilute system by
replacing the density p appearing in the latter by pg(a), where g(a)
is the value of the equilibrium radial distribution function at con-
tact, which is here equal to (1—pa)~. For the one-dimensional
system considered here, the diffusion constant obtained from the
Boltzmann equation is off by 16% [J. M. J. van Leeuwen and A.
Weyland (private communicationgj.
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because its last collision before ¢ was with the neighbor
it initially collided with, and the latter had not yet col-
lided with a different particle (giving rise to the factor
Iy).

Taking the spatial Fourier and Laplace time (FL)
transform of f, yields [see Appendix B, Eq. (24)]

K(k,s; v,c)= / dte—*t / dge™f,(q,,t/c)
0 —o0
=A@, s—ikv)B(v—c)—l—pko(v)/ dw

X{pp(w)+ e[ (v—w) (w—c) J(s—ikw)

+owle(v—w)— e(w—c) LA (w, s—ikw)]*
=ho(v)L(k,s; v,¢) , 2.7

A(v,5)=[p2?+2spu(v)+ 52T/ (2.8)

is the Laplace transform of 4 (v,f) and L(%,s; v,c), the FL
transform of L, is symmetric in v and c.

The Laplace transform /4(s; »,c) of the conditional
velocity distribution function (1.1) may be obtained
from (2.7) by setting £=0:

7(s; v,c)=K(0,s5; v,¢) .
It is now readily verified that as s — 0,

7(s; v,6) =ho(v)/s+o(s™Y)

where

(2.9

(2.10)

which implies

%1_210 h(v,t/v)=ho(2'). (2.11)

A more detailed analysis of the asymptotic form of f,
is given in Sec. 7.

3. VELOCITY AUTOCORRELATION FUNCTION

The Laplace transform {(s) of the velocity auto-
correlation function ¢ (f) may be obtained, after some
manipulation, from (2.7)-(2.9) in the form

¥(s)= / v2h0(0) 4 (,5)dv

% W@ — o D)SLAGs) T (3.1)

—00

= f i v2ho(v) A (v,5)dv
—2(mB)~"2n / i sho*(v)[A (v,5) J*dv

—o0

(3.1)

for a Maxwellian distribution.

Taking now the limit s— 0 we obtain the diffusion
constant D given in (1.5), the first integral giving 2D
and the second (— D). [In evaluating the second integral
in (3.1) in the limit s— 0, %¢(v) and u(v) may be set
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equal to their values at ¥=0.] D! thus has the form
Dl=an(Bm)'/?, 3.2)

where a=(27)1/2 is a pure number. The general form
D! could have been deduced without any computation
(except for the numerical value of & which could have
been also 0 or =) since for the case a=0 there is no di-
mensionless constant on which a could depend, and we
showed earlier that when 40 we simply replace p by
n. In higher dimensions (hard disks or hard spheres of
diameter ¢) we will generally have

D'=pa(Bm)'*,(poe?) , 3.3)

where »=1, 2, 3 is the number of space dimensions
considered. It has been suggested that £,(y) contains for
v=2, 3 a term of the form %! Iny. This conclusion is
based, since £,(n) cannot be evaluated exactly, on par-
tial summation of diagrammatic expansions occurring
in the generalized transport equation (1.7) for f(g,,).
When {1 is computed from this equation® in the form
of a density expansion,

¢—1<s,p>=vﬂms[1+§o BE)ee)]  (34)

(the zeroth-order term corresponding to the unhindered
motion of an isolated particle, p=0), it is found that
bi(s) diverges as Ins for I=», =2, 3. Partial resumma-
tion of this expansion then results in the Inp term in
£,(0a’) mentioned earlier.

Let us examine now the behavior of J~1(s,p) for our
one-dimensional model. From the dimensionality argu-
ment and from Eq. (3.1) we have

Fi(s.)= (ﬂmS){H- £ B[(T—T:)%m?]} (35)

with the B; pure numbers,
By=4/y/m, .

As s — 0 the coefficients of all p?, for 1>2, will diverge
as s*%. These divergences do not however have any
effect on the analyticity of D—1(p)=1lim,. o (s,p). All
the divergences indicate, in this case at least, is that the
approach of py(f) to its asymptotic form is not uniform
in the density. Indeed an inspection of (3.5) shows that
the only way for the coefficients in the density expansion
of Y~(s,p) to remain finite as s — 0 is for all the B; to
vanish for />1. This would correspond to ¥(f) having
an exponential decay, Langevin type, ¢(f)=(?)
Xexp[—¢B1p/(Bm)1/?]. For short times, this form of
¥(?) is exact, ¢ being linear in ¢ rather than quadratic,!
because of the discontinuity of the interparticle poten-
tial. Indeed, an explicit calculation of ¥ (¢) shows almost
perfect coincidence with the exponential form, devia-
tions occurring for ¢2>4(8m)/2/ Bip where the exact ¥ (t)
becomes negative and very very small (see Fig. 1 and
the discussion in Sec. 7).

(3.6)
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4. KINETIC EQUATION

We now consider the time evolution of the distribu-
tion function f(g,2,) of a test particle, as given by Eq.
(1.6). It follows from the symmetry of L(qt;v,0')=
f:(g,v,t/v")/ho(v) and from the normalization

/fs(q,v,t/v’)dqdv= 1

that whenever f(g,9,0)=Cho(v), where C is a constant,
then f(g,v,t)=Cho(v), independently of ¢ Thus, the
Boltzmann distribution is, as it must be, a stationary
state of the stochastic process represented by the transi-
tion probability f,(g,v,¢/c). Furthermore, it follows from
the results of Sec. 7 that as {— « the velocity part of
S becomes Maxwellian and the spatial part tends to uni-
formity. The Boltzmann distribution is therefore the
unique stationary state of this process.

