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E'-breaking interactions, additional to the usual Coriolis terms, are deduced from velocity-dependent inter-
actions and shown to be of the same order as those contributed by the Coriolis force. Similar considerations,
when turned towards the weak interactions, yield a term that simultaneously breaks E and mixes parity.

I. INTRODUCTION

1
W~NE of the striking regnlarities of the deformed,

rotational nuclei is the goodness of the E quan-
tum number, the eigenvalue of the projection of the
total angular momentum along the symmetry axis
6xed in the rotating body. The small deviations from
the exactness of this quantum number have been
understood in terms of the Coriolis force, which, as we
shall review, is a part of the kinetic energy of rotation.
In the classic papers of Bohr, ' Bohr and Mottelson, '
and Kerman, ' the Coriolis force is given its familiar
classical representation, which couples the particles and
total angular momentum:

In this paper, we shall consider E-breaking mecha-

nisms that are present in the nuclear interaction poten-

tials, in addition to the Coriolis force from the kinetic

energy. The Coriolis force, since it is obtained directly
from the kinetic energy, is immediately seen to couple

the velocities of the particles and of the collective core.
Since the only collective variable used is the angular

momentum I, time-reversal and rotational invariance

dictate an 1p I or ep I dependence. A velocity depend-

ence of the nuclear interaction clearly brings in a p~
dependence, and this must manifest itself in a lp I term.
There are also more complicated forms that involve the

deformations and associated angular dependences, but
these are best discussed in context. Similarly a spin-

dependent interaction, such as a two-particle spin-orbit

force, leads to a e~ I dependence, as well as deforma-

tion-dependent forms. To the extent that the potential

and kinetic energies are of the same order, the l~ I
and e~ I terms contributed by the potential energy

are expected to be of the order of the corresponding

Coriolis terms. To make these estimates more de6nite,

specific model calculations are here carried through.

*Work performed under the auspices of U. S, Atomic Energy
Commission.

t On leave from McGiQ University, Montreal, Canada.
' A. Bohr, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd.

26, 15 (1952).' A. Bohr and B. Mottdson, Kgl. Danske Videnskab. Selskab,
Mat. Fys. Medd. 27, 16 (1953).

3 A. Kerman, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 30, 15 (1955).

II. REVIEW OF CORIOLIS FORCE

In order to have a de6nite, simple model before us,
let us consider the classical case of a particle outside a
deformed axially symmetric core, the particle moving
in a velocity-independent potential-well that has the
symmetry of the core and that follows the motions of
the core. Ke repeat here the solution of Bohr. '

The Hamiltonian is the sum of the rotational kinetic
energy of the core and the energies of the particles,

II=+ Q„'/2d„+II~.

Here Q„are the components of the core angular-
momentum along the symmetry axes of the core, d„are
the moments of inertia with respect to these same
axes—for our symmetric case dl ——8.=4&53. In the
approximation in which the particle interaction with
the core (via the deformed potential-well) is very strong,
it is useful to choose the coordinates that diagonalize
this interaction. To do this, the particle coordinates
rI should be taken relative to the core-6xed axes, and
f o ow on we con ider II w itte i terms of r,
and the canonically conjugate momentum pp. The core
variables must be chosen with some care since Q„does
not commute with rp, as can be seen immediately from
the fact that r~ varies with core orientation for fixed
particle position. Instead, we use the total angular
momentum I„which is, of course, the sum of the core
and particle angular momentum,

I does commnte wit}1 r~, y~. However, Qa is a
stant of the motion since rotation about a symmetry
axis changes nothing. Eliminating Q1, Qm in favor of
Il& 12)

IP+I2' Q3' jP+j2' j1I1+j2I2II= + + IIr+
28 283 28 8'

The last term in Eq. (3) is the part of the Coriolis
interaction that is responsible for E breaking.

If we omit this last term, the truncated Hamiltonian
IIO is easily solved.

