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We have made a detailed study of the time evolution of the distribution function f(q,v, t) of a labeled
(test) particle in a one-dimensional system of hard rods of diameter a. The system has a density p and is in
equilibrium at t =0. (Some properties of this system were studied earlier by Jepsen. ) When the distribution
function f at t =0 corresponds to a delta function in position and velocity, then f(q,s, t) is essentially the
time-displaced self-distribution function f,. This function f. (which can be found in an explicit closed
form) and all of the system properties which can be derived from it depend on p and u only through the com-
bination n= p/(1 —po). In particular, the diffusion constant D is given by D r=lim ~sg (s)] = (2spm)'~re,
where f (s) is the Laplace transform of the velocity autocorrelation function p(t) = (e(t)s). An expansion of

(s)) r in powers of e, on the other hand, has the form p 8~a'/s& r, leading to divergence of the density
coefBcients for l&2 when s -+ 0. This is similar to the divergences found in higher dimensional systems.
Similar results are found as well in the expansion of the collision operator describing the time evolution of
f(g,v,t). The lowest-order term in the expansion is the ordinary (linear) Boltzmann equation, while higher
terms are O(p'1' '). Thus any attempt to write a Bogoliubov, Choh-Uhlenbeck —type Markoffian kinetic
equation as a power series in the density leads to divergence in the terms beyond the Boltzmann equation.
A Markofhan collision operator can, however, be constructed, without using a density expansion, which, e.g.,
describes the stationary distribution of a charged test particle in the system in the presence of a constant
electric field. The distribution of the test particle in the presence of an oscillating external field is also
found. Finally, the short- and long-time behavior of the self-distribution is examined.

1. INTRODUCTION

HE nonequilibrium properties of a macroscopic
system "close" to equilibrium, such as linear

transport coeKcients, may be determined from the time-
displaced distribution functions (t.d.f.) (giving the
probability of finding particles in specified states at two
different times) in a manner similar to that in which
the equilibrium properties are determined from the
equilibrium distribution functions (e.d.f.). Further-
more, some time-displaced distribution functions may
be obtained "directly" from neutron-scattering experi-
ments and from molecular-dynamic computations. '
This, combined with the absence of any partition-func-
tion formalism for nonequilibrium systems, makes these
functions of central importance in the study of non-

*The work presented in this paper is supported in part by the
U. S. Air Force Office of Scientific Research Grant No. 508-66 at
Yeshiva University and in part by the U. S. Atomic Energy Com-
mission Computing and Applied Mathematics Center, Courant
Institute of Mathematical Sciences, New York University, under
Contract No. AT(30-1)-1480 with the U. S. Atomic Energy Com-
mission and Grant No. AF-AFOSR-945-65 with the U. S. Air Force
Once of Scientific Research.' L. Van Hove, Phys. Rev. 95, 249 (1954). Formal definitions for
classical systems, the only ones we are concerned with here, are
given in Appendix A.

2 M. S. Green, J. Chem. Phys. 22, 398 (1954);R. Kubo, J.Phys.
Soc. Ja an 12, 570 (1957); R. Zwanzig, Ann. Rev. Phys. Chem.
16, 67 1965).' A. Rahman, Phys. Rev. 136, A405 (1964).This paper also con-
tains some interesting approximations for some t.d.f. L. Verlet (to
be published).

equilibrium processes. Now, while the prescriptions for
determining the t.d.f. are as precise as those for the
e.d.f. (see Appendix A), their theoretical analysis is far
more complex. There are no virial expansions or approxi-
mate theories for the t.d.f. comparable4 to the virial
expansions and approximate integral equations which
have proven useful for the e.d.f. The questions raised
recently" concerning (a) the divergencies in time of the
coeKcients in the density expansion of various kinetic
equations and (b) the nonanalyticity in the density p of
transport coeKcients are related directly to the proper-
ties of the t.d.f. and indicate their possible complexities.

In order to understand more fully the nature of these
divergences in the virial expansions and to develop a
feeling for how an approximate theory of the t.d.f.might
go, we have made an extensive study of the one solvable
Quid model. 7 This is a classical system of one-dimen-

'For some approximate theories, see G. H. Vineyard, Phys.
Rev. 110, 999 (1958);J. M. J. van Leeuwen and S. Yip, ibid. 139,
A1138 (1965); P. G. de Gennes, Physica 25, 825 (1959); K. S.
Singwi, Phys. Rev. 136, A969 (1964); H. Mori, Progr. Theoret.
Phys. (Kyoto) 34, 399 (1965).' J. R. Dorfman and E. G. D. Cohen, Phys. Letters 16, 124
(1965); J. Weinstock, Phys. Rev. 140, A460 (1965); R. Goldman
and E. A, Freeman, BulL Am. Phys. Soc. 11, 531 (1965); J. V.
Sengers, Phys. Rev. Letters 15, 515 (1965); K. Kawasaki and I.
Oppenheim, Phys. Rev. 139, A1763 (1965).' J. M. J. van Leeuwen and A. Weyland, Phys. Letters 19,
562 (1965). This work is most closely related to ours as it treats
the diffusion of a single particle moving in a random array of fixed
spheres; see, however, Appendix C.' The exact t.d.f. for @ harmonic crystal are y'ven in Ref. 1.
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sional hard rods of diameter a. A beautiful formulation
of this problem for the case where a=0, i.e., impenetra-
ble points in one dimension, was given by Jepsen, who
also computed explicitly some properties of this system.
A more general formulation, especially applicable to
systems with Gnite diameters, is given in Appendix B.
For many purposes, however, adding a finite diameter
does not introduce any new complications; it merely
requires the replacement in certain expressions of the
actual volume per particle p

' by the reduced volume

p
'—u, i.e., p ~ p/(1 —pa) —=n. (We are always speaking

here of the limit of an infinite system with fixed p. )
This system of hard spheres is special, or pathological,

in that its whole dynamics consists of pairs of neighbor-
ing particles interchanging velocities at each collision.
Hence the fraction of particles at a given velocity is con-
stant in time. Furthermore when a=0 all properties of
the system which are independent of particle labeling,
i.e., functions which are symmetric in all particle coor-
dinates and velocities, are identical to those of an ideal
gas where the particles pass each other without inter-
actions. It is only the distributions of specified (labeled)
particles which exhibit normal kinetic behavior, i.e.,
diffusion and approach to equilibrium. This is true in
particular (see Appendix 8) of the conditional self-dis-
tribution function f, (q q', v, t/—v') which will be our
primary concern here. f,(q q', v, t/v—') gives the proba-
bility density for a particle, in an equilibrium system, to
be at position q with velocity v at time t when this par-
ticle was known to be at q' with velocity e' at t=0. The
behavior of f, is identical to that of a single impene-
trable particle moving in an ideal gas of particles with
the same mass and density n (a special case of Rayleigh's
problem done exactly).