The time evolution may be expressed by means of a
collision operator B, defined by Eq. (1.7). To obtain an
explicit form for this collision operator, we first take
the FL transform of Egs. (1.6) and (1.7), using (2.7):

f@%ﬂ=Kﬂ%MD=/K@mudﬂMwﬁm 1)

(s—ikv)f= f(k,0,0)+BF, (4.2)

0f(g,0,0)
ot

- 6(7)'— v,)f(l) (Q7v1q+17)l,t) - e('v/—' 7))f(—l) (q,'u,q_,v',t)} .

where K and 8 are operators in velocity space. Compar-
ing (4.1) and (4.2), we have

B=s—ikv—K™, (4.3)

where K™ is the operator inverse of K, and s and kv are
diagonal operators in velocity space. We now rewrite
K and 9B in the form
K(&,s; v,0)=A (v,5—ikv)[8v—c)

+ho(0)D(k,s; v,0)A (¢, s—ikec)], (4.4)
Bk,s; v,c) =[s—ikv—A(v, s—1ikv) ]8(v—c)

+h0(1))H(k,S; 7)76) ’ (45)

where D is known explicitly from (2.7). Equation (4.3)

then implies the integral equation for H (which is sym-
metric in the velocity variables)

H@mmd=D@mmd—/D@mmﬂ%W)

XA, s—iky)H(k,s; v',c)dv'. (4.6)

The kinetic equation describing the time evolution
f(g,v,t) may also be obtained more directly (or at least
more physically) from the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy. This gives, for
our case, where collisions have the simple effect of inter-
changing velocities,

of
+va—= /dvl | v_vll {e(v,_ﬂ)f(l) (q,v’,q+,v,t)+e(v—v’)f(._l) (q’v/ﬂ—-)v;t)
q

4.7)

Here fa)(g,v,¢',v,t) is the joint probability density of the test particle (at ¢ and v) and its neighbor to the right
(at ¢’ and o) and ¢4 is the point ¢+ a corresponding to the particles in contact. f( 1) similarly describes the joint
distribution of the test particle with its left neighbor.!® (We take here >0, and we shall omit the subscript on ¢
from now on.)

15 While we have not seen (or given) an explicit derivation of (4.7), it appears self-evident; see e.g., H. Grad, in Handbuch der
Physik, edited by S. Fliigge (Springer-Verlag, Berlin, 1958), Vol. XII, p. 205.
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Writing f«(g,2,9,v',f) as a linear functional of f(g,,t)
fo(gugH)= /0 z d / dg'dwd(g—q', i—1';v, v, w) f(¢'sw,t')
=/ddt’/dq'dw/dq"¢(q—q’, i—t'; 0, v, w)f:(¢'—q"wt /c) f(g",c,0)dc  (4.8)
0
the Fourier-Laplace transform of ¢ has the form
(k55 v, w)= / Fay(Bys,0,0" /o) K2 (kys; cw)dec. (4.9)

Here fy(g,9,4’,v',t/c) is the value of the joint distribution function of the test particle and its right neighbor when
the test particle is initially at the origin with velocity ¢; K- is the previously defined operator inverse of K. In
terms of &, the collision operator B has the form
%(k,s; v,c)=/dv’['u——-'v'l {e(v’—’v)&f(k,s; v’,v,c)+e(v-—1)’)¢7(—k, s; —v', v, —¢)

_[e(v'_vl)(s(k’s; 3,0’,0)+ é(”,—'v)‘;(_ ky 55—, -7, _6)]}=%+(kss; 'u,c)—%_(k,s; 0,¢) (410)

with B, (B_) corresponding to collisions which scatter the test particle into (out of) the velocity range (v, 24 dv).
In deriving (4.10) use was made of the reflection invariance of our system.
An explicit calculation of f)(%,s,2,2'/c) yields

f~(1) (k,S,U,?)’/C) = 6(1)—- ‘U/){pho('U,)K(k,S,'U/C) +pho(ﬂ) W(k,s,'u',c) } + e(v'— v) {pho(v)K(k,Sﬂ)’/C)+pho(‘v,) W(k)s)v’c) }7
(4.11)

where the first term in the curly brackets corresponds to having no correlation between the particles entering a col-
lision and

W (k,s; v,c)=T(v, s—ikv)A (v, s—ikv)6(v—c)+pho(v)

X/ dw { e(v—c) e[ (v—w) (w—c) [ow— (s—ikw) ]+ e(v—w) e(c—w)[ 2T (w, s—ikw)— 1 Jp[ u(w)+w]
- , Lou(w)+s—ikw]
pLu(w)—w]

Here I'(s—ikw, w)A (w, s—ikw) is the FL transform of

[A(w, s—ikw)—pu(w)+s—ikw T (w, s—ikw) | A3(w, s—ikw). (4.12)

1 2T
- e~F (tp,0,9/t)d9
2w Jo

where F is defined in (2.3),
T'(s— tkw, w) = [pu(w)+ (s— ikw)— A~ (w, s—ikw) }/p[u(w)—w]. (4.13)

It may be readily verified that I and W have expansions in p (or #) beginning with terms of 0(p).
Combining (4.11) and (4.9) yields [using (4.3)-(4.6)]
B(kys; 0,0',0) = e(v—0"){pho(t')8(v— ) +pho(0) E(k,s; ' 16) }+ (v’ 0) {pho(2)3(v'— €)+pho(v) Ekys55 v,0)},  (4.14)
with
W (k,55 v50)

E(k,S; v,c)=———————/W(k,s; v,P)ho(P)H(k,S, P’G)dp’ (415)
Alc, s—ikc)

where H was defined in (4.5)—(4.6). The collision operator may now be written in the form
B(kys5 ,6) = {pho(2) |9—c| +3 E(k,s; 0,0)p[ () —v]+5 E(—k,s; —v, —c)p[u(®)+v]}
- {pu(v)ﬁ(v—c)-l—pho(v)l:/ dv' (v—2")E(k,s; v’,c)+/ (' —0)E(—k,s; =7, c)dv']} =B,—B-, (4.16)

-0
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where we have used the relations

3u@)—r]= / ('=0ho()dv’, F[u()+r]= / v (vr—0")ho(v)dv’. (4.17)

—00

It is interesting to note from (4.16) the form of the singular (delta‘function) terms in the collision operators, B
and B_, whose combination gives the first term on the right side of (4.5).