I1'+I" (Ia- j3)' j1'+j2'
+ + III+ . (4)
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The constants of the motion include the usual total
angular momentum I, and the space-6xcd s com-
ponent Mb. In addition there are the components of
the angular momentum relative to the body-Axed
symmetry axis, I3 and ja, each of which is a constant of
the motion. The corresponding wave function has the
product form

it = &~x'(e)Xo"(rp) . (5)

The resulting eigenvalue of Hp ls

Its (K—0)shs

LI(I+1)—E'j—+ +ep.
2g 283

The actual physical wave function is a linear combina-
tion of the solutions (5) and, the degenerate solution
obtained by the replacement E~ —E, Q~ —Q.

That, for the physical state, I3, j3—or more ac-
cul ately~ I3 ~ j3

—RI'c constRnts of the motion~ w1th
quantum numbers E, 0, is only true to the extent that

jlIt+ jsIsHg'=—

(It—sIs)(jt+sjr)
W (9)

28

can be neglected. Hg' does indeed perturb the eigen-
functions of Hp in such a way as to admix pieces to the
wave function whose I3, j3 quantum numbers, K',
0', are higher or lower by one unit: E'=%+1,0'= 0+1
or E'=E—1, 0'= 0—1.The I, E dependence of these
admixture amplitudes is characteristic and determined
by the rules of angular-momentum operators

(I,+sIs) n~x'= L(I—It+ 1)(I+@)y&sZ)~, x r',
(10)

(It—&Is) &srx =L(I+&+1)(I—&)]'I'&sr,x+tr.

The quantitative tests of the E-breaking mechanism. are
really tests of this basic I, E dependence, and this
in turn is only a test of the linear /q and I2 dependence
of the interaction and is not a test of the precise form

The 0" stands for the Eulerian angles of the core axes.
The X)~~I, which describe the rotational motion, obey
the eigenvalue equations

I'nsrx'(0) =I(I+1))'r'nsr x'
I.&srx (O)=~&&srx',
Is&srx'(8) =E:&&sr x'

The Xo'~ obeys the corresponding equations for the
particle motion relative to the core:

jsXn'P(rp) = QtsXn'P(1'p)

j '+j"
IIp+ Xn "(rp) = sp»n' (rPp).

28

written down in Eci. (9). The additional potential
terms which we adduce here will, of course, have just
this same I and E dependence and to this extent are
indistinguishable from the Coriolis terms.

The precise form of the E-breaking mechanism is
relevant only when it comes to quantitative computa-
tion of the amplitude of the admixtures. In view of the
approximate nature of the particle wave functions, only
an approximate evaluation of the matrix elements of
thc E-breaking 1ntcI'actions ls possible. A simple model
suKces, therefore, to evaluate the contributions to the
E-breaking intera, ction itself. To this we now turn.

III. VELOCITY-DEPENDENT EFFECTIVE
INTERACTIONS

We consider here the CGects of two velocity-dependent
components of the effective force'.

(y' —y~)'
'Ur, =g VI.(r; r )—.

4M
(y'—yf)'

+Vr, (r,—r;), (11)
4M

Vr. 8(r; r;)—
'Ui s=~ (s;+s) (r;—r;)X(y —y) . (12)

Ig2

We completely neglect exchange, and so particle-core
velocity coupling can only arise from the parts of Vg
and Vr, s that are proportional to (y)v„„,t, (y)„„or
(s)psrtta]p (y)pare We neglect the possibility of terms
like (y)o „,t, .(s)„„because, in the extremely simple
model to be used here, core spin is assumed to average
to zero. In fact, for this same reason, we do not consider

'A. Bohr and B. Mottelson, At. Energiya 14, 41 (1963).
LEnglish transl: Soviet Atomic Energy 14, 36 (1963)j.' S. Kahana and E. Tomusiak, Nucl. Phys. 71, 402 (1965).
Kahana and Tomusiak approximate the residual interaction in
the '5 relative state by the free reaction matrix Eg in this state.
Here, let us take for the free reaction matrix:

(5) — yj (p p) — y — (p p)
4M 4M

The parameters in this equation are 6xed by noting that the
on-the-energy shell matrix element of I'p('S) is proportional to
the tangent of the '8 phase shift b. In fact,