Integrating f, (q q', v, t/—v') over q and averaging over
q' (the latter being unnecessary for the uniform system
considered here), we obtain the conditional velocity
distribution function

h, (v, t/v') = f.(q, v, t/v')dq.

Multiplying h, ( tv/ )vby he(v'), the equilibrium velocity
distribution function'

bs(v) = (2rr/Pm) '" exp[ Pmv'/2—5 (1.2)

yields the time-displaced self-velocity distribution func-
tion. This may be used to compute the velocity auto-
correlation function

P(t) = (v(t) v)—= vh, (v, t/v')hs(v') v'dvdv' (1.3)

which may be obtained from Jepsen's result by the

D. W. Jepsen, J. Math. Phys. 6, 405 (1965). LFor some earlier
work on this system see also H. L. Frisch, Phys. Rev. 104, 1
(1956).j' For this gas aey velocity distribution function is stationary and
all our general results apply to an arbitrary h&(v). For explicit re-
sults with a non-Maxwellian h0(v) see Sec. 7.

transformation p ~ p/(1 —pu) =—n. The self-diffusion co-
efFicient D is then found immediately to be'

D= P(t)dt= lim $(s)

f(q,v, t) = f,(q q', v, t/v') f—(q', v', 0)dq'dv', (1.6)

where f(q, v,O) is arbitrary, and the rest of the system is
in equilibrium at t= 0 with respect to the distribution of
the test particle.

The time evolution of f(q,v, t) will satisfy a generalized
linear kinetic equation of the form' "
8f(q, v, t) 8f

+v——=Bf= dt' dq' dc
Bt Bg 0

)&B(q—q', t t', v, c)f(q', c,t')d—c (1.7).
The collision operator 8, which again depends on n, may
be found "explicitly" for this model. Equation (1.7) will
lead to the velocity part of f(q, v, t) becoming Maxwellian
as t~ ~ [the coordinate part tending to a uniform
value which may or may not be zero depending on the
normalization of f(q, v,O)j Also B will .decay, albeit non-
exponentially, as t —+ ~.An expansion of 8 in powers of

' J.L. Lebowitz and P. Resibois, Phys. Rev. 139, A1101 (1965)
Lsee their Eq. (2.26)j.

1 (1—pa) (1—pa)
(lvl &= (1 4)

2 p p(2rrPm)'t

where tt(s) is the Laplace transform of it (t), which de-

cays asymptotically as t '. D may also be obtained from
the conditional positional distribution function

n, (q, t)—&(4rrDt) "' exp[—q'/4Dt j, as

It is seen from (1.4) that, unlike the situation in two
and three dimensions, "D ' (or pD) is here an analytic
function of p. This is so despite the fact, shown explicitly
in Sec. 3, that an expansion of it '(s,p) in powers of p has
the form

p/s
It '(s,p)=Pms I++ Bi

-(1—p~)(Pm)'"-

with the Bt pure numbers. It is seen from (1.5) that the
coeN.cients of p' for /+ 2 are even more singular here, as
s ~ 0, than they are in two or three dimensions (where
the singularity is logarithmic in s). This shows that
small s (or large t) divergences of the kinetic virial co-
eN.cients do not necessarily lead to a nonanalyticity of
the transport parameters.

A similar, related, result is found when we consider
the kinetic equation describing the time evolution of the
distribution f(q, v, t) of a test particle in the system, i.e.,
a test particle with the same properties as the other par-
ticles of the system,
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n will however lead to divergences. Thus considering
for simplicity only the velocity part of 8,

B(t t'; v—, c)= dqB(q q—', t t',—v, c), (1,8)

which is all that enters when f(q, v,0) is spatially uni-

form, and expanding it in powers of n yields

then

= P w' Bi'(t; v, c)f(c,l)dc,
l 1

(1.10)

B(t—1'; v, c, e)= g e'B)(t—1'; v, c)
l=l

=Ib(t—I')Bt'(v, c)+e'Bs(v)c)+ . (1.9)

The 6rst term corresponds to the linear Boltzmann
equation while the second term is independent of t—t'

)the term of order n' will be proportioanl to (t—I')' '].
The kinetic equation will thus not be Markman beyond
the lowest-order term in n and any attempt to obtain
an approximate MarkofBan equation valid on some long
time scale in the manner of Bogoliubov" will lead to di-
vergences similar to (but stronger than) those found in
higher dimensions. ' ' More precisely, if we try to put our
kinetic equation (using the spatially homogeneous case
for simplicity) in the Bogoliubov, Choh-Uhlenbeck"
form appropriate here, "i.e., we have the collision term
depending only on the value of f at time 1,

8f(v, i)
P e' dc Bt(t'; v,c)dtf(c, t)

Bt r;x 0

The failure of the Bogoliubov method for this prob-
lem is no surprise since its underlying idea, the existence
of two time scales, is not valid here, The only time scale
available here is the mean free time between collisions

(p(~ v
~ )) '. The shorter time scale corresponding to

the duration of a collision, r, a/( ~
v

~ ), never enters here
since u and p only appear in the combination n, i.e.,
there is only one length, n ', in our problem. It is there-
fore. possible that in two and three dimensions the
operator corresponding to U in (1.13) will give a valid
description of the evolution of f(v, t) for t&)r, .

e(z) =0, z(0
=1, s&0,

F(tp, v8) = exp( tp[(1—cos8)—p(v) iv sin—8]),

(2 2)

(2.3)

2. THE SELF-DISTRIBUTION

The self-distribution f, (q,v, t/v') may be obtained
either by Jepsen's method or from our general method,
given in Appendix B.