B (k,s; v,6) = [pu(v)+ (s—ikv) — A~1(v, s—1kv) 16(v—c)+ (nonsingular terms),
B_(k,s; v,c)=pu(v)d(v—c)+ (nonsingular terms) . (4.18)

The existence of the delta function in the B, term is a consequence of our system being one dimensional. This gives
a finite probability to the test particle regaining its initial velocity after sequences of three collisions, e.g., the
particle first collides with its right neighbor, then with its left neighbor, then again with its right neighbor which
has not had another collision [see discussion following (2.6)].

5. DENSITY EXPANSION OF THE KINETIC EQUATION
We now expand B(k,s; v,c) in a’ power series in # as was done in (1.9) obtaining
%(kr?; 7):5) = $+(k7s; 'U,C) —58_(]6,5; '”’C) =”Eh0(7)) I‘D—'Cl ]'—'n[y’(v)a(v_ 5)]
+n2{3[ (v—c)v— |v—c| u(v) Jro(0)+3[u?(v) —v*]8(v—c) } [s— ko]

(w—2)(w—0)

—n%ho(v) [%[(v——c)c-{-lv—cl w(c) JLs—ikc]+sgn(v—c) / ”dwho(w)—————— +0(#»%. (5.1)

s—ikw
The generalized kinetic equation (1.7) will then have the form

af(g,,t)
at

a
+‘Z)—{= 1’&/ [ 1—¢C | I:ho(v)f((bc’t) - hO(C)f(%v;l):ldc
aq

+%n2/ dt’/dw/dcho(w){[lv—w] [v—¢| —920ho(c) f(g—v(t—1'),0,t")
F+L—c)v—v—c| |o—w| Tho() flg—2(t—1) )= [(0—c)c+ | v—c| | c—]| Jho(0) f(g—c(t—),6:t)
—2¢[ (v—w) (w—c) ][ (w—2) (w—c)]ho(v)f(q—'w(t—t'),c,t’)] +0(#3). (5.2)

The first-order term in the expansion is just the ordinary Boltzmann equation with p replaced!¢ by .
Integrating (5.2) over ¢ or considering the case where f(g,v,t) = Ck(v,f) we obtain an equation for the time evolu-
tion of the velocity distribution function 4(»,#) which corresponds to the expansion of B given in (1.9). This yields

e, / el hoei—holo(s e
at

+f ar [ du) | =l Clo—e| = [s—w] = |o—s]]

+2(—w)(w—c)e[ (v—w) (w—c) JJho()(c,t )+ [ —v*+ | v—w| |v—c|]ho(c)h(v,t’)}+0(n3) . (5.3)

It is readily verified that when f(q,v,{)~ho(v) then first, will lead to f(g,»,t) approaching its equilibrium
each term in the expansion of the collision integral value or will give divergent results. Truncation after
vanishes. It is however not clear to us at present whether the first term leads, of course, to a monotonic ap-
the expansion after a finite number of terms, beyond the proach to equilibrium. This can be seen readily if we
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define!® a quantity w(g,t):

f(q,v,t)]dv

ol?

w(g)= [ fasina]
(5.4)

=/f(q’v:t)ln¢(4)v7t)dv'

Then w(g,t) achieves its minimum value when f« kq(v)
and we have, using only the first term in the expansion

(5.2),

(V]
—+é—/vf(q,v,t)ln¢(q,v,t)dv=—n/dv/dclv—clf
q

¢(Q7C;t)] \ ¢(q’v;t)

X (@6h() {ln[qS(q,v,t) " olge)

1}50, (5.5)

the equality holding only when f(g,v,t) « ko(v). The
second term on the left side of (5.5) represents a flow
term, which vanishes when f(g,v,f) is spatially uniform.
The term on the right is some kind of entropy produc-
tion term, w(g,f) becoming proportional to'the free-
energy density of the test particles when fo /o(v).

As was mentioned in the Introduction, any attempt to
obtain a kinetic equation in which 8 f/d¢ depends only
on the value of f at time ¢ by replacing ¢ by ¢ in the
f@) occurring in the density expansion of the kinetic
integral will lead to divergences, for large #, in the
higher-order terms. These divergences are of the same
nature and origin as those occurring in the correspond-
ing problem in two and three dimensions: the persist-
ence in correlations between the velocity of the test par-
ticle and the system particle with which it is colliding
for times of 0(»™1).

We can obtain however an “approximate’” Markoffian
equation for f(g,v,f) by replacing ¢ by ¢ in f(¢,c,t’) in

(1.7) and letting the limit of the integral there go to

infinity. Considering the spatially uniform case feck
and taking the Laplace transform we obtain [see (1.12)]

sh(v,s)=h(,0)+ / U(v,0)(c,5)dc (5.6)
where
U (v,c) =lim lim B(k,s; v,c)
4 = —n|v|8(v—c)+ho(v)F(v,c) (8.7
an
3C(v,c)=1im lim H(k,s; v,c). (5.8)

8>0 k-0

Uf(v,c) is the collision operator representing the effect of
the “fluid” on the motion of a charged test particle in
the steady state (see next section).

