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Fro. 1. Graphs for the Boltzmann equation. The double lines
refer to the exact propagator g*(iH) while the single line refers
to propagator of the corresponding ideal gas, g*(iX).

the graphs are the same as for weak coupling except
for the argument of the propagator f* which is now
iH rather than iE. Note that the generalization given
in this paper with regard to initial distributions applies
to the weak-coupling expansion as well.

The product of operators acting on C' of Eq. (C1) is
governed by the simple rules /where n(A) means the
number of A's that appear]

N(I) =1, n(L) =p, e(f*(iII))=p+1. (C2)

The "ordering" rule still holds: every interaction
(I or L) is followed by a single propagator, reading
from right to left. The particle numbers are given, as
for weak coupling by

e(out) =s, n(in) =s+e(L) . (C3)

Similar rules are readily constructed for the dilute
weak coupling as well as for the double expansion.

A simple example of the graph is one corresponding
to the Boltzmann collision integral, Fig. 1(a). The ex-
pansion. of the Green's function f*(iII) given in Eq.
(63) is shown in Fig. 1(b). This expansion yields in
lowest order the Landau Fokker-Planck equation.
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The properties of a quantum hard-sphere gas in the limit of high densities are investigated, with particular
emphasis on the ground-state energy per particle. This has the asymptotic form
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as deduced from the Heisenberg principle, and is independent of particle statistics. A model of hard spheres
arranged in a simple cubic lattice is solved by reduction to the known one-dimensional case, and gives
A„=w'. For more realistic close-packed systems we estimate A,p=10 to 15. This form connects smoothly
to the well-known low-density gas-parameter expansions. Phonon properties in the Debye approximation
are derived. The model is applied to the zero-point kinetic energies of hexagonal-centered-cubic (hcp) He,
4He, H2, and D2, as determined from pressure data. The helium data give A =15.7, the hydrogen data
A =15.9. The Gtted hard-core diameters, 1.73K and 1.90K, respectively, are smaller than expected from
accepted potentials; this is discussed. Thermodynamics of the simple cubic system give c, ~ T for both
bosons and fermions, which may explain the anomalous (non-Debye) heat capacities of solid 3He and 4He
at low temperatures.

I. INTRODUCTION

HE properties of a quantum-mechanical hard-
sphere gas are of great theoretical interest since

such a gas is a simple approximate model for many sys-
tems of interacting particles. This problem has been
solved for low densities by regrouping terms in a con-
ventional perturbation series or by introduction of a
"pseudopotential": Results appear as expansions in

*Work supported in part by the U. S. Air Force through the
Air Force Once of Scienti6c Research Contract No. AF 49(638)-
1389.

f National Science Foundation Predoctoral Fellow.

(fractional) powers of the dimensionless "gas param-
eter" pu', where p is the number density and a is the
sphere diameter. For densities greater than a few percent
of the ultimate (close-packed) density, the last known
terms dominate in both the Bose and Fermi expansions,
and convergence of the partial sums is presumably poor.
We need all orders in the gas parameter for convergence
at the highest densities.

It would be useful to have a solution of this problem
valid in the high-density limit. Such a solution could
have direct applications to physical systems by provid-
ing a reasonable starting point for perturbation theory
in the residual potentials. Examples might be nuclear



matter, ' liquid and solid light gases, ' and the interior of
stars in astrophysics. ' It would also provide the opposite
limit from the gas-parameter expansions, making pos-
sible an interpolation to intermediate densities as has
been done vrith the electron gas.

The problem is greatly complicated by the impor-
tance of correlations betvreen particles —each particle is
strongly affected by all of its near neighbors and their
relative positions. Ke may, however, argue naively that
in the close-packed limit each particle of diameter a is
confined to move in a space with characteristic dimen-
sion E, the mean-particle spacing. By the Heisenberg
principle, each has a momentum ~ A(E—a)—', and a
kinetic energy ~ (A'/2/n) (E a) —' 'The. re is no potential
energy; the hard-sphere "potential" is simply a bound-
ary condition on the vrave function. Expressed in terms
of densities, the ground-state energy per particle has
the form

vrhere po is the ultimate density. This result is inde-
pendent of particle statistics (Bose or Fermi) since the
particles are (in the limit) localized in a lattice and
therefore distinguishable.