One finds that for a=0 (when a/0, p is replaced by
n everywhere)

1
f,(q,v, l/v') =A(v, l) 8(v —v') 8(q —vl)+ ph, (v)—

2'
X F (tp, 8,q/I) exp(i8Lp(q —v't) —e(vl —q)])d8

=hp(v)L(q, t; v, v') . (2.1)

Here e(s) is a step function

lim Bt'(t v,c)=0(I'—')

gazoo

We may, on the other hand, use the above procedure
without making any expansion in the density, writing

8f(v, i)
U(v, c)f(c,t)dc, (1.12)

8$
where

and

p(v)= iv —wihp(w)dw,

2

A(v, t) =— F(tp, 8,v)d8
2X 0

= e ""'"'Ip(&ptas(v) —v'1"s)

(2.4)

(2 5)

t

U(v, c) =lim B(t'; v,c)dh'.
0

(1.13)
where Io is the zeroth-order modified Bessel function of
the 6rst kind. The function 1.is symmetric in v and v'

and satis6es the reRection symmetry
The operator U is linear in n, di6erent from B~', and
(1.12) leads to f(v, t) approaching hp(v) "monotonically"
as I-+ ~. Equation (1.12) yields the correct diffusion
constant D while the Boltzmann equation does not
(see Ref. 14).

"N. N. Bogoliubov, Studies in Statistical Mechanics (North-
Holland Publishing Company, Amsterdam, 1962), Vol. I, p. 5."S.T. Choh and G. E.Uhlenbeck, work done under U. S.Navy
Contract No. Nonr-1224 (15), University of Michigan, 1958
(unpublished).

"The form appropriate here would be obtained by starting
with a mixture of particles of species a and P with densities p and
pp=p (both species being hard rods of diameter a). The kinetic
equation for the one-particle distribution function of species 0. in
the limit p -+ 0 when species P is initially in equilibrium would
then coincide with (1.7).

'4 It is to be noted that D and other properties of this system
"coincide" with those given by the Knskog theory of hard spheres.

L(q, t; v,v') =L(—q, l; —v, —v') . (2.6)

LNote that F(tp, 8,v) and. A (v, t) depend on t only through
the combination tp, so that any expansion in p will have
infinite coefficients as t ~ pp.]

The quantity A (v, t), which coincides with A „(v,t) of
Jepsen, is the probability that a particle having velocity
v at t=0 will also have velocity v at time t, either because
it had no collision up to t (this has probability e '»&"&) or

In that theory D is obtained from its value for a dilute system by
replacing the density p appearing in the latter by pg(o), where g(o)
is the value of the equilibrium radial distribution function at con-
tact, which is here equal to (1—pa) '. For the one-dimensional
system considered here, the diHusion constant obtained from the
Boltzmann equation is off by 16% (J. M. J. van Leeuwen and A.
Weyland (private communication) j.
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E(k,s; v, c)= dte " dqe'" f, (q,v, t/c)

=J(v, s ikv—)b(v c)+—pkp(v) dw

where

X (pp(w)+ pL(v w)(w c)j(s ikw)

+pwgp(v w) —p(w—c)]—)$A(wy s ik—w)]P

=kp(v)L(k, s; v,c), (2.7)

Z(v, s) =Q'v'+2spp(v)+s'i 'I' (2.8)

is the Laplace transform of A (v, t) and L(k,s; v,c), the FL
transform of L, is symmetric in e and c.

The Laplace transform h(s; v,c) of the conditional
velocity distribution function (1.1) may be obtained
from (2./) by setting k=O:

k(s; v,c)=E(O,s; v, c) . (2.9)

It is now readily veriled that as s —+ 0,

h(s; v,c) =kp(v)/s+o(s ') (2.10)

which implies
lim k(v, t/v') = hp(v') . (2.11)

A more detailed analysis of the asymptotic form of f,
is given in Sec. 7.

3. VELOCITY AUTOCORRELATIOÃ FUNCTION

because its last collision before t was with the neighbor
it initially collided with, and the latter had not yet col-
lided with a different particle (giving rise to the factor
Ip).

Taking the spatial Fourier and Laplace time (FL)
transform of f, yields l

see Appendix 3, Eq. (24)j

P '(s,p) =vPntsL1+ P b((s)(pa")'j
lM

(3.4)

(the zeroth-order term corresponding to the unhindered
motion of an isolated particle, p=0), it is found that
b~(s) diverges as lns for l= v, v=2, 3. Partial resurnma-
tion of this expansion then results in the lnp term in
$„(pa"') mentioned earlier.

Let us examine now the behavior of |t '(s,p) for our
one-dimensional model. From the dimensionality argu-
ment and from Eq. (3.1) we have

p S
( p) = (Pnts) 1+2 B

(1—pa) (Pnt)'I'
(3.5)

equal to their values at v =0.$ D ' thus has the form

D '= nn(Pnt)'IP, (3.2)

where n= (27r)"' is a pure number. The general form
D ' could have been deduced without any computation
(except for the numerical value of e which could have
been also 0 or ~) since for the case a=0 there is no di-
mensionless constant on which 0. could depend, and we
showed earlier that when a/0 we simply replace p by
n. In higher dimensions (hard disks or hard spheres of
diameter a) we will generally have

D '= pa~'(Pnp)"'& (pa") (3.3)

where ~=1, 2, 3 is the number of space dimensions
considered. It has been suggested that $„(v) contains for
s =2, 3 a term of the form q

' lng. This conclusion is
based, since f„(p) cannot be evaluated exactly, on par-
tial summation of diagrammatic expansions occurring
in the generalized transport equation (1.7) for f(q, v, t).
When P ' is computed from this equation' in the form
of a density expansion,

The Laplace transform It(s) of the velocity auto-
correlation function |t (t) may be obtained, after some
manipulation, from (2.7)—(2.9) in the form

with -the J3~ pure numbers,

By=4/Qn. , (3.6)

It (s)= v'hp(v)X(v, s)dv

(p(v) —vp'(v))'sl:&(v, s)]'dv (3 1)

v'kp(v)Z(v, s)dv

—2(ntP) 'n skpP(v)l A(v, s)j'dv (3.1')

for a Maxwellian distribution.
Tatung now the limit s —+ 0 we obtain the diffusion

constant D given in (1.5), the first integral giving 2D
and the second (—D). Dn evaluating the second integral
in (3.1) in the limit s —+ 0, kp(v) and p(v) may be set

As s —+ 0 the coefficients of all p', for l+2, will diverge
as s' '. These divergences do not however have any
effect on the analyticity of D '(p) =lim, „p P '(s,p). All
the divergences indicate, in this case at least, is that the
approach of pf(t) to its asymptotic form is not uniform
in the density. Indeed an inspection of (3.5) shows that
the only way for the coefficients in the density expansion
of f '(s,p) to remain finite as s ~ 0 is for all the Bq to
vanish for /)1. This would correspond to f(t) having
an exponential decay, Langevin type, f(t)= (v')
Xexpl —tB~P/(pm)'"]. For short times, this form of
It (t) is exact, It being linear in t rather than quadratic, ' '
because of the discontinuity of the interparticle poten-
tial. Indeed, an explicit calculation of iP(t) shows almost
perfect coincidence with the exponential form, devia-
tions occurring for t&4(Pnt)"'/B~ where the exact f(t)
becomes negative and very very small (see Fig. 1 and
the discussion in Sec. /).
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Fro. 1. Short-time behavior of
velocity autocorrelation function for
one-dimensional hard points at unit
density and temperature.