3'tanb= ——, r'j p(kr)Ep(r P)ja(kr)dr,

where kk is the relative momentum of a pair of nucleons. The
Grat term in Ep('5) alone provides a fit to the low-energy scatter-
ing data while the second term is required if the high-energy data
are also to be fitted. A choice of parameters which gives a good
over-all Gt is

g =23.8 MeV,
p, '= 2.47F,
f ie12p

s '= 0.63 I",
and then there results cL, =3.5 I' as quoted above. One should per-
haps also notice that the velocity-dependent term in E~(~S) is very
much. like that in E~('S), and we assume it to be identical. The
spin-orbit term in the free reaction matrix is deduced by consider-
ing the 'P~, &, s states and has the form Vx, s(r) = —1528s "'&"s»
MeV.
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any forces that only contribute by involving the core
spin. We omit also the analogue of the core kinetic
energy terms (y)„„(p)„„from 'Uz, , since they can be
seen to be of order S„„,i ~ t;,i,/d„„relative to the
terms we retain. Thus, the portions of 'Ul, and'U~ 8 that
are actually employed are

rate of change due to rotation of the instantaneously
fixed shape. The first term describes the motion due to
"internal shape vibrations" which do not concern us
here. Ignoring these completely and sticking to the
requirement of pure axial symmetry, the Bohr result
becomes

u„-+ —zj8X)„„&'&*(3l„)„pQ„/d„,

and

0L ~Q L
—pp ' p, Vz Vzp& ' p~) s

c 2M
(11a)

(12a)

and

p.p.=M'p, v, -+ imp—,V(-', r'Y2„)(N„)„O*PQ„/8„, (20)

where (M„)„0is the matrix element,

The motion of the core particles will be treated
semiclassically and, therefore, we ascribe to the core
an over-all density and a velocity-density. We shall
consider the two extreme cases of rigid rotation and
irrotational Qow. The effective interactions obtained
from 'Ul, and 'Ul. 8, on carrying out the integration over
the core densities, are III,' and'III, q' ..

gp
Hz' —— p, (r,——)p, Vz(r, —r„)dr„

M
(13)

IIL s+sp —p.(r.)(r. r~) Xy.V—L s(ro rp)d—T. ~ (14)

The core-Quid velocity v, and the density, p, must be
given to specify the model. The Quid density is assumed
to be constant inside a spheroidal volume. Rigid motion
is simply specified by

Y2 *((1/i)rX V).Y2p,

of the rotation generators.
The functions V~ and Vl, q are taken from the

reaction-matrix determined by Kahana and Tomusiak. '
Since the range of these potential functions, V, is much
shorter than any core or orbit dimension we shall use
effective 0 functions instead, since the zero-range
form can be more simply compared with the Coriolis
interaction.

We begin by evaluating B&' for the case of a rigidly
rotating core. Inserting the expressions (15) and (16) for
the core velocity into (13), and using the zero-range
approximation to Vz(r),

Vz(r) ~ Cz8(r), Cz —— Vz, (r)dr 3.5(F)', (21)

p.p.=pciVva= pW6) x fc & (15)
a rather transparent form for Hl, ' results:

IIz'= —2 Czp. (r~)(r~ & Ii~).Q./~' (22)
where ~ is the angular velocity of the core. In fact,
the components of the angular velocity can be related
to the components of the angular momentum,

(16)

all components referred to the body-fixed axes. If,
alternatively, we describe the core as a Quid undergoing
irrotational motion, we can take over thedescription
of Bohr. ' The velocity is given in terms of the gradient
of a scalar field:

v, = V(-', r'a„Y ),2

—2 Czp. (r~)~~.I./&' (23)

This can be directly compared with the Coriolis inter-
action, Eq. (9). If we take for p, (ri) the usual

p, (ri)=A/(r~ro'A), r(roA"', r0=1.2 F, (24)