%e may vievr this asymptotic form as the most di-
vergent term in a I.aurent series expansion in p

' ' about
ps

'/' and conclude that (E,/E)(p '/') has a second-
order pole at po

' ' with no stronger singularities. Our
aim in this paper is to test this form and to evaluate A,
which is just 2m///1' times the leading Laurent coeKcient.

II. THEORY OF THE IDEAL
HARB-SPHERE GAS

The ground-state con6guration of a hard-sphere sys-
tem in the high-density limit is clearly either a face-
centered. cubic (fcc) or hexagonal close-packed (hcp)
lattice. The many-particle wave function satis6es the
Schrodinger equation Hs@(xi xs/)=Es+ where Hs
= —(A'/2m)P; V;s, and the hard-sphere potential sup-
plies the boundary condition 4'=0 for any lx;—x;I ~&a,

the hard-sphere diameter. We cannot solve this problem
exactly.

We can, however, solve a somevrhat unrealistic model
of hard spheres arranged in a simple cubic lattice in the
high-density limit of a 6nite volume where the spheres
are "trapped" and cannot change their relative posi-
tions in the lattice. Labeling each particle by the triple
of integers (ijk) which gives its position in the la, ttice,
and letting

x;,s =z;,sei+yg;s8s+s;/ses,

' L. C. GonMs, J. D. Kalecka, and V. F. Weisskopf, Ann. Phys.
(N.V.) 3, 241 (1958).' P. R. Zilsel, Phys. Rev. Letters 15, 476 (1965).' E. E. Sslpeter, Ann. Phys. (N. Y.} ll, 393 (1960).' F. London, Superi/Nids Qohn Wiley /k Sons, Inc., New York,
1950).

the Hamiltonian may be written as

jk ki

H"=——
25$ @ Bzggy

refers only to the z component of position of particles in
the ijth rovr parallel to es, and the other terms are
similarly defined. The exact boundary condition 0'=0
for any I x;;s—xi„„I

& u may be replaced in the high-den-

sity limit by %'= 0 for any

I z~i/s —zas I ~~/i
I 3/*/+is —3'vs I ~~ o

because in this limit the particles are localized and, e.g.,
x~~;I,—x;;I, is restricted to a domian vrhich becomes
parallel to e~. The difference from the exact boundary
condition arises from the di6erence between

cos x~j~r —x'~I & 6
and 1. This is of order (p '/' —ps '/s)'p'/s because the
maximum particle displacement goes as (p

' '—ps
' ')

and the mean separation as p '~', and tends to zero as
p~ po.

The problem then separates, and vre write + as a prod-
uct of functions p for the parallel coordinates of each
row. Each P satisfies the one-dimensional hard-sphere
Schrodinger equation and boundary conditions, and we

observe that the three-dimensional system is thus re-
solved into 3S'~' independent one-dimensional systems,
each vrith E' ' particles in a length t/' '.

The exact solution for a one-dimensional system of
E hard spheres in a lerigth I. is vill known' ' and is
based on the formal similarity to a free Fermi gas of point
particles in the reduced length /,=I.—Eu. The vrave

function is de6ned for 0«» sy—gc«» x2—gs«» ' ' ' «» &~
—(X—rs)a&~ L Pa= 1, and is—zero on all boundaries of
this E-dimensional domain. It may be seen that the
(unnormalized) solutions of the Schrodinger equation
HP=~ are

vrith energy

8 is the operator which antisymmetrizes in the set of
positive integers iq which must therefore be distinct for

P to be nonzero. Q is essentially a Slater determinant,
but the antisymnMtrization has been performed to

' Y. Nagamiya, Proc. Phys. Math. Soc. Japan 22, 705 (1940).
' I, Prigogine, Advan. Phys. 3, 131 (1954).
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satisfy the boundary condition rather than Fermi sta-
tistics. The particles are distinguishable (by their order
in the line), so that l// is the same for bosons and fer-
mions: The boundary condition, physical exclusion of
overlapping particles, is formally equivalent to a Pauli
principle in coordinate space.