16 J. L. Lebowitz and P. G. Bergmann, Ann. Physik 1, 7 (1957).
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To obtain 5(3(7) c) we take the limit s — 0 in Eq. (4. 6),
which glves in a fairly stralghtforward manner

JC('D,G)— e(—-'uc)-l- f —ho(v')JC('v ,0)dv’

- / e(-w’)”—l((—)‘-)-ho(v’)&(i(v’ ,)dv', (5.9)

where u(0)=(|w|)= (xBm/2)~12. The solution of (5.9)
is found to be

2n|v| [c|

u(0)

The Markoffian collision operator U will then have the
form
U(v,c)=D"|vc| e(—vc)ho(v) —n|v| 8(v—c) (5.11)

which is linear in # but is different from the Boltzmann
collision operator, which is the lowest-order term in the
expansion of B given in (5.1). U also has the property of
making w(¢), defined in (5.4), decrease monotonically
until 4(»,£) — ho(). The term #|2| in (5.11) which gives
the rate at which particles are scattered out of the range
dv is the reciprocal of the average time that a particle
starting with velocity » will spend with this velocity.

The structure of U is sufficiently simple to permit an
explicit solution of (5.6), obtaining

3C(v,0) = e(—vc)=D"1v||c|e(—2c). (5.10)

By VO o mre—)
S, —s-f—n]vl T D[s—l—n]vl:]m— S)€e\V)T 14 S)e v v ]
_ f B(s; 0,0)h(c,0)de. (5.12)

Here K’ is the Laplace transform %(v,t/c) when the
distribution develops according to the Markoffian
equation (5.6), and

7(v,0
74(s) = f Hh(vs)dv-f dvl 0l 0,0)

s+n|v]
i11_(5) v%ho(v) B
H= [_ N0, (619
0 . ° |v]2(x,0)
1-()= | dv|o|h(v,s)= m
 m+s) /” p v%ho(2)
"2 ) stalo|
=N_(s)+als)n(s), (5.14)
where . o)
afs) = (2D)~ / dvs+;lv (5.15)
This yields -
1:(s)=(Ny+aNz)/(1—a?). (5.16)

The velocity autocorrelation function for the system

. developing according to.the Markoffian operator U may
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be obtained from (5.12) by letting %(v,0)= 8(+’—9). This

yields
¥ (s)=2Da(s)/[1+a(s)], (5.17)

where we have used a prime on { to distinguish it from
the exact J/(s) given in (3.1). The diffusion constant ob-
tained in this approximation will be identical to the

exact one!* B
D'=lim{y'=D.

80

(5.18)

6. EXTERNAL ELECTRIC FIELD

We consider here the velocity distribution function
h(v,t) (the spatial part being uniform), when the test
particle (but not the other particles of the system) has
a unit charge and there is a spatially uniform external
electric field Ee™* acting on the system. To linear terms
in E, we write

h(v,t) = ho(v)+ Eet'®(v,1) . 6.1)

The Laplace transform of ® will satisfy the equation
[see Eq. (3.4), Ref. 107]

'ID(v,O) =+ (s+iw)<f>(s,v) —'kao('l))/s
= /5B(s+iw; v, c)®(s,c)dc. (6.2)

The steady-state solution

®(v)= li_r£ s®(s,0) (6.3)
has the form
®(v)= i K (iw; v,¢)Bcho(c)dc
= ho(v) ‘ﬂw’f (vyi)
7 Lrem i sgn(— 0 10 iw)de) . (64)
mJ—w
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The mobility will be given by [see Eq. (71), Ref. 8]

o(w) =B (i), (6.5)

whose density expansion was given in (3.5) and whose
expansion in w contains terms of the form w? Inw. In the
case of a dc field, w=0, the stationary state will satisfy
the equation

—Boko(v)= / U(v,c)®(c)dc,

whose solution is
1 Bho(v)v

and =D as required by the Einstein relation. It
should be noted that the steady-state distribution has
a discontinuity at v=0 and is otherwise proportional to
ho(v), in contrast to the results from the usual relaxa-
tion-type equations where (o|v|)~! is replaced by an
average mean free time 7. Whether this feature remains
in higher dimensions is an open question.

7. ASYMPTOTIC DISTRIBUTIONS

We conclude with some qualitative remarks on the
form of f,. At very short times, the interaction of a
many-body system is ineffective, so that the self-distri-
bution is that of an ideal gas. According to (A15),

fs(q,v,t/v’) - 5(q—’1)15)5(1)'-1)’) )

On the other hand, as {— o, any memory of initial
conditions will be lost, and f, will thus reduce to an
equilibrium one-particle distribution, normalized to
unity, i.e.,

as t—0. (7.1)

fs(q’vrt/v’) —0 , as t— oo, (72)

To see how the long-time approach is realized, we
observe that as {— o

1 rm 1
Avt)=— / exp{ —p[[(1— cosf)u(v)—i(sinb)r}d6 — —/exp{ —tp[36%u(v)—i6v]}d6,
2 ) 2T

or A( - ( 2 ip 92 (7 3)
80) = (2epu(o T exp zu@}’ .
whereas
F(1p,0,9/t) = exp{—p[(1— cosf)tu(g/1)—1ig sin6 ]} — exp[ —3ptu (0)6?—ipgf],
so that
2 \1? €\
xp{i6[ e(g—v't) — e(vt— — -3 - , 7.
[ Fosapesptinrta—vi— o= as (,,t - >) exp|~36(0+) / Wlol) (1.4
where e= =1 exists only if ¢ is between o't and v¢. Hence, for pg>>1, as t — «
Folg0,8/v') — (2mpt(|v| )71/ exp[— (1/2)(o/{| 2| N)(q*/1) IL6(v—12")8(g— )+ pho(v) ], (7.5)
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representing a singular increasingly unlikely ‘“wave front” for the initial particle to retain or regain its velocity,
together with a straight diffusion of the initial one-particle density, with diffusion constant D=21{|2|)/p.
It is simpler to recognize qualitative regularities if we restrict attention to the coordinate self-distribution

function

n(a0)= f [ fs(q,v,i/v')ho(v')dvdv’=;A<i)ho(%

(sgn(w—1))»=p'@), holw)=%u"(w),

Since

(7.6) may be rewritten as

11 1 /¢ p q 2 1 1 9?
- / F(tp,0,9/0) {—,/’(—)— [ (1— cos0),u’(—) —i sinﬂ:l }d0= —— [ ————— —F(p,0,4/)d0,
227 ¢ t/ 1—cosf ¢ 2wJ 2p(1—cosf) g2

which yields the convenient relationship

ins(q,t)=1 6—2“:

ot 2 9q?