The R-breaking part, obtained from (22) by the re-
placement of Q„-+I„and confining the sum over
components to ~=1, 2, is

where the n„describe the quadrupolar distortion of the
surface of the incompressible nuclear Quid with respect
to space-fixed axes,

Eq. (23) becomes

0.51r „I„/d„. r(roA'I'. — (25)

R=Rp(1+n„Y2„), (18a)

or with respect to the body-fixed symmetry axes,

R=Rp(1+PYgo) . (18b)

The ci„can be expressed as the sum of the time rate of
change of the shape parameters viewed with respect to
symmetry axes rotating with the body plus the time

This seems to indicate that a moderate-sized contribu-
tion can be expected from V~ that is neither large nor
negligible compared to the orbital part of the Coriolis
interaction.

We complete the examination of V~ contributions to
E breaking by examining III. in the case of irrota-
tional flow. The insertion of expression (20) for the
core velocity results in what is, at first sight, a rather
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cumbersome form for III,'.

Hz'=oiczpp, (rz) Q p V(rz Yzm)'pz (M))mo I)/8)
tm «=1,2

i(6)'I'
pczp. (rz )

and obtain

Hz, s'= oMsz {2&op,(rz )—(oo x rz )XVp, (rp) }
( &z s-

(32)

p,=+1)—1

On the usual assumption that p, (rz) is uniform and
Ii+zpIz) equal to po over the spheroidal volume contained inside

(26) R=R,(1+p Y„),

It will now be recognized that this effective interaction
is just of the form of an electromagnetic E2 interaction.
The Coriolis interaction, Eq. (9), with which we want
to compare, is of the form of an electromagnetic M1
interaction. Clearly such a comparison cannot be
carried through except in the framework of a definite
particle model. Rather than attempt this here, we note
that there is, actually, more of a resemblance than is
usually professed between magnetic-dipole and. electric-
quadrupole matrix elements. To make this more
definite, we note that the important ingredient in (26) is

Vp, (r) = —pob(r —Ro)f+po{8(r—Ro)[r+irXI]
+poRoB'(r —Ro)r }(p Yzo)

+(higher order in PYzo). (33)
Then

UL,—a
H J„g = ~~capo r2 dr

)

X {2sp ooLS(rz Ro) —-,'Rob(rz —Ro)]

+(oo' rpsp' rz —osp oo)Rob(rz —Ro) }, (34)

z( g+ /15) i/ zV( roY' ) ps( P ~zP )+P (y~z ) (27) where )&& is defined in Eq. (16) as o&„=Q„/8„, and
$(rz —Ro) is the usual step-function. The numerical

while the orbital part of the Coriolis operator is just weighting fa««,
l» and

Ur. s
~Mpo r' dr~ —0 8,

(45/16)r)"'CzPp, 0.5P. (29)

For P 0.4, this contribution to the E breaking is
about a fifth the Coriolis contribution. This actually
may be an underestimate since the irrotational moment
of inertia appearing in (26) is much smaller than the
experimental value used in the estimate. The situation
appears, again, to be that the interaction contribution,
III.', is neither large nor negligible —whether calculated
on the assumption of rigid rotation or irrotational Qow.

The similar evaluation for Hz s', Eq. (14), is some-
what more complicated. Because the spin-orbit inter-
action 'Uz s is a p-wave interaction, the zero-range
expansion must be carried one stage further. Thus, for
the case of rigid rotation we evaluate

Hz, -s'=Msz . p.(r.)(r,—rp)Loo xr.]Vzs(r.—rz), (30)

by using the expansion

(As an aside, it might be noted that the M1 and E2
multipoles arise from the same term in the retardation
expansion. ) If we boldly put aside the fact that we are
comparing different irreducible tensors, and assert that
the expressions in (27) and (28) are about equal, Hz,

' is
weighted relative to the Coriolis by approximately

appearing in Eq. (34) is a fair measure of the strength of
III. 8' relative to the Coriolis interaction. The operators
appearing in the brackets of Eq. (34) have more
structure than the simple j~ aa of the Coriolis inter-
action, and so have diRerent detailed selection rules.
While only speci6c calculations can delineate the
precise numerical values, it is also clear that, generally
speaking, the matrix elements in (34) are of the same
order as those contributed by the spin term of the
Coriolis interaction.