Spin wave functions may be trivially introduced since
the Hamiltonian is spin-independent and the particles
are distinguishable. If it is desired to treat them as in-
distinguishable, we must extend the domain of definition
of 1// to include other orderings of the particles in the line.
Because the domains corresponding to distinct orderings
are disjoint, separated by domains where some

~
x;—x;~

(a and |t is therefore zero, this extension is also trivial.
We simply def3Ne l// for other orderings to be even or odd
(including the spin part) under particle interchange as
we choose.

The ground state corresponds to {ip}={1,2, . . .,E},
for which

Ep = i322r2E3/(6mP)

plus terms of relative order E '. This may be rewritten
as

Ep/E= A (222/2m) (p
'—

pp ') 2,

where p=S/L is now the density in one dimension,
po= g ', and A = ~x'= 3.29. This has the predicted form.
For a state with a completely uncorrelated wave func-
tion, with each particle moving freely and independently
in a box of length L/N, the energy has the same form
with A=~2. This shows that correlations reduce the
energy by a factor of 3. The range of these correlations
may be estimated by observing that for a line of length
M,

Ep f32
P 3 1 q

(p
—'—

pp
—')—

2( 1+ +
M 2m

To reduce the term 3/2M+1/2%2 to 10% of its value
for M =1 (no correlation), M must be at least 8.

The thermodynamics of this system may be easily
computed either directly or using the parallel to the
free Fermi gas. The "Fermi energy" is just

h2 X2 h2
@T2 ~2(p

—1
p

—1)—2

2m l2 2m

and at low temperatures the pressure and heat capacity
are

P=3&T*(p '
pp ') 'ii+3~—'(T/T*)'+" 1

c„/L= 'n'pt3(T/T*) [1+-].
These results are exact, independent of density, and in-
volve only neglect of terms of order E '.

Knowing this exact solution to the one-dimensional
problem, we have a complete knowledge of the simple
cubic system in the high-density limit of a finite volume.
Results of interest are

Of particular interest is the Fermi-like c„~T, which we

emphasize is the same for bosons and fermions and arises
from the physical exclusion of interpenetration rather
than statistics.

While this model is not realistic, it may have some
of the same qualitative properties as the actual close-
packed system. For the true fcc or hcp lattice the
analogy to a free Fermi gas does not hold, and we have
only the variational limit of zero correlation with each
sphere moving freely and independently in an individual
cell. For either lattice the cell may be replaced by an
inscribed sphere of radius 2 't'p 'I' and each particle,
of diameter 2'l"po 'I' then has an energy

3=+/&= A (i32/2m) (p
—'/3 —p 1/3)—'

with A=2'~'~2=31.3. The exact ground-state energy
must be smaller, and may be diferent for the two lat-
tices. On comparison with one dimension, we would

guess an energy of this form in the limit p —+ po with
A about 10 to 15.

A(„,o,„)
A (full corr)

Po

$2
2

3
g-1

sc
37r2

8

hcp/fcc
2'I'+2=31.3

10 to 15 (estimate)
2&12u-3

Although we know nothing of the excitation spectrum,
we might expect that long-range correlations in one di-
mension would again give a T term in c, and a T' term
in p. For the simple cubic lattice, these came from the
free energy

F/X=A(A2/2m)(p —'/' —po '/') '
—B(2m/123')(p ' '—

pp '/3)'(AT)'y

with A =2r2 and B=1.If this form is general (with A

s,nd B determined by the lattice), it follows that

c./&I T=3(p "' p'")p "'(P(T—) P(o))/& '—
independent of A and B.

For actual physical systems, and attainable tempera-
tures and pressures, these could be totally obscured by
the phonon contributions. Ke may estimate these
properties in Debye approximation in terms of the pa-
rameter A, since the pressure at low temperatures is

p —QEp/a V ), - —;A(A2/2m)

where p=S/V and pp
——a ', with A=2r2=9. 87. With a

Fermi energy

(P2/2m)~2(p-1/3 p -1/3)—2

we have

p ~ 2$TPp2/3(p 1/3
pp 1/3) 1L1+12r2(T/T@)2+

p~ po

c„ lr2 // T )
It.i+" ].