If we note that the asymptotic 4(g/4,1) of (7.3) satisfies the diffusion equation

- B
at \i

we have at once the asymptote

nelt) = (%(fvl )t)l/2 eXp[_ (2< lpvl >>(q72) ] ’

which indeed could have been found directly from (7.5).

3A(gt>_1<lvl>3_2

2 p o

+§ / doF (1p,0,q/1) <exp[i(g)sgn<—qt-—v):|>z . (16)
7.7

(7.8)

30
) o
(7.11)

The behavior of #, over the whole time domain is best observed by examples which utilize non-Maxwellian®
ho(v). Two limiting cases are those of a finite-range discrete distribution and a very long-range distribution, with

velocity scale c:

L W@ =3000—+00+0)], (o) =max(s, o]}, 012
II. ho(w)=3c*(c*+2%) 72,  pu(v)=(c*+2?)12. '
We have previously noted [Eq. (2.5)] the closed form

A(,t)=etor O o(tp[p*(v) — 27112, (7.13)
so that (7.9) becomes for these cases
i) c 0%
L. —ns(g,t) =— —e L[ p(c*P—¢H)'?], for |q|<ct
at 2 dq2
=0, for |g|>ct
a c% 9%
IL 6—%3(%0 = (c**+¢*) 2 o(pct)exp[ —p(c¥*+¢) Y/ 2]} . (7.14)
t q
Except for the wave front in I—significant at small extending the initial
time—due to a finite maximum velocity, these evince 1 /q
very similar forms in space and time. In fact, using the ns(g,l) — ;ho(—t) as t—0, (7.17)

small and large argument expansions for 7,:

I(x)=14+3x2+gx*+- -+ for small x
~(2rx)~Y2(14-(1/8x)+ - - -)e* for large x

together with (7.9) and (7.13), one finds

(7.15)

1 92 pt
me(vt,t)=— —l:u(v)+—u2(v)—|- .- :I as t—0,
2t dv? 2
(7.16)

obtained directly from (7.1) and (7.5). Similarly, at
large time, we have

PRI S R
s s SN — ex P — —_—— R
ot : 2 (2mpt)1/2 P 2u(0)¢ 1 4p?

(7.18)

depending to this order only on x(0).
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F16. 2. Long-time behavior
of velocity autocorrelation.

o 5. 10.

The full distribution #, is then not a very sensitive
test for distinguishing velocity distributions. One can
say that both short- and long-time limits are Gaussian:

ns(q,t) =[270*()) I7V/* exp[—3¢%/a*()], (7.19)
with the second spatial moment
0= [ miaery (7.20)
having the values
a2(t) — (v2)i2 , as t—0
— (/pX[ol), as t— e,  (7.21)

and a transition time 7'~1/p(|v| ). This suggests a more
careful perusal of the second moment, which according
to (C13) of Appendix C, is also related to the velocity
autocorrelation by

¥(1)=3(3%/31%)a%(?) . (7.22)
From (7.9), we have at once
a
—ot)=1 [ L) = 014,
t (7.23)
19
v0=- i [ 014}
29t
and these integrate out for our special cases I and II to
I ¢(t)=cﬂe—2P°‘, (7.29)
II. Y1) =+c%(3/d)[ ¢ o(cot) K olcot) ]

Now a qualitative distinction arises. The finite distri-
bution I gives rise to a straight exponential decay,
whereas the long-range case shows an asymptotic {73

15, P 20.
dependence
0] i P ] (7.25)
t —_ “ee .
8 L(cpt)"" " 16 (cpt)® l

which persists for the shorter but not finite-range
Maxwell distribution as well (Jepsen?). The short-time
and long-time dependence of ¢(f) in the Maxwellian
case is shown in Figs. 1 and 2.
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APPENDIX A: THE TIME-DISPLACED
PAIR DISTRIBUTION

Let us denote the phase point—coordinate and ve-
locity—of a particle by x=(r,v). An N-particle classical
system of time-independent Hamiltonian H in a thermal
ensemble will then have an equilibrium phase-space
distribution

#O(XI’. . .’XN)=e—ﬁH/f. . -/e“ﬁdel. . .de (Al)

which is constant in time, as are the one- and two-body
distribution functions
5= [+ [t

Xo(xi—y)]Idx;,
‘ (A2)

5y )=NO=1) [ -+ [ x0

X 8(x1—y1)8(xa— y2) [T dx;.



155

Now the prototype nonequilibrium behavior may be
elicited by fixing the configuration of a single particle
at time O (a convenient reference point; in an equi-
librium canonical ensemble, only time differences are
measurable). Thus p has the initial value

p(xs, - X5 0/91)
= PE®§(xX;—y1) / f T / ¢ PE @5 (21— y1)[ I dz;

= Npo(Xy,* - +,X)0(X1—y1)/ f1(yr)

and will evolve in time in accordance with the Liouville
equation

(A3)

(8p/ 30+ (u,H)=0 (A4)

with (A3) as the initial condition. The one-body distri-
bution

fin(yzt/y1) =@~ 1)/' : 'fu(X1,~ “Xw; /Y1)
X8(xe—yo)[Idx; (AS)

thereby expresses the conditional distribution of finding
a particle at y. at time ¢ if it is known that a different
particle was at y; at time 0. Since the initial distribution
of y; is fi(y1), we conclude as well that

J1.1(y2,t,¥1,0)= fa(y2,t,y1)
= fin(ye,t/y0) fr(y) = fo(y2,t/y1) f1(y1)  (A6)

represents the joint probability density of finding some
particle at y; and another at y; at time ¢ later.