For the irrotational case

H —'= —-'MP 2 (M.) (Q./&.)
K& fN

UI, s
sz p,.(r,)(r,—rz )X (Vr, 'Yz~) dr .. (36)

h'

Expanding the integrand, just as we did in handling
the rigid-rotational case, we obtain for JI~ 8'

f YL S——-,'iMP( r' dr

XQ (M.)o (Q./&, )s Vp. (r )XVrz'Y „. (3'l)
K) fS

It might be noted that only a Vp. term appears in (37).
p, (r,)r,=p, (rp)rz+[(r. rz)p.(rz)— The term involving p, itself vanishes because it in-

+rz(r, rz*) Vp, (r)z]—, (31) volves the coupling of the spin-current to an irrota-
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scopic description using the cranking model' as an
intermediary.

IV. PARTICLE DESCRIPTIOÃ OF THE CORE
d
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Fz( . 1. Diagrams cor-
ersponding to the inter-
action of the particle-
core potential U, the
Coriolis force C, and a
transition operator 8; an
energy e is given up by
the system. The core
states are labeled cp, c;,
cy,' the particle states are
labeled pp, P', Py.

d

Pg Pi C P~

CI

(Xc)
C

P& C P( Po

(UIb)

tional Qow, or, more succinctly, because p.V')&p, =0.
Equation (37) reduces, on again expanding p, and
keeping only the lowest order in P, to the simple form

(M Vr, 8—(-')'"Pl —po r' dr
I

a i

Using the cranking model, the core is now to be
described as particles moving in the orbits determined
by an average potential and perturbed by the core-
Coriolis interaction:

& c =core partic1es
(4o)

The Q„are operators on the angles describing the
orientation of the core. It is to be noted that the
Coriolis interaction in (40) involves the core particles
only and is to be distinguished from the E-breaking
Coriolis interaction of the particle outside the core. In
fact, the core-Coriolis interaction (40) serves to intro-
duce the angular velocity dependence that we had in
our semiclassical treatments. %e will 6rst calculate the
core orbits in erst-order perturbation theory and then
consider, in a typical transition matrix element, the
E-breaking effects of both velocity-dependent and
velocity-independent interactions between the extra
particle and the core particles.

The wave~function f consists of a factor 50~re (0),
describing the orientation of the core, a factor X'&,

describing the orbit of the outside particle, and a factor
P, describing the core particles.

(Qi+A Q.)
XQ b(r —Ro)sr (1I'p „)

2

Thus, the E-breaking part of H1,8' is

(38) (xe)x"( )r(4l)
First we consider the part iJ,.To first order in perturba-
tion theory, it is

(Ii+&p12)-0.58(r Eo) p s~. (—1I'2 „)
p 28

(39) lp &=
I co&+2

C,K

Eco Ecs
(42)

A direct comparison with the Coriolis interaction is
clearly not possible for a number of reasons. First, the
particle dependence of the interaction (39) is that of a
tensor of second rank as opposed to the first rank
tensor j„, appearing in the Coriolis interaction. Once
again, we are trying to compare an E2 with an 3fi
operator. Secondly, the, surface radial dependence must
be compared with the volume weighting of the Coriolis
interaction. Parenthetically, we note that this latter
kind of radial weighting also appears in the rigid rota-
tion form of Hr s', Eq. (34). Different assumptions
for the radial behavior of particle wave functions in-
dicates that the surface weighting results in a radial
integral 1.5 to 4 times larger than the volume weighting.
On the other hand, the angular dependence in (39)
seems to favor the Coriolis term by a factor of i.5.
ln summary, it is reasonable to expect that (39) is of
the order of the spin-dependent term in the Coriolis
interaction.

This is as far as we can credibly go with such a simple
evaluation and model. In Sec. IV, we present a micro-

Eco Ecs

&«I —& i-Q./&. Ic*)&c;IZ i.~l«&
C,C

EcQ Ecs
(43)

' D. Inglis, Phys. Rev. 96, 1059 (1954); 103, 1786 (1956);Nucl.
Phys. 8, 125 (1958).