V P ~no 2 1TP)

Ep/N A(l/3'/2m)(p
—'"—

pp "') '
p~ po

p ~po
(p

1/3
p 1/3) 3p2/3+Q(T2)
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If we again deine

kT*= (A /2t/s)z (p
s—ps s)

for the close-packed lattice, although it no longer has the
interpretation of a Fermi energy, the long-wavelength
sound speed u is given by'

V dp 4A
u2 p-&/3

mp d t/' z 0 p ~ pp 9m'h'

X(5p "'-2po "')(kT*)'

This gives a Debye temperature of

hu 2/1/2/6) 1/s - (p ) 1/3- I/2

o=—(6~sp)"s-
k o so 3~ l~) &psi

IO

ujl z
CV

IO

IO
IO

FERMI

CELL LIMIT

r ~.PRESSURE
r r DATA~
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/
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//

IO IO
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assuming equality of compressional and shear sound
speeds. Further, the Griinesien constant is'

d lno' 2 /'p '/' ' 1 5 ps)'/'+- ——
i

—1
dlnV p~p03 &ps 6 2 pg

At low temperatures (T«O~) where only the long-
wavelength phonons are excited, Debye theory is valid
and gives phonon contributions to the pressure and heat
capacity of

P~= ssz 4(yPkT4/Q's) and e, ,~= (12a.4Ek/5)(T/O~)s.

III. COMPAMSON WITH LOW-DENSITY
EXPANSIONS

It is interesting to compare our high-density asymp-
totic form with the conventional expansions in a gas
parameter. g These are'~"

&o 2m'h'~p 128
1+ (pas) 1/s

/V n„, m 15+a.
4~

+8 —v3
~

pa' ln(12z.pas)+
3 //

Eo h'kg'-3 2-+—

(akim)

Fermi 2m

+ (11—2 ln2)(akim)'+0. 23(ak/)'+
357r2

T In the expressions for zP, 0, and y, we should strictly replace
the terms Sp 113—2pp 1I3 by 3pp 'I' since terms of the same order
arising from the next term in the Laurent series expansion for

. Ep/N have been neglected.
s It is interesting to note that for (p/po) "'=0.55, corresponding

to solid helium at 13 to 15 cm'/mole, this equation gives p=1.9.
This compares favorably with the measured y=2.4, despite the
neglect of potential energy.

9 The discussion at the beginning of Sec. IV is pertinent to the
justi6cation of this comparison with regard to the order of limits
involved.

'0 K. Huang and C. N. Yang, Phys. Rev. 104, 767 (1957); 104,
7m (&957)."T.T. Wu, Phys. Rev. 115, 1390 (1959).

~ V. F. Eflmov and M. Va. Amus'ya, Zh. Kksperim. i Teor.
Fiz. 47, 581 (1964) I English transL: Soviet Phys. —JETP 20,
388 (1965)].

Fzo. i. Reduced kinetic energy of hard-sphere gases as functions
of reduced density, showing terms in gas-parameter expansion for
spin-zero bosons and spin-$ fermions. High-pressure limit is in-
dicated at p/pa =1. Here ps is the ultimate close-packed density.

for spin-zero bosons and spin-~ fermions. Here a=2' '
Xpp

'~' is the particle diameter and k&' ——3m' p. We ex-
pect the energy to have a pole at p= po, so we consider
the reduced quantity

/p) 2rnps Es

Epg k

Figure 1 shows the individual terms in the expansions
and the sums as plotted against p/ps. Both expansions
clearly break down by p/ps=3X10 ', where the last
term becomes dominant in each case, but below this
density they are remarkably constant. Both could be
very smoothly extrapolated to match the asymptotic
form with A in the range of 10 to j.5.

It is suggestive that the Fermi expansion appears to
converge better (the Bose expansion is probably an
asymptotic series). We have noted in several places the
strong similarity between a hard-sphere system and a
free Fermi system: it is not surprising that this should

appear yet again.
Using either our theoretical estimate or an experi-

mentally derived value for A, we could interpolate in
Fig. 1 to get Es/'/t'/ for the entire range of densities,
accurate to perhaps a factor of 2.