If x;(t)=&:(¢|x1---Xy) represents the explicit time
dependence, following the equations of motion, x;
= (x;,H), for a system of initial configuration (x;- - -Xx),
then the Liouville equation (A4) has the explicit (but
generally highly complex and uncomputable) solution

u(Xy, - xas ) =p(- - E(—t[ X1 xn)--+50), (A7)
so that

/ g(x1, - - xw)p(xy, - - - xuv; DI Idx;

= [ 60, xn(Oputo - xv; O, (49
In particular, then, from (A3), (AS), and (A6),
sy =N 1) [ 60—y

Xpo(xy,* - - x)8(x1—yn)]Idxs,

which we may rewrite in terms of equilibrium expecta-
tions as

Ja(yahiyr)= (é 3(xi(1)—y2)d(x—y1). (A10)

(A9)
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In the same way, the self-distribution for some particle
to be initially at y; and then at y; a time ¢ later becomes

fe(yaty) =(X 0(x:()—y2)d(x;—y1), (All)

while the complete pair distribution, the joint proba-
bility for any particle to be initially at y; and any (the
same or a different one) at y, at time ¢, is

Fayat,y1) = fa(yo,b,y1)+ fo (2,8, ¥1)
=(X 3xi()—y2)o(v;i—x1)). (Al2)

When (=0, the time-displaced distributions reduce
to the equlibrium distribution. For a uniform system
(periodic boundary conditions or, in the thermodynamic
limit N — w0, volume @— o, at fixed N/Q=p) the
pair distributions depend only on the difference in posi-
tion, e.g.,

Folea,va,tt1,v1) = fa(ra—11, v, 1/V1)pho(v1) . (A13)

Going to (=0, we then have, from (A10), (A11), and
(A12),

Falr1,v2,0/v1) = pg(0)o(v2)+ 8(r) 3(va—v1) ,
fz(l’,Vz,O/Vl) = Pg(l')ho(vz) )
fs(t,v2,0/v1) = 8(v)8(v2—v1) ,

where g(r) is the usual radial distribution function. How-
ever, for (70, f, in general depends as well on the dy-
namics of the system, and no “universal” component of
f2 can meaningfully be isolated.* The ideal-gas case
(no interaction between the particles) is still simple, for
it is seen at once that fa(r,vs?/vy) is independent of
time, while g(r)=[1—1/N]—1 as N— o, so that

fg(l‘,Vg,l/V]) = Pho(Vz)

fs(f,V2,t/V1) = §(r—vat)6(va—vy). (A15)

The system considered by Jepsen (one-dimensional
hard rods of zero diameter) has the same equilibrium
properties as an ideal gas, and the whole dynamics of the
system consists of the interchange of particle velocities
during a collision. This is completely equivalent to the
interchange of the labeling of the colliding particles.
Hence all system properties which do not depend on par-
ticle labeling, e.g., f2, are identical with those found for
the ideal gas:

fz(f,‘vz,t/‘vl) = pho(vz)+ 5(1’— 'Uzt)ﬁ(vz‘- 1)1) . (A16)

The decomposition however no longer corresponds to
that into f; and f,, which must now be computed from
the dynamics.

(A14)

whereas

APPENDIX B: EVALUATION OF TIME-
DISPLACED DISTRIBUTIONS

Consider N point particles on a line of length L in the
limit L — o at fixed p=N/L. We are interested in the
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development of the conditional p-body distribution at v at the origin at time ¢{=0. This is defined by the
time ¢ when it is known that there is a particle of velocity /N — oo limit of

Tor1(guv1,92,0% * + GpsUst/v0) = Zl s (8(vi—20)8(rjy (1) —7i—q1)

X 0(vjy(O) —v1) - - - 8(r3, () — 7~ 4)(0;, () — )/ Nho(vo) . (B1)
The corresponding self-distribution is
Tor1s(q1,1,02,02, 190,005/ v0) = J_IE " (3(vj—v0)0(riy () —7i—q1)

Xo(va () —v1)- - - 8(rj, () — 75— 4)8(0, () = v,))/ Nho(vo) ,  (B2)

in which the first of the p bodies is the initial distinguished particle. If the particles are zero-diameter hard cores,
they merely reflect on collision, maintaining the pair of trajectories but interchanging identity. Thus a symmetric
quantity, such as f,1, reduces to its free-particle form:

) »
Fori(@uvs,* * +0py0pt/v0) =p? I1 ho(ve)

a=1

1+

2 8(¢a—vo) 6(va—1v0)
. B
[ a=1 p ho(?)a) ] ( 3)

To determine the self-distribution f,/1., free-particle trajectories may also be used providing that we identify
the particle represented by 7;,() with the same particle 7;, at time 0. Since the particle ordering does not change on
collision, this can be achieved by specifying that its order

a-iszl: e(ri—r1) (B4)

is unchanged in time. Hence (B2) may be replaced by
Tona(quy, -+ g0t/ v0) =22 .;Z. (8= v0)8(r;y () —7i—q1)
T J1FccJp
X 8(i ()= v1) - -~ 8(rip () —7:— 45)8(0;, () —20)80;,(8),0)/ No(ve) ,  (BS)
where the dynamics proceeds according to
vi(t) =7, n(l) =r;+vit. (B6)

In order to evaluate (BS), we employ a Fourier representation of the Kronecker § function:

1 2 1
b= / explile ()=o) 06— [ exp[iog: {e[m(t)—n(t)]—e(n—n)}:ldO. (B7)