~e2
0 .5 2,0 2.5

f,(q,v, t/v')dqdv = 1

that whenever f(q, v,0)= Chp(v), where C is a constant,
then f(q, v, t)=Chp(v), independently of t Thus, t.he
Boltzmann distribution is, as it must be, a stationary
state of the stochastic process represented by the transi-
tion probability f, (q, v, t/c) Furtherm. ore, it follows from
the results of Sec. 7 that as t~ ~ the velocity part of

f becomes Maxwellian and the spatial part tends to uni-
formity. The Boltzmann distribution is therefore the
unique stationary state of this process.

The time evolution may be expressed by means of a
collision operator B, defined by Eq. (1.7). To obtain an
explicit form for this collision operator, we first take
the FI. transform of Eqs. (1.6) and (1.7), using (2.7):

X(k, v,sc)f(k,c,0)dc, (4.1)f(k,v,s) = Kf(h, v,0)=

(s ikv) f= f(k, v,—0)+Sf, (4 2)

4. KINETIC EQUATION

We now consider the time evolution of the distribu-
tion function f(q, v, t) of a test particle, as given by Eq.
(1.6). It follows from the symmetry of L(q, t; v, v') =
f,(q, v, t/v')/hp(v) and from the normalization

I= s ikv —K',— (43)
where K ' is the operator inverse of K, and s and kv are
diagonal operators in velocity space. We now rewrite
E and+ in the form

K(k,s; v, c) =A (v,s ikv) [8(e —c)—
+hp(v)D(k, s; v, c)Z(c, s ikc) j,—(4.4)

$(k, vs, c) = Ls—ikv —A —'(v, s ikv) j—B(v c)—
+hp(v) H(k, s; v,c), (4.5)

where D is known explicitly from (2.7). Equation (4.3)
then implies the integral equation for H (which is sym-
metric in the velocity variables)

H(k, s; v, c)=D(k,s; v, c)— D(k,s; v,v')hp(v')

&(A(v', s ikv')H(k, s—; v', c)dv'. (4.6)

The kinetic equation describing the time evolution

f(q, v, t) may also be obtained more directly (or at least
more physically) from the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy. This gives, for
our case, where collisions have the simple effect of inter-
changing velocities,

where K and 8 are operators in velocity space. Compar-
ing (4.1) and (4.2), we have

8f(q, v, t) 8f
+v—= dv'~v —v'~(p(v' —v)f(i)(q, v', q+, v, t)+p(v —v')f(»(q, v', q, v, t)

Bt Bg

—p(v —v') f(i)(q, v, q+,v', t) —p(v' —v)f( i)(q, v,q,v', t)}. (4.7)

Here f(»(q, v, q', v', t) is the joint probability density of the test particle (at q and v) and its neighbor to the right
(at q' and v') and q+ is the point q+a corresponding to the particles in contact. f( i) similarly describes the joint
distribution of the test particle with its left neighbor. " (We take here t) 0, and we shall omit the subscript on q
from now on. )

While we have not seen (or given) an explicit derivation of (4.7), it appears self-evident; see e.g., H. Grad, in Handblch der
Physik, edited by S. Fliigge (Springer-Verlag, Berlin, 1958), Vol. XII, p. 205.
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Writing f(i)(q, v, q, v', t) as a linear functional of f(q, v, t)

t

f(i)(q, v,q,v', t)= dt' dq'dw(t)(q q',—t t', —v, v', w)f(q', w, t')
0

dt' dq'dw dq"p(q q', —t t';—v, v', w)f.(q' q"—,u, t'/c) f(q",c,0)dc (4.8)
0

the Fourier-Laplace transform of p has the form

$(k,si viv, w)= f(i)(k~s~v)v /c)K (k,si claw)dc. (4.9)

Here f«) (q,v,q,v, t/c) is the value of the joint distribution function of the test particle and its right neighbor when
the test particle is initially at the origin with velocity c; K ' is the previously defined operator inverse of K. In
terms of g, the collision operator 8 has the form

8(k,s; v,c)= dv'~ v —v'( {«(v'—v)p(k, s; v', v,c)+«(v—v')P( —k, s; —v', v, —c)

—[«(v—v')p(k, s; v,v', c)+«(v' v)g(—k, s;——v, —v', —c)]}=8+(k,s; v, c)—8 (k,s; v, c) (4.10)

with 8~ (8 ) corresponding to collisions which scatter the test particle into (out of) the velocity range (v, v+dv).
In deriving (4.10) use was made of the reRection invariance of our system.

An explicit calculation of f(i)(k,s,v,v'/c) yields

f(i)(k, s v v'/c)= «(v v'){ph—o(v')K(k s v/c)+pho(v)W(k, s v', c)}+«(v' v){ph—o(v)K(k s v'/c)+pho(v')W(k, s v c)},
(4.11)

where the 6rst term in the curly brackets corresponds to having no correlation between the particles entering a col-
lision and

W(k, s; v,c)= I'(v, s—ikv)A (v, s ikv) I')(v —c)+pho(—v)

X dw «(v —c)«[(v—w) (w —c)][pw—(s—ikw)]+ «(v —w) «(c—w) [2I'(w, s ikw) —1]p[t—((w)+w]

[pt((w)+s —iku]
[& '(w, s ikw) —pt((w)—+s ikw]r—(w, s ikw) —2'(w, s—ikw) . (4.12)

p[p(w)-w]

Here I'(s—ikw, w)A(w, s—iku) is the FL transform of

1
e "F(tp, e,q/t) d8,-

27l 0

where F is defined in (2.3),

I'(s—ikw, w) = [pt((w)+ (s—ikw) —S—'(w, s—ikw)]/p[t((w) —w].