IV. APPLICATION TO PHYSICAL SYSTEMS

In constructing a theory for application to physical
systems at high densities, we should pass to the infinite

system limit before the high-density limit. This is be-
cause the high-density limit (in the required sense) is

totally unattainable for any 6nite macroscopic system.
We cannot pack the spheres so tightly that they are
con6ned to a lattice and diffusion is impossible. Although
both the model considered above and the more general

arguments from the Heisenberg principle are explicitly
valid only for the high-density limit of a Gnite volume,
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a rough argument may be given which suggests that
the order of the limits may be interchanged. The in-
finite system at high densities will be made up of re-
gions packed into a lattice separated by regions of dis-
order. As p —+ po the fraction of the volume which is
disordered must vanish, and all but a vanishing fraction
of the packed regions must tend to infinite size in this
limit. These packed regions are "stable" for long times
Lcompared with A(E9/S) I] because of the restrictions
on particle motion, so that they are well described by
wave functions of exactly the type we have considered.
Then E9/X differs for the two orders of the limits only
in the contribution from a vanishing fraction of the
system; this difference should therefore vanish.

For most physical systems we must also consider a
nonsingular residual potential V' in addition to the
hard-sphere potential. If, as in solidified gases, this po-
tential is attractive and binds the system into a lattice,
the de.culty with the order of limits does not arise. It is
reasonable to treat such systems in a perturbation ex-
pansion in V', using as unperturbed states the ideal
hard=sphere states. We would expect good convergence
since so much of the correlation is already included. In
first order in V', states have an energy per particle of

E/& =E/E ( h8r~ sphep. +(4'
(
V'

(
4'),

where ~+) is the hard-sphere state. This looks much
more useful than it is. We know

~
0 ) only very approxi-

mately and are seldom much surer of V', in fact, all we
know is the form of E/1V) I„for the ground state.

If we have two systems with the same V' and po but
different particle masses, M191„and M2931 (II3 is the
atomic-mass unit) and V' is su%ciently small that first-
order perturbation theory is a good approximation, then
E9/X as a function of p differs for the two systems only

IOO
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FIG. 3. The pressure parameter y=p ' p0 '" as a function of
p '" for He and H. Lines Gtted by least squares. o: Dugdale and
Franck (Ref. 13); H: Stewart (Ref. 14). For explanation of cor-
rection see text. Q: Stewart (Ref. 15). Error bars give round-off
and interpolation error.

through the I/913 in E/%~i, „regardless of the form of
V'. Explicitly,

E2(p) Ei(p) Mi —M2
E(p)/&

1V N MgMg hs, m=mS3

The volume derivative of this equation is a relation
between pressures and may be written as

p
—1/3

p
—1/3+ 2g (132/2993 ) I/3p2/9p —1/3

where

p0 LM1M2/(Ml M2))Lp2(p) pl(p) jT=O

for the ground state. Therefore, a plot of p' 'p
against p

' ' should be a straight line whose slope gives
A and p

' intercept gives po.

IO

I

3
IO

IO
2

CORRECTED

I 2 I4 I6 I 8 20
y-cm /mole

V. SOLIDIFIED LIGHT GASES

Two systems for which this model might hold are the
'He —4He and H2-D2 pairs. Both are hcp at low tem-
peratures and high pressures. fhe helium data of
Dugdale and Franck" and of Stewart' and the hydro-
gen data of Stewart" (Table I) are plotted in Fig. 2,
along with the derived values of p9 for each system.
Numerical values of P9 are given in Table II, together
with p

' ' and p'/'P9 '/', these are then plotted in Fig. 3.
The last digit in the pressure is almost certainly not
significant, but has been carried to avoid round-oG
errors: accuracy of the data will be considered in more
detail later. Stewart's data are for 4.2'K rather than
0 K, but the difference is negligible. (A Debye-approxi-
rnation estimate gives AV&0.0005 cm'/mole. )

For each set of data the variation of P9 is reasonably
smooth and the points in Fig. 3 are well fitted by a

Fro. 2. Pressures and pressure differences of 'He —4He and
Hg —D2 as functions of molar volume. p0(H) =2(pH2 —pD2), pp(He)
=12(P3H,—P4H, ). 0: Dugdale and Franck (Ref. 13);H: Stewart
(Ref. 14). For explanation of correction, see text. Q: Stewart
(Ref. 15).