Now the particles are independent, so that only the expectation
Ey(ri—rs, )7 (exp(i8{ e[r;(0) —ri(t) ]— (ri— 1) D)ry.m, (B8)

with respect to the I/th particle is required, where /54, ji, - - j,. Separating (BS) into two parts according to
whether 5 73, - - - j, or the converse, we then have

Tons(guv1, 400t/ 00) = f11°(q1,93," - * 100305t 0,00)/ pto(v0)
X% / E(g1,0)"7" expibl e(g1—vof) — e(vt— q1) Jexp{if Z: Le(q1—ga)— €(vat—ga) J}d0
L on®(q101, * * @os¥st/20) = f41°(q1,21,* * - Qos¥ot; 0,00)/pov0) ]
X;; / E(q1,0)¥-7 exp{if é [e(q1—9a)— €(vat—ga)]}d8, (BY)

where superscript zero denotes free-particle motion,
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There remains the computation of E;(¢,6). But
exp[if[ e(x) — e(y) 1} = 1+4[e(x) — e(y) J¢ sinf— e(—xy)(1—cosf)
Ei(ri—ri, 0)=14(ri(t)—ri—vit),(i/ L)sinf— (| 7;(t) — ri—vit | )»,(1/ L) (1— cosb) .

so that

Averaging over v; with the assumption (v;)=0, and defining
pw)=(|w—2vi ),
E(g,6)=1+(ig/ L)sin6— [tu(q/¢)/ L](1—cosf) .

Only the Nth power of Ey(g,0) is required in the N — o limit. We then define

we have

F(tp,0,9)= Ey(iv,6) ¥ = exp{ — tp[ u(v) (1— cosf) — v sind ]}

and use (B3) together with the free-particle unconditional joint distribution

»
fp+10(q17'01" *dpVpst; 0,7)0)=Pp+1 H hO(‘”a)

a=0

to complete the evaluation of f,/1,, obtaining

» 1
fp/ls(quvb cet ﬂmvmt/v()) = [PP I;I ho(va)];/F (lp,o,m/i) exp(iol:f(%—'”ot) - €(1J1t—Q1):|)

3 2 > 8(0a—10)3(da—al
Xexp(i022 [e(ql_'qa)_G(Wat—qa)])dﬂ—l—(ppIII ho(va))(zl v 7; (vq) ))

1 »
X / Flp03/0exp(i0 3 [ g2 i) .
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(B10)

(B11)

(B12)

(B13)

(B14)

(B15)

(B16)

The lower-order distributions are of special interest. Choosing p=1, we have the usual conditional self-distribu-

tion

1 1
fs(q’v;t/'v,) = 8(7)—7/)6((1— Ut)z_/F(lp,o,Q/t) d0+Ph0(v)2—/F(ip’0:Q/t) exp(io[e(q_ v't)— e(vt_Q)])do .

Somewhat more explicitly, bringing down the step functions from the exponents,

Jo(g0,t/v")=[pho(v)+6(v—0")8(g—2t) 14 o(q/1,t)

+pho(v) elg—v't)e(g— 1) [A1(q/1,8) — A o(q/4,6) TH-pho(v) e(v't— @) e(vi— ) [A1(¢/1,) — Ao(9/t,1) ]

where

1
A;(v,l)E—/F(tp,o,v)e"”’dG.
2w

Further simplification then results from the observation that

i)
:I:—)F (tp,0,v) .

1
(e:hiﬂ—l)F(fP’a’v)=_(at () o
M\,

P

In the form (B18), we can readily take the Fourier-Laplace transform:

K(k,s; v,v')E/ / e“‘qe“"fs(q,'u,t/'v')dtdq=//e““‘""“’?‘{6(v—v’)6(w—*u)
—o0 /0

i +i)+e<v'—w>e(v—w>t(

+ho(v)[tp+e(w—'u')e(w—v)t(al o o
m

at,‘(v)—;,;)]}Ao(W)dtdw.

(B17)

(B18)

(B19)

(B20)

(B21)
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Noting that, with respect to the Laplace transform,

a a a i) 9 ]
()= )= T Tl = (O | [ )= ) —+ 1w ) |,
Otu(v) Ot dv ot dv ds

(B22)
and that

A(vs)= j; ) et Ao(v,0)di=(p*?+2spu(v)+s7)~1/2, (B23)
(B21) yields after minor algebraic operations
Kb 5) = 60— Al s i) | Lok e
— (s it pre) w—o) w—1) — (s ibw— p)elv'—w)e(o—) LA wys— ikw) T (B24)
When =2, we have from (B16)
Jar1e(g,0,9'50't/c) =P2h0('0)h0(7/)51; / F (tp,0,4/1) exp{i6[ e(q—ct)— e(vt—q) 1}
Xexp{if[e(q—q')— e(v't—¢') [}d6+p (o[ 0) (" —)8(q' — ct) + ho(v") 3(v—)3(g—ct) ]
><—21; / F (tp,6,9/1) exp{ib[ e(g—¢') — e(v't—q) J}exp{i6[e(0)— e(vt—¢) J}df. (B25)