It may be readily verified that I' and W have expansions in p (or m) beginning with terms of 0(p).
Combining (4.11) and (4.9) yields [using (4.3)—(4.6)]

(4.13)

with

p(ks; vv', c)= «(v —v') {pho(v') t)(v —c)+pho(v)E(k s; v', c)}+«(v' v) {pho(v) &(v —c)+pho(v')E—(k s vc) }, (4 14)'

W(k, s; v,c)
W(k, s; v, p)ho(p)H(k, s; p,c)dp,E(k,s; v, c)=

A(c, s ikc)—
where B was defined in (4.5)—(4.6). The collision operator may now be written in the form

8(ks; v c)= {pho(v) ~v
—c)(+oE(ks; vc)p[p(v) v]+ 'E( ks;——v, ——c)p—[t((v)+v]}

(4.15)

—pp(v) i)(v—c)+pho(v) dv'(v v') E(k,s; v', c)+— (v' —v) E(—k,s; —v', c)dv' =8 —8 . , (4.16)
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(6.5)P'(s) = 2Dn(s)/[1+n(s)], (5.17)

be obtained from (5.12) by letting h(v, 0) =8(v —v). This The mobility will be given by [see Eq. (71), Ref. 8]
yields

where we have used a prime on P to distinguish it from
the exact f(s) given in (3.1).The diffusion constant ob-
tained in this approximation will be identical to the
exact one'

D'= lim P'= D.
a~o

(5.18)

6(s+ico; v, c)C (s,c)dc (6.2.)

6. EXTERNAL ELECTRIC FIELD

We consider here the velocity distribution function
h(v, t) (the spatial part being uniform), when the test
particle (but not the other particles of the system) has
a unit charge and there is a spatially uniform external
electric Geld Ee'"' acting on the system. To linear terms
in E, we write

h(v, t) =hp(v)+Ee' %(v,t) . (6.1)

The Laplace transform of C will satisfy the equation
[see Eq. (3.4), Ref. 10]
C'(v 0)+(s+ia))C'(s v) Pvhp(v)/s

whose density expansion was given in (3.5) and whose
expansion in eo contains terms of the form or' inca. In the
case of a dc Geld, co=0, the stationary state will satisfy
the equation

—Pvhp(v) = U(v, c)4(c)dc,

whose solution is
1 Pho(v)v

C'(v) =-

and o=PD as required by the Einstein relation. It
should be noted that the steady-state distribution has
a discontinuity at v =0 and is otherwise proportional to
hp(v), in contrast to the results from the usual relaxa-
tion-type equations where (pIvI) ' is replaced by an
average mean free time 7. Whether this feature remains
in higher dimensions is an open question.

7. ASYMPTOTIC DISTRIBUTIONS

The steady-state solution

C(v) =lim sC(s, v)
s~0

has the form

We conclude with some qualitative remarks on the
form of f,. At very short times, the interaction of a
many-body system is ine6ective, so that the self-distri-

(6 3) bution is that of an ideal gas. According to (A15),

f,(q,v, t/v') + 8(q vt)8(v —v'), —as t ~0. (7.1)

C'(v) =

=ho(v) PvA(v, uo)

X(i&p; v, c)Pchp(c)dc On the other hand, as t —+ ~, any memory of initial
conditions will be lost, and f, will thus reduce to an
equilibrium one-particle distribution, normalized to
unity, i.e.,

f,(q,v, t/v') ~0, as t~ ~. (7.2)
n

+— [nc ice sgn(v —c)]So(c,i—op) dc
Sg' QQ

(64) To see how the long-time approach is realized, we
observe that as t —+ 00

or

whereas

so that

1 1
A (v, t) =— exp( —tp[(1—cos8)p(v) —i(sin8) v) d8 —&

—exp f —tp[p 8'p(v) —i8v]}d8,
2' 2'

tp
A(v, t) ~ [2vtptt(v)] "' exp ——

2 p(v)

F(tp, 8,q/t) =exp( —p[(1—cos8)tt4(q/t) —iq sin8]) ~ exp[——',ptp(0)8' —ipq8],

2~
F(tp, 8,q/t) exp(i8[o(q —v't) —o(vt q)])d8 ~

I

—
I

exp ppI q+-
I

(t—
& I

v I))
I pt(IvI)j E p)

(7.3)

(7.4)

where c=&1 exists only if q is between ~'t and nt. Hence, for pq))i, as t —+ ~

f.(q,v, t/v') ~ (2v pt(I v
I )) 't' exp[—(1/2)(p/(I v

I ))(q'/t)][b(v —v') b(q —vt)+php(v)), (7.5)
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representing a singular increasingly unlikely "wave front" for the initial particle to retain or regain its velocity,
together with a straight diffusion of the initial one-particle density, with diffusion constant D=-, (~ e

~ )/p.
It is simpler to recognize qualitative regularities if we restrict attention to the coordinate self-distribution

function
1 ( q fqi P -.(8&f.(q,~,t/") h.(")d~d"=-~l —

hol
—i+—d»(tp, 8,qlt) exp ~l

—lsgnl ——~
Et,t I ti 2~ E2J It

(7.6)

Since

P.6) may be rewritten as
&sgn(~ —~)).=p'(~), ho(~) =kp"(~), (7.7)

fq&
-' 1 1 8

P(tp, 8,q/t) -p"
~

—
~

— (1—cos8)p'~ —
~

i si—n8 d8= —— &(tp, 8,q/t)d8, (7.g)
2 2ir t k tP 1—cos8 2' 2p(1 —cos8) Bq'

which yields thc convcnicnt relationship

8 18 q q q (q—n, (q, t) =- p—-ti'- Ai ,t-
at

'
2 aq'

If we note that the asymptotic A(q/t, t) of (7.3) satisfies the diffusion equation

8 &q &
1 &lsl) 8

at It' ] 2 p aq'

~pA-
n. (q, t) ~ /

exp —
I

L2 &~.[)t& 'a([.[)) E t &

P.9)

(7.10)

(7.11)

which indeed could have been found directly from (7.5).
The behavior of n, over the whole time domain is best observed by examples which utilize non-MaxwelHan'

ho(ii). Two limiting cases are those of a finite-range discrete distribution and a very long-range distribution, with
velocity scale c:

hp(s) =-,'[8(i —c)+8(v+c)j, ti(i) =max(c,
~
i

~ ),
ho(w) =-,'c'(c'+v') It', ti(ii) =(c'+s')'t'.