"J. S. Dugdale and J. P. Franck, Phil. Trans. Roy. Soc.
(London) A257, 1 (1964).

'4 J. W. Stewart, Phys. Rev. 129, 1950 (1963)."J.W. Stewart, J. Phys. Chem. Solids 1, 146 (1956).
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TABLE I. Pressure data.

V

cm'/mole
p4He

kg/cm'
p3He

kg/cm'
pHe

b V4He V4He V3He
~c

bars cm'/mole cm'/mole cm'/mole
pd

kg/cm'
VH2

cm'/mole
VDR

cm'/mole

12.0
12.5
13.0
13.5
14.0
14.5
15.0
15.5
16.0
16.5
17.0

1134.6
904.7
732.5
596.6
487.1
395.9
323.8
266.0
215.7
175.6

1128.8
931.7
772.9
644.1
538.9
453.7
383.7
326.4
278.3
238.0

2X10'
3
4
5
6
8
1 X 104

1.2
1.4
1.6
1.8
2.0

10.72
9.93
9.38
8.96
8.59
8.01
7.58
7.21
6.94
6.72
6.53
6.37

11.07
10.16
9.60
9.15
8.79
8.21
7.76
7.41
7.12
6.86
6.66
6.48

11.10
10.19
9.63
9.18
8.81
8.24
7.78
7.43
7.14
6.88
6.68
6.49

0
2X 102
4
6
1X10'

2.043
3
4
6
8
1X104

1.2
1.6
2.0

22.65
21.0
20.0
19.2
18.0
16.1
15.1
14.3
13.2
12.4
11.8
11.3
10.6
10.1

19.56
18.5
17.8
17.2
16.4
14.9
14.0
13.3
12.4
11.7
11.2
10.7
10.0
9.5

~ Reference 13.
b Reference 14.
o Prime denotes corrected values (see text).
d Reference 15.

straight line. However, Stewart's" high-pressure data
for helium do not join smoothly onto Dugdale and
Franck's" at lower pressures. This is felt to be largely
due to the approximate tie-in point v=11.07 cm'/mole
for 'He at 2000 bars and T=O, all other molar volumes
being measured relative to this.

No direct measurements of this volume have been
reported, but we may calculate it more accurately in two
ways. At low temperatures, where the thermal contri-
bution to the total pressure is extremely small,

Av(T) —=n(T) —v(0) =p,bav/Bp
~

„(p) v =p.

The thermal pressure p,h may be approximated by the
Debye pressure

=0.08 cm'/ mole and v2=11.11 cm'/mole at 2000 bars,
T= O.

Alternatively, we may extrapolate the low pressure

po along a least-squares fitted straight line (2=14.18,
pv

'/'= 1.55 A) and combine this with 'He pressures to
to get v3

——11.10 cm'/mole. This value agrees well with
the Debye-theory estimate, and is probably accurate
to &0.01 cm'/mole (&0.006 from the extrapolated pv

and +0.005 from interpolation of the 4He total pres-
sure). The high-pressure helium data have therefore
been revised, using a value of 11.10 cm'/mole for the
'He tie-in point. "

By fitting a line to the revised helium data and one to
the hydrogen data in Fig. 3, we find

to give
p ~~ T4O—3

Av(T) ~ yaT40—
where ~= —n 'Bv/Bp

~
& is the compressibility. We may

use this relation to reduce Grilly and Mills"' melting
point data to T=0 .The necessary data are

A

p
—1/3

21/6 —1/3

(y
—p2/9p —1/3)

He

15.7w0.6
1.54w0. 05 A

1.73&0.06 A

0.8 (cm/erg) '/'

H

15.9+1.0
1.69&0.10 A

1.90&0.11 A

1.1 (cm/erg) "'

T„(Ref. 16)
v (Ref. 16)
O~ (Ref. 13)
u (Ref. 14)

An(T„) (Ref. 14)

4He

2000 bars

21.60'K
10.84 cm'/mole
127'K
9.72/10 bar '

0.12 cm'/mole

'He

2000 bars

20.88'K
11.19 cm'/mole
118'K
10.18X10 ' bar '

' E. R. Grilly and R. L. Mills, Ann. Phys. (N. Y.) 8, 1 (1959).