Here, lco) describes the core particles occupying the
orbits that would exist if the determining potential
did not rotate. The remaining terms of (42) correct for
the fact that the potential is, in fact, rotating with
angular velocity given by ar„=Q„/S„.The correction is
stated in terms of the various eigenstates, lc;), ap-
propriate to the nonrotating potential. It is instructive,
at this point, to evaluate a component of the core
angular momentum:

&& I & i.~lk.&=&col 2i "Ico)
C

&«I 2 J ~l c~&&c'I
—&i -Q /~ I «&

eric
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The 6rst term is zero because all angular momenta are de6nite E-selection rules:
paired off in the state

I co&. Since the second two terms ~= Z |:(")~.'(o.).are equal to each other, (43) can be more simply
written as

&«I & J ~l~'&&~'I & J ~l«&

Q~/A (43a)

This well-known result has been repeated here to
emphasize that the rotating properties of the core
enter only because of the presence of the second, core-
Coriolis induced term of the wave function, (42).

To 6x on the relevant aspects of E breaking, we con-
sider a transition matrix element of an operator with

On recognizing the cranking-model formula for dq, one
obtains 6nally the usual result

Q" I 2 J.), I4.& =Q~

Thc tlanslt1on consists ln thc change of thc outside"
particle orbit only, an energy e being carried OG. %hile
the full form of the wave function is as given in Eq.
(41), here we omit exp11clt reference to the 0"-dependent
factor, it being understood that the 0 operations are
carried out later.

We now want to write out the perturbative CRects
on the transition matrix element of the residual inter-
action 'U between the extra particle and the core
particles. This will be done to first order in the core-
Coriolis interaction, the residual interaction, and, of
course, in the operator 8. The third-order perturbation
theory is most easily visualized in pictorial form. In
Pig. 1 we have displayed the relevant terms of ordinary
Schrodinger perturbation theory. The terms correspond-
ing to Figs. I, diagrams (Ia), (Ib), (Ic), are

(Ia)

(Ib) Z

&pal~. 'I p;&(p;"l~l po &&;I-2 J-Q./~. l "&
C, g

L~~—~n;]L&"—&.;]
&pal~. I p'&(«I —2i-Q/& I~'&&p'"I&I p«o&

L~no
—"~]L(~n.—~u;)+(&. —&.;)]

&~ol
—& J..Q./e. lc;)(p, l tt„ I p;&(p;c;l~l p«.&

C,a

(45)

(Ic)
' L("o "i ~)+(E.o &;)](("—o ";)+(~.—o ~.~)]—

Using the conservation of energy, e~, =e~z+e, terms are, then, to compare
(Ia), (Ib), and (Ic) can be combined simply into

&pal ~'I p'&

x&., I Z ~..l "&+( oI 2 j..l;)
C&p;~oi'UI p«'&(~'I —&i-Q./& I«&+

C, K

(«I —2 i"Q./& l~'&&1'~'I UI p«0&] (46)

with
x(~'I U(r~p~' r.p.) I «&V./~. (4g)

&.'(r~,n~) = —2i ~.1./~'

This is to be compared with the effect of the usual
particle-Coriolis interaction on the transition matrix
element (IIIa) of Fig. I,

From this we can immediately see that the factor in
curly brackets in (46) is to be compared with the factor
in curly brackets in (47). If we neglect exchange, we

The similar set of terms from (IIa), (IIb), and (IIc)
lead to similar results, and let us derive the Hermitian
conjugate of H'(r~, pr).

There is a very simple but useful conclusion that
can be drawn from the earlier form, Eq. (46). Thus, '0
appears in (46) only in matrix elements that involve
at least 2-particle transitions, po~ p;, c;-+ co. Tins at
once assures us that it is only the residual interaction
that contributes and, also, that none of the effect
contained in (46) is included elsewhere.