We have previously noted [Eq. (2.5)j the closed form

(7.12)

so that (7.9) becomes for these cases

8 c 82—n, (q, t) =— e-&"Io[p(c9'—q')'I') for
~ q ~

&ct
2 Bqm

=0, for iqi &ct
8 pe ()2~ (q t) (c2t2+qm) 1/21 (Pct)exP[ P(c2t2+qR) 1/2j
83 2 Bgm

(7.14)

Except for the wave front in I—signi6cant at small
time —due to a 6nite maximum velocity, these evince
very similar forms in space and time. In fact., using the
small and large argument expansions for /0..

cxtcnding the Initial

n, (q t) ~-ho —
~

as t~08 ) (7.17)

Ia(g)=1+~x'+~'~x'+ . for small x obtained directly from ('7.1) and (7.5). Similarly, at
7.15 0),t,(1+(1/g )+ ), f l

' large time, we have

together with (7.9) and (7.13) olle fiilds

1 82 pt
n (it t) =— p(ii)+ t '(i)+-

2k Bum 2

8 1 p(0)—n, (q, t)-— exp—
R 2 (2mpt)'t'

p ( 1
+ "I

2p(0) t k 4p'

P.18)
P.16) depending to this order only on p(0).
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—e e&(*—)b(xl yl) ~ e e &*&b(zl—yl)gdz;

=Ntlo(xl, ",xu )~(»—yl)/fl(yl) (A3)

and will evolve in time in accordance with the Liouville
equation

(at4/at)+ (tu, H) =0 (A4)

with (A3) as the initial condition. The one-body distri-
bution
flail(yu,

t/yl) = (N—1) ~ 44(xl, x~, t/yl)

Xb(xu —yu)gdx; (AS)

thereby expresses the conditional distribution of 6nding
a particle at yu at time t if it is known that a digereult

particle was at yj at time 0. Since the initial distribution
of yl is fl(yl), we conclude as well that

fl, l(y2 t yl 0)=f2(y2 t,yl)

fill(yu, tlyl) fl(yl) —= fu(yu, t/yl)fl(yl) (A6)

represents the joint probability density of 6nding some
particle at y~ and another at y2 at time t later.

If x;(t)=g;(t~xl xuj) represents the explicit time
dependence, following the equations of motion, xi
= (x;,H), for a system of initial conaguration (xl ~ xu1),
then the Liouville equation (A4) has the explicit (but
generally highly complex and uncomputable) solution

t4(xl XN~ t)=t4('' g'( —tl» "») "o) (A&)

so that

g(xl~ ' ' 'XN)t4(xl& ' ' 'Xg& t)gdx4

g(xl(t), xu1(t))t4(xl, x~, 0)IIdx4. (A8)

In particular, then, from (A3), (A5), and (A6),

fu(yu, t,yl) =N(N —1) b(xu(t) —yu)

Xpp(xl ' ' 'xlv)&(xl —yl)gdx' (A9)

which we may rewrite in terms of equilibrium expecta-
tions as

fu(yu, t,y,)= (p b(x;(t) —yu) b(x;—yl)) . (A10)
i'dj

Now the prototype nonequilibrium behavior may be
elicited by 6xing the con6guration of a single particle
at time 0 (a convenient reference point; in an equi-
librium canonical ensemble, only time differences are
measurable). Thus t4 has the initial value

t4(x4, tv, 0/yl)

In the same way, the self-distribution for some particle
to be initially at y~ and then at y2 a time t later becomes

f (yu t yl) = &E b(x'(t) —yu)b(X4—yl)), (A»)

while the complete pair distribution, the joint proba-
bility for any particle to be initially at yl and any (the
same or a different one) at yu at time t, is

ju(yu, t,yl) = fu(yu, t,yl)+ f.(yu, t,yl)

=(p b(x;(t) —yu)b(y —xl)). (A12)

When /=0, the time-displaced distributions reduce
to the equlibrium distribution. For a uniform system
(periodic boundary conditions or, in the thermodynamic
limit N~ ~, volume Q~ pp, at fixed N/Q=p) the
pair distributions depend only on the diBerence in posi-
tion, e.g.,

ju(ru, vu, t,rl, vl) =ju(ru —rl, vu, t/vl)php(vl) . (A13)

Going to t=0, we then have, from (A10), (A11), and
(A12),

ju(rl, v2,0/vl) =pg(r) ho(vu)+ b(r) b(vu —vl),
fu(r, v2,0/vl) =pg(r)hp(vu), (A14)

f,(r,v2,0/vl) = b(v) b(vu —vl),

where g(r) is the usual radial distribution function. How-
ever, for tWO, f, in general depends as well on the dy-
namics of the system, and no universal" component of
ju can meaningfully be isolated. 4 The ideal-gas case
(no interaction between the particles) is still simple, for
it is seen at once that fu(r, vu, t/vl) is independent of
time, while g(r) =L1—1/N)~1 as N~ ~, so that

fu(r, vu, t/vl) =ph p(vu)
whereas

f (1;vu, t/vl) = b(r —vut)b(vu —vl) . (A15)

The system considered by Jepsen (one-dimensional
hard rods of zero diameter) has the same equilibrium
properties as an ideal gas, and the whole dynamics of the
system consists of the interchange of particle velocities
during a collision. This is completely equivalent to the
interchange of the labeling of the colliding particles.
Hence all system properties which do n'ot depend on par-
ticle labeling, e.g., ju, are identical with those found for
the ideal gas:

fu(r, vu, t/&1) =pho(&2)+ b(&—out) &(vu —vl) ~ (A 16)

The decomposition however no longer corresponds to
that into fu and f„which must now be computed from
the dynamics.

APPENDIX 8: EVALUATION OF TIME-
DISPLACED DISTRIBUTIONS

Consider N point particles on a line of length I.in the
limit L~ pp at fixed p= N/L. We are interested in the
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development of the conditional p-body distribution at vo at the origin at time t=0. This is defined by the
time t when it is known that there is a particle of velocity N —+ ~ limit of

fv/1(ql vl q2 v2 ' ' '
qv vv t/vp) =Q Q (h(v' 'vp)h(r/ (t) —r ql)' —

jIQ» ~ » j~

X&(;,()— ) 8(;„(t)—;—q„)h(,,()—„))/Sh ( o). (31)