The data for 0 are extrapolated by the Gruneisen rela-
tion

Ov cc p
—y

This gives
AV3(T 3)/Av4(T 4) =0.7

rather than 1.0 as assumed by Stewart. "Thus hv3(T„3)

where the limits are one standard deviation. fr„ is the
standard deviation of the data points from the fitted
line. The two values of A are in remarkably good agree-
ment, and near our estimated value. The hard-core
diameters seem reasonable though smaller than one
might expect from commonly used intermolecular po-
tentials. For a scale comparison, the internuclear dis-
tance for H2 and D2 is about 0.75 A.

The question of accuracy is quite dificult to answer.
Each y involves a small difference in large total pres-
sures, but much of the error in each pressure is system-
atic and will tend to cancel in pressure differences. If
we assumed the errors to be uncorrelated and used
Stewart's'4 estimate of 2 to 3% in v—v(2000 bars) for
helium, we would conclude that the high-pressure y's

"J.W. Stewart (private communication) says that such acorrec-
tion is "within error" and not unreasonable.
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54.0
57.7
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a Prime denotes corrected values (see text).
b y =PS/OP8 1j8,

were good only to +20 or 30%%uq, which is clearly much
too large. At the other extreme, if we assume that the
errors are completely systematic we are left with thc
round-oft, tie-in, and interpolation errors in e. These are
about &0.01 and +0.05 cm'/mole for Stewart's helium
and hydrogen data, respectively. The resulting errors
in y are shown in Fig. 3, being roughly +1.6(cm/erg)'I'
for helium and +2.5(cm/erg)'~' for hydrogen. These are
within a factor of 2 of the standard deviation of y from
the 6tted line, thus supporting our contention that most
of the error in total pressure is systematic. The limits on
A and a given above, representing one standard devia-
tion from the least-squares 6tted values, shouM prob-
ably be at least doubled to allow for the additional
uncertainties in the data.

Such close agreement is, in a way, surprising. It is not
at all obvious that the perturbation assumption is justi-
fied, since the kinetic energy contributes only about half
of the total pressure. It is also not dear that po shouM
be a constant —at high pressures a change in electronic
coniguration may be energetically favorable, thus
changing the size of the hard core. This eRect should be
small since, for the pressures considered, the average
kinetic energy per particle is at most a few times 10 ' eV.
The energy of relative motion between neighbors is
presumably somewhat reduced by correlations and is
therefore small compared to electronic excitation en-

ergies. Finally, hydrogen is a molecular crystal, and the
molecules might better be modeled as "hard eggs" than
as hard spheres. However, at least at low pressures, the
anisotropic part of the intermolecular potential is so

small that each molecule rotates freely arid is in a
spherically sylninetric Z state. ' Then the averaged
interaction might again be considered as having a hard-
sphere core. (Anisotropy in V' is significant only if it
differs for Hs and Ds.)

There is a possible experimental con6rmation of the
suggestion that both the Bose and Fermi systems
should have a heat capacity ~ T at high pressures and
lour temperatures. Several vrorkers'9 '0 have observed an
anomalous (non-Debye) contribution to the heat capaci-
ties of solid 'He and 'He of perhaps (10 ' cal/mole
'K')2', although there is also contrary evidence. (At
somewhat lower densities, e)16.90 cm'/mole, the T
term is at most 5'Pq this great. ) ' Blind application of the
simple cubic expression for c, at 12 cm'/mole gives a
value about j.00 times larger, However, this term,
which arises from long-range correlations in one dimen-

sion, could easily be much diRerent for diGerent lattices.
In particular, the motion of atoms in an hcp lattice is
restrained in every direction by several neighbors simul-

taneously as opposed to the simple cubic case where

motion along a crystal axis is restricted by only one
nearest neighbor.

It has been noted that the observed T term in c. is

reduced by annelaing the sample, '9 "suggesting a defect

'8 J. VanKranendonk and V. F. Sears, Can. J. Phys. 44, 313
(1966}."J.P. Franck, Phys. Letters 11, 208 (1964}.