Ke can also see explicitly that an interaction de-
pending only on the position coordinates contributes
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sero to (46), or (48), provided that we omit exchange
terms. To do this we have only to expand the inter-
action according to the tensorial dependence on r~, r, .
We have then, a sum of terms of the form (radial
function ( 1—)&Yq„(r,~)Fq„,(r,), and, excluding ex-
change we find for the 1th term that the core factors
in (46) involve

to be dealt with later in a microscopic, particle
description.

We also omit here any description of the rotational
motion better than that given by the cranking model.
This description, together with a unified treatment of
the related higher-order corrections to Hartree-Pock,
wiB be left for a later paper.

((«I 2 I'~-&(*.) I ~'&(~'I —& i"I «&
0

+(&Ol —& i"l~*&(~'I 2 I'~-.(r ) I«&) (49)

Q (r, x y,)„F2.(12@vI 12') (50a)

as a replacement for F~~. Such velocity-dependent
factors give a nonzero result, and we have in Sec. III
approximated the results of Eq. (48) by using simple
models.

It might be noted in passing that a factor such as

Now, the unperturbed core state co is described by the
occupation of pairs of orbits, each member of the pair
the time reverse of the other. It then follows im-
mediately that the odd l are knocked out by parity
and the remaining even l terms are knocked out by
time reversal. Explicitly, there is a cancelation in (48)
between the first and second terms. Labeling the
occupied core orbits by their 3-axis component of
angular momentum, the cancelation can be seen to be
between the transitions m —& m+1 —+ es, and the time-
reversed transitions —m —+ —m~1 —+ —m. If the inter-
action is velocity dependent, the time-reversal pro-
perties of the terms in the interaction expansion are
clearly different. As an example, consider

V. PARITY MIXING AND EC BREAKING

We have so far considered the E-breaking partsof
the strong interparticle forces. Similar considerations
apply to the weak. , parity-breaking parts of the nuclear
force. Michel, ' from the current-current hypothesis,
deduces a parity-breaking two-particle interaction

{(p'—p )~(r' —r;)+~(r'—r;)(p' —p,))2''

L(p' —p;) ~(r' —r,)—~(r;—r;)(p' —p;) j2';, (51)

where T;; is the charge-exchange operator, and G is the
weak-coupling constant.

The presence of the charge-exchange operator re-
quires an explicit particle description. It can be noted
parenthetically that it is only charge exchange that
appears so that the semiclassical models are still
applicable after some manipulation. The matrix element
of the effective single-particle interaction, HJ, that
results from integrating W over the core-particle~
variables is

P (o..)„I'2,(12@v
I
12IM) (50b) d~P~r'(r~)&~'(r~, ~~,pp)&»(r~) =(~n—~.+1)

(8)'iM

would also have the parity and time-reversal properties
necessary for a nonzero result in (47). Such terms would

come from 3. tensor force. There are also the core-spin

parts of 'Ur, s, Eq. (12), that would contribute. In
the semiclassical models these terms are zero, and the

spin contributions more obviously require a micro-

scopic particle model. Ke note, also, that the inclusion.

of exchange terms will result in a nonzero contribution
even for velocity- and spin-independent interactions.

We have, so far, omitted exchange. Had we included

such terms, in the zero-range approximation and. with

the forces, 'U~, 'U~ 8, we have used, the numerical

strengths in HL, ', H~ 8' would have been somewhat

altered, but no new forms introduced. While we could

examine these explicitly, the semiclassical model itself

is not so easily understood in the presence of exchange.