The corresponding self-distribution is

f /1 (ql, vl, qp, vp, ,q,v, t/vo)= g (h(v/, —vo)h(r;, (t)—r;,—ql)
21+' ' '2y

Xh(v;, (t) —vl) h(r;, (t) r;, —q)—h(v;„(t) v))—/SIto(v ), (32)

in which the 6rst of the p bodies is the initial distinguished particle. If the particles are zero-diameter hard cores,
they Inerely reQect on collision, maintaining the pair of trajectories but interchanging identity. Thus a symmetric
quantity, such as j'v/1, reduces to its free-particle form:

v
—

v h(q —vpt) h(v —vp)-
f„/1(ql, vl, ,q„,v„t/vo) =p g /Sp(v. ) 1+g

a=1 . a=1 p Igp(v )
(33)

To determine the self-distribution fv/1„ free-particle trajectories may also be used providing that we identify
the particle represented by r;,(t) with the same particle r;, at time 0. Since the particle ordering does not change on
collision, this can be achieved by specifying that its order

o;—=P o(r;—rl)
l

(34)

is unchanged in time. Hence (82) may be replaced by

fv/1»(ql)vl, ,qv, vv, t/vp) =P P (h(v; —vp)h(r/, (t) —r;—ql)
Jgg» ~ »f y

X &(v;,(t)—vl) h(r;, (t)—r,—q )h(v;, (t)—v )8...(t),o;)/who(v, ), (35)

where the dynamics proceeds according to

v;(t) =v;, r, (t) =r;+v;t.

In order to evaluate (85), we employ a Fourier representation of the Kronecker 8 function:

(36)

2r

h.;,(t),o;=—
27i 0

1
expLi8(o;;(t) o;)]d8—= exp—i8 p {oLr;,(t) —rl(t)] —p(r;—rl)} d8.

2'
(8&)

Now the particles are independent, so that only the expectation

El(r; —r;, 8)0(exp(i8{oLr;(t)—rl(t)]—o(r, rl)}))„—
with respect to the tth particle is required, where l/i, jl, . j„.Separating (35) into two parts according to
whether iW j&, j„or the converse, we then have

f /1 (ql vl ' ' q v t/vp) fr+1 (ql vl ' ',q„v„t; 0,vp)/ptto(vo)

1
E&(q1,8)~ & ' expi8Lp(ql —vpt) —p(vlt —ql)]exp{i8 g fe(ql qa) p(vat q)]}—d8— —

2~ 2

+[f,/1 (ql, vl, .q„v„t/vo) f,+1 (ql vl ' ' 'q v —t 0,vo)/pttovo)]

1 n

X—E&(q1,8)" & exp{i8 p Lp(ql —q )—p(v, t—q )]}d8, (89)
2~ 2

where superscript zero denotes free-particle motion.
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There remains the computation of E~(q,8). But

so that
exp[i8[«(x) —«(y)]}= 1+[«(x)—«(y) ]i sin8 —«(—xy) (1—cos8)

E~(r; —r; 8) = 1+(r;(t)—r;—vit)„,(i/L)sin8 —(l r;(t) —r;—v~t
l )»(1/L)(1—cos8) .

(810)

(811)

Averaging over vg with the assumption (vq) =0, and defining

p(w)=&lw —v I&. ,
we have

E (q,8)=1+(q/L)
'

8—[tp(qlt)/L](1 —co 8).

Only the Nth power of E&(q,8) is required in the N —+ ~ limit. We then define

F(tp, 8,v) = E&(tv, 8)N= exp{—tp[p(v) (1—cos8)—iv sin8]}

and use (83) together with the free-particle unconditional joint distribution

(812)

(813)

(814)

f+i'(n» "q v t'ovp)=p"+'II ho(v. )

to complete the evaluation of f„ ii„bot iaingn

y 1
f„g,(qg, vg, . ,q„,v„t/vp) = [p& II h (v.)]—F (tp, 8,q|/t) exp(i8[«(qg —vpt) —

«(vent
—qg)])

2m'

y v (v b(v —vp)b(q —v t))
Xexp(i8 2 [«(n—q-) —«(v-t —q-)])d8+(p" II ho(v-))I &

2 ho(v~) i

(815)

y
X—F(tp, 8,qg/t) exp(i8 P [«(qg —q )—«(v t—q.)])d8. (816)

2~ 1

The lower-order distributions are of special interest. Choosing p = 1, we have the usual conditional self-distribu-
tion

1 1
f,(q,v, t/v') = b(v v') b(q v—t) F—(tp, 8—,q/t) d8+php(v) F(tp, 8,q/t—)exp(i8['«(q —v't) —«(vt —q)])d8. (817)

2~ 2'

Somewhat more explicitly, bringing down the step functions from the exponents,

f,(q,v, t/v') = [php(v)+b(v v')b(q vt)]A—p(q/t t)—
+php(v) «(q —v't) «(q —vt) [A i(q/t, t) —A p(q/t, t)]+php(v) «(v't —q) «(vt —q) [A &(q/t, t)—A o(q/t, t)], (818)

where

At(v, t)—=—F(tp, 8,v)e'"d8.
2~

Further simplification then results from the observation that

1t 8 8
(e+"—1)F(tp,8,v) =-l + lF(tp, 8,v) .

p (Btp(v) 8tvl

In the form (318), we can readily take the Fourier-Laplace transform:

(819)

(820)

E(k,s; v, v')—= e'"'e "f,(q v, t/v') dtdq= e &' +"~' b(v v')b(w v)— —

( 8 8) f 8 8)
+ho(v) tp+ «(w —v') «(w —v)tl + I+«(v' —w) «(v —w)tl —

I
A p(w, t)dtdw . (321)

(8tp(v) atv) &8'(v) 8tv]



136 J. L. LEBOWITZ AND J. K. PERCUS

Noting that, with respect to the Laplace transform,

( 8 8) 8 8 8 8—
!=[p'() —p()] ' ( ~p())—&1~p'())t— L p'() —p()] ' ( +p())—+(1+p'())—

Eatp(v) atv] Bv Bt 88 8$

(822)
and that

S(v,s) —= e-"A p(v, t)dt = (p'v'+2spp(v)+s') 'I', (323)

(321) yields after minor algebraic operations

g(k, s; v,v') = b(v —v')Z(v, s—ikv)+php(v) [(s—ikw+pp(w))

—(s—pkw+pw)e(w 'U )e(w ——'v) —(s—pkw pw—)e(v w)e(v w)][X(w)s pkw)] d'w. (824)

When p=2, we have from (816)

1
fpt g, (q,v, q', v', t/c) =p'h p(U) h p(v ) F(t—p, 8 q/t) exp{i8[e(q—ct)—e(vt q)]}