'0E. C. Heltemes and C. A. Swenson, Phys. Rev. 128, 1512
(1962}."D. O. Edwards, and R. C. Pandorf, Phys. Rev. 140, A816
(1965).
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mechanism and that, for example, pinned dislocations
give a c„~T.' ' In the absence of compelling evidence,
we feel that the question is still open.

VI. COMMENTS ON POTENTIALS

It is common to represent the helium-helium interac-
tion and the isotropic part of the hydrogen-hydrogen
interaction by a Lennard-Jones 6-12 potential,

y(r) =4et'(0/r) —(o/r) s]
y

wi

~H, =9X10 4 eV, eH=3.2X10 ' eV,
on, =2.56 A, oH=2.93 A.

Other potentials are used which are very similar.
Both theoretical calculations'4" and fits to experi-

mental data (virial coeKcients, transport properties,
and scattering cross sections)" s' for helium are in
reasonable good agreement with the 6-12 potential,
though both are somewhat less repulsive at short dis-
tances. All give V=0.2 to 0.4 eV at our hard-core dis-
tance of 1.73 A, far larger than the average kinetic en-
ergy. All give a classical turning point at about 2.1 A for
an energy of 2X10 ' eV. The discrepancy seems real.
Part of the dif6culty is that the hard core is an "effec-
tive" potential, and replaces much of the repulsive po-
tential; we must be careful not to count this repulsion
twice.

Further, the idea of a simple additive two-body force
within the lattice must be used with care because there
are real many-body forces. The presence of several
atoms simultaneously within a few angstroms puts fur-
ther constraints on the electron clouds over the simple
scattering case, and must change the interaction energy.
At the very least, we should define an effective two-
body potential by averaging over the coordinates of all
other particles, and consider the possibility that it may
be density-dependent.

The small size of the effective hard-core diameter for
helium is supported by two recent calculations. Burk-
hardt" has fitted a potential of hard core plus attractive
square well to reproduce the deBoer phase shifts and

"A. Granato, Phys. Rev. 111, 740 i1958l.
~' E. M. Saunders, Phys. Rev. 126, 1724 (1962).
24 B.J. Ransil, J. Chem. Phys. 34, 2109 (1961)."P. E. Phillipson, Phys. Rev. 125, 1981 (1962).
'6 l. Amdur and A. L. Harkness, J. Chem. Phys. 22, 664 (1954).
'7 I. Amdur, J. E. Jordan, and S. 0. Colgate, J. Chem. Phys.

34, 1525 (1961)."R. A. Mason and W. E. Rice, J. Chem. Phys. 22, 522 (1954)."R. A. Buckingham, Trans. Faraday Soc. 54, 453 (1958)."T. Burkhardt (private communication).

finds 9n, =1.71+0.06 A. Brueckner" has used the effec-
tive hard-core diameter as a single adjustable parameter
to 6t transport properties of the liquid. His value is
9+ —1.77+0.07 A. Both values are in excellent agree-
ment with our value of 1.73+0.06 A.

Since our theory 6ts quite well, we conclude that the
e6ective potential is not so repulsive as the conventional
Lennard-Jones potential. From the nonkinetic part of
the pressure, we know (V') as a function of p within an
additive constant. Given the two-particle correlation
function, perhaps from experimental measurement of
the structure factor in diffraction experiments, we could
6t a simple effective two-body potential to this. At
present, however, this seems impossible because there
are not sufBcient data.

VII. CONCLUSION

The asymptotic form in s dimensions,

Eo A
(p-1/s p -1/s)-2

N u~uo 2m

is exact in one dimension with A =~~~' and also holds
for an arti6cial simple cubic lattice with A=m'. We
predict an energy of this form for a close packed lattice,
with A in the range of 10 to 15 or so. An experimental
value of A=15.8, found by consideration of the zero-
point kinetic energies of solid hcp helium and hydrogen,
is near this range. An energy of this form with any of
these values of A can be matched smoothly onto the
low-density gas-parameter expansions for both Bose
and Fermi systems.

For the simple cubic lattice, the excitation spectrum
may also be found and the thermodynamics derived. Of
particular interest is the heat capacity which has a term
~ T, arising from long-range correlations in one dimen-
sion. If this effect is general and applies to other lattices
(which is pure speculation) it may explain the anomalous
heat capacities observed at low temperatures in solid
'He and 4He.
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