Ke leave the exchange terms of 'UL, , 'U~B together
with the exchange terms of 6nite range Wigner forces

XQ dr~ dr, x~~*(r~)(u„.*(r,)je~ xo,

L(p —p.)~(r —r.)—~(r —*.)(p —p.)j
&(or„.(r~)x~, (r,) . (52)

The core-particle orbit wave functions cv,, are under-

stood to be perturbed by the core-Coriolis interaction.
The sum over c; is over the core orbits occupied by the
neutrons (protons) if the extra particle is a proton
(neutron). Here, we have omitted the contributions
from the 6rst term of W, Eq. (51), because, as before,
the semiclassical model to be used below has the core
spins coupled to zero. (In a microscopic theory, such

as that outlined in Sec. III, this is not so.) Straight-

7 F. Curtis Michel, Phys. Rev. D3, 8329 (1964).
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forward calculation from (52) yields

G
(pp u—+1){2~p pp 2 L&.;*~ ~j

(8)"'M Cj

—2~p 2 I:2~.;*p~.;+2(p~.;)*~;jp) (53)

The 6rst term is that of Michel. ~ The second term
becomes, on recognizing

convection current

Lpp!M+(Gf/(2)"'M)(pp p—-+1)p'~.]~pp/M, (61)

which is the basis of the proof~ that electric-multipole
admixtures EL vanish in the absence of spin-orbit
dependence in the particle Hamiltonian, FIP, and
when IIP,2' is ignored. For the K-forbidden Jtd1 transi-
tion we are considering here, the B1 transition matrix
element is

2 L2&.; P~.~+2(P&.;) ~.~]= Pcr. P. r

FIP,2 (/2y /2e+1)rrp'peerepc r
(2)'/'M

('4)

(55)

&flP il2&&2IHp, 2'lo&

6p 6i

&flHp, 2'l2&&2IP il 0&

where p,
' is (1V/A)p, if we have an odd proton, (Z/A) p, if

we have an odd neutron. In the rigid-rotation case,
the K-breaking part of FIP,2' is

G
Hp, 2 — (/1p /2N+ 1)p—,' Q (rrp x rp)„I„/8„. (56)

(2)1/2

&fir il2&&2IHp. 2'I o)

&f1 Hp. 2'I 2&&2lr ~l o&
(62)

This is seen to be simultaneously a parity-mixing and
K-breaking interaction.

To see the effect of this double mixing, we consider
the simplest case of an 3E1 transition that is one-unit
K-forbidden. The admixtures produced by HP, 2' will
permit a K-allowed electric-dipole E1. Since this E1
transition matrix element will not vanish in general,
we can study it by taking the simplest shell-model
Hamiltonian

Hp= pp'/2M+ U(rp), (57)

to which must be added the usual parity-mixing inter-
action, the particle-Coriolis interaction, FI, of Kq.
(9), and Hp, &' from Eq. (56).

pp Gh
+U&rp)+ ( p / v+1)p.'~.' p—p+H. '

2M (2)"'M

We can compare this consequence of IIP,2', with the
results obtained in its absence.

Michel' obtains a nonzero result for an B1 admixture
by considering the spin-orbit term in the particle
Hamiltonian. The operator so obtained is OR(E1),

OR(Z1) =ye(e r) rl (G/(8) '/') p, '(/1p —/1„+1)], (63)

where y is proportional to the strength of the spin-orbit
interaction and has been taken~ as

1.3A '~'.

The 81 transition matrix element corresponding to
Eq. (62) is

&flOR(Z1) I 2&&2 IH.'10&

+ (/1p —/1++1)p.' Q (rrpXr„)„I„/y„. (58)
(2)1/2 1,2

Following Michel, ~ the canonical transformation,
Q ~ ~

—iSFI ~+iS

~=+LG/(2)"'1(pp a+1)p, 'o—p rp,

leaves us with

pp G
Ho= +V(rp)+ h(pp p„+1)p,'—

2M (2)1/2

X p (12p xrp).I./y. —H. '+8(G'). (60)
a=1,2

This transformation also transforms the complete

&f I
II.'

I 2)&21OR(@1)I o)
(64)

An order of magnitude comparison between Eqs. (64)
and (62) is simply

2+JP 8JP&

slightly favoring Eq. (62) based on Hp, &'. We les, ve
detailed calculations to later work.

The analysis outlined in this section is also applicable
to any two-particle operator, such as exchange charges
and currents.

We wish to thank R. Carhart, G. S. Goldhaber, and
M. Goldhaber for stimulating our interest in the possible
role of E breaking in parity mixing.