2Ã

Xexp{i8[e(q—q') —e(v't —q')]}d8+p(hp[v)b(v' —c)b(q' ct)+hp(—v') b(v c)b(q —ct)]—

X—F (tp, 8,q/t) exp{i8[e(q—q') —e(v't q)]—}exp{i8[e(0) e(vt—q)]—}d8 (3.25)
2'

Ln particular, at right and left contact, q'= q+ or q'= q, we have

f~+~ (q,v,v', t/c) =p'h. p(v)hp(v') —F (tp, 8,q/t)
2'

1
Xexp{i8[e(q—ct)—e(vt —q) —e(v't —q)]}d8+ php(v') b(v—c)b(q —ct)—F (tp, 8,q/t) exp[—i8e(v' —v) ]d8

2~

1
+php(v)b(v' —c)b(q—ct)—F(tp, 8,q/t) exp[ i8e(v v')]—d8, (—326)

2x

with F replaced by Fe' to obtain f& &. Rewriting (826) in the form

f~+&(q v v', t/c) =p'hp(v)hp(v') {Ap(q/t t)+ e(q—ct) e(q—vt) e(q—v't) [A &(q/t t) —A p(q/t t)]
+[e(q ct) e(vt —q) e(v t q)+ e(ct——q) e(vt q)+ e(ct q) e('U t q)][A——y(q/t&t) A p(q/t&t)]

+e(ct—q) e(vt —q)+ e(v't —q) [A p(q/t, t)—2A )(q/t, t)+A p(q/t, t)]}
+pb(q —ct) [hp(v') b(v —c)+hp(v) b(v c)]A p(q/t t)

+pb(q —ct) [hp(v') 5(v—c)e(v' —v)+he(v) b(v' —c)e(v —v')][A ~(q/t, t)—A p(q/t, t)], (327)

and combining with (818), we may write

f&+&(qvv', t/c) =pe(v v') [hp(v') f,(qv —t/c)+hp(v) W(qv', t/c)]+pe(v' v)[hp(v) f,(qv—',t/c)+hp(v') W(qv, t/c)5, (328)

where

W(q, v, t/c) =ph, (v) e(vt q) LA i(q/t,—t)—A p(q/t, t)]
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Il24) we find

5

ll29) is ob«»ab le as in (~2 )C tnnSfol'IQ 0hc Folll'1''-LaplaceT

+&(i, s—iki)8"(k, ;, )=8( —i)

-pko(s) e(i —w s—'-p 0 s —)(s—«kw —pw)LJ(w, —' 'dww s—ikw) j'dw

2 2(s—ikw)+ p(hi(w)+w
pko() (- ) (-

C: SEI,P-DIFFUSION IN AAPPEIIX C: SE - IN A
RANDOMI2lED

0 D ln 8 One- 1IQCof self-d16uslon 1Th coeKclcnt 0 D 1C 0
system Dlay 4C VFT1

s phd {w)—iku)(s —pw —skw

bu

~ ~ ~~f(tho, ihi, hs )dh(f(Topi sg, ))= 0, i, ch

h (w)

0 cncous ln tlIQ e thear rocess (homogeFol a statlonal'y pl 0 c
fOIIn I'dlstrl tlon of To ls unlf

{~(0)s(h))dh
5 maybe written ase.g., Ta)=-', {60))and (CS) may

Hence we also have

s &'(s(0)i (h))dh.

2s tyka g -( l)mg, (i)=lim — 1—e
0

Xexp(—y g 6;))Ch. C7

(C3)D=(wZ (i)),
i th at velocity e is de6ncdWhCI'C t C 1h diffusion length at ve oci functl

s-&0&e -h&i. . .s-4&a) —exp0~Op-4~x. . .
(C4)e-&'(i (h) i s(0)=e)dh.R (s)=lim

Q ~0

0

duce thc gcncl atlng7 let us introduceTo evaluate (C7), e
'

duce
on

um
' ' 1 4 an ensemble of ln-uIQ 18 spcclGcNO'g7 lf the 1TledB1IQ

'
d "d.g.nly: ~at each sca esign a e

d the succes-
ltlon of thc c nc

denote the Grs s
81VC ln e~'

tervals between sca

"j, (C8)Z 43(h', h'+i, h+s ++ Z 4~(h', h'+i 3;, .
0

ntervals, ps intr-nl @i exists for i p n e'nde endent ln c
duces a Markofhan c a, , u
bcconms

=-s — 6;)-exp(—y Q 6;s""L~xp(-~-
7

so that (C4) becomes

(&—2 expL —4i(hv) jR„(e)= lim — 1— e
0

L-~ (v)-~ (hv, v)jI—exp—

—L4i(v)+Pi(v v)j}x Li—exp

R„e = ' — —2e-&ra —1) exp( —y Q 6;)).R„(e)=lim —(1—2e-&r'
7

l .Math. Phys. 6, 2201 1965).» Sec also R. Nossal, J. a

(CS)
g )Chexp{29i(v)+42(v v)j —".

~, (C9)+(~/v)0(A « ".
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or, if y '0($3,$4, ) —&0 as y~0,
v8 (v) =lim — 1—2 exp[—pi(ty)]

0

then p~(t) =$(t); It 2(t) =p(ti+t2) —p(ti) —y(t, )=0(~ )
for ti, t2

——0(y); $3=0(y'), etc. Thus again R„(v)=0.It is
only for partially correlated successive time intervals
that h&0 and E„(v)&0.

From another viewpoint, we see by virtue of
exp[ 4'&(7) 4'2(tV Y)]

X 1— — dt (C10) B(8 8)
1+exp[—4i(v) —42(v, v)]- &v(0)v(t)}= &v(t') v(tyt') }=—

~

——~&r(t')r(t+t'))
at &at' ati

Noting that gi(0)——&2(0,0)=0 and defining

~=q, '(0), s= y—,'(&,0) I,
Eq. (C10) is readily evaluated. We find

E„(v)= 2vlI, (C12)

g2
= ——(r(t')r(t+t'))

Bt2

82 1 8= ——(r(0)r(t)) =-—([r(t)—r(0)]2)
Bt2 2 Bt2

independently of 6= &6;}.Thus, if the intervals are in-
dependent, R„(v)=0. Moreover, if the scattering en-
semble is not just homogeneous in time but static, so
that

(exp( —
tokyo) exp( —t„D„))

coupled with (C2) that

8D=- —&[r(t)-r(0)]'}
28t ~ taboo

(C13)

exp &(p t )
For a static scattering ensemble, ((r(t) —r(0))s) will not

0 0 grow in time, and so, of course, D=O.