In particular, at right and left contact, ¢'=g* or ¢'=¢~, we have
1

Sfar (@00'st/c) =P2ho(v)ho(v');/ F (tp,6,4/1)
g

1
X exp{i6[e(q—ct)— e(vi—q)— e(v't—q) 1}d0+pho(v') 6 (v— c)B(q—-ct)z— / F(p,0,q/t) exp[—0e(v'—v) ]d0

1
+pho(v)5(v’—6)5(q—ct)2— / F(tp,8,0/1) exp[— ibe(v—v')Jd6, (B26)

with F replaced by Fe® to obtain f.,. Rewriting (B26) in the form

T (@0,0',8/6) = pho(@)ho(v) { A o(g/1,8)+ e(g—ct) e(g—vt) e(g— v’ 1) [A1(q/1,) — A o(g/1,2) ]
+[e(g—ct) e(vi— q) e(v't— q)+ e(ct— q) e(vi— q)+e(ct— @) e(v't— ) ILA1(g/1,1) — Ao(g/1,1) ]
+ e(ct—q) e(vt— Q)+ e(v't— @) [A_a(q/t,0) — 24 _1(q/1,1)+ Ao(g/1,1) 1}
+p8(g— ) [o(v')8(v— )+ Ro(0)5(v'—¢) JA o(q/1,1)
+pd(g—ct)[ho(v')8(v—c) (v’ — v)+ho(v)8(v' — ) e(v—") ILA_1(q/1,1)— Ao(g/1,t) ], (B27)

and combining with (B18), we may write

Fer (@9 t/)=pe(v—v)[ho(t) fo(a,0,t/ )+ ho@)W (g,0',t/¢) 1Hpe(’—0)[ho(0) fo(,0' 1/ )+ ko0 )W (g0,4/¢) ], (B28)

where
W (g,,8/c)=pho(v) e(vi—q) { [4a(g/t,0)—Aolg/t,0)]

+e(ct— QLA-2(9/t)—241(g/t,)+ Ao9/ t,t)} +o(v—c)d(g—c)A1(g/t,) . (B29)
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The Fourier-Laplace transform of (B29) is obtainable as in (B21)-(B24). We find

[s—ikv+pu(v) 1A (v, s—ikv)—1

u(v)—v

W(k,s; v,6)=08(v—c) {

— pho(v) / e(v—w) (s— ikw—pw)[A (w, s—ikw) Pdw

+A (v, s—ikv)

2 2(s—ikw)+p(u(w)+w)

+pho(w)/e(v—-w)e(c——w)[(ﬂ(w)_w)2

_ (s+puw)—ikw)(s— pw—ikw)

A(w, s—ikw)

(u(w@)—w)*

APPENDIX C: SELF-DIFFUSION IN A
RANDOMIZED BACKGROUND

The coefficient of self-diffusion in a one-dimensional
system may be written as—for a given test particle—

D= f OO, 1)

or when the integral is not absolutely convergent, as

D=]7i_’m0 ] i e "Xv(0)v(?))dt. (Cc2)

Hence we also have

D=(1R,(2)}, (C3)
where the diffusion length at velocity v is defined by

R,(v)= 1’1{’1{1) f i e o(t) |v(0)=v)dt. (c4)

Now if the medium is specified by an ensemble of in-
finitely massive scatterers,” the velocity will change
sign at each scattering time, depending only on the
position of the left and right nearest neighbors. If we
denote the first scattering time by 7%, and the succes-

sive intervals between scattering by Ay, Ay, - -+, then
Tot+Z1mAs
/ eVt
To+2 " A¢
1 m—1 m
= Y7ol exp(—y Z, A;)—exp(—y E;. Ay)],

so that (C4) becomes

v L m
Ro(@)=lim —(1—2¢-770 Y (—1)™ exp(—v X Ay)).
% 0 1
- (C5)
17 See also R. Nossal, J. Math. Phys. 6, 201 (1965).

v [4 (w, s—ikw)]a:ldw. (B30)

For a stationary process (homogeneous in time) the
distribution of T is uniform from O to A, so that

To,A1dg,---))= tAo,A1,Ag- - +)dt Co6
24 »=([ x )y (co
(e.g., (To)=3%(A)) and (CS) may be written as
Rt~ [ (1=2180 3 (=1)
YJo 0
Xexp(—yi:: Apd. (CT)

To evaluate (C7), let us introduce the generating
function

n
(e"tvoe"hAl e e—tnAn> =exp— [Z ¢1(ti)
0

n—1 n—2

+ X deltitir)+ X dsllitirntiva)+---], (C8)
0 0

where only ¢, exists for independent intervals, ¢» intro-
duces a Markoffian character, etc. Equation (C7) now
becomes

2 1
Ro(o)=lim - / (1—2 exp[—1()]
YJ0
% {1-—-exp[—¢1(7)—¢2(l’)’,"/)]
X [1—exp{—[¢1(y)+¢=(y,v) 1}
+eXp{2[¢1(v)+¢z(7,7)]} . -:J} Nt

+(71/'Y)0(¢3:¢’4) <e0), (C9)
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or, if y~10(¢p3,¢4,---) = 0 as vy — O,
v 1
Ro(»)=lim ~ / <1—-2 exp[—¢1(tv) ]
YJo

exp[—1(v)—d2(tv,7)]
X 1— dt, (C10
[ 1+eXpE—¢1(v)—¢z(7,v)]]> (€10

Noting that ¢1(0)=¢2(0,0)=0 and defining

A=¢,(0), &=—62(7,0)|r=0, (C11)
Eq. (C10) is readily evaluated. We find
R,(v)=3%24, (C12)

independently of A= (A;). Thus, if the intervals are in-
dependent, R,(v)=0. Moreover, if the scattering en-
semble is not just homogeneous in time but static, so
that

(exp(—toA) - - -exp(—tals) )
= (CXP"XO: tAi)a= eXP—¢(§ L),
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then ¢1(N)=¢(1); 2(t)=p(t1+12)— (1) —(t2)=0(?)
for t1,t2=0(7); p3=0(v3), etc. Thus again R,(»)=0. Itis
only for partially correlated successive time intervals
that 8540 and R, (»)5=0.

From another viewpoint, we see by virtue of

dsa 0
(O0) = GO =—( === YO
(AN A

62
=——(r(()r(t+1))
ot

a? 192
=——((0)r())=-—[(O—(0)1*)
ar? 2912
coupled with (C2) that

D=§ %(D(t)—r(O)]Z) t (C13)

>0

For a static scattering ensemble, ((r(¢)—7(0))2) will not
grow in time, and so, of course, D=0.



