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a suKciently accurate description of the low-energy
collective spectrum —at least as far as the 0+ and 2+
states are concerned, which alone can participate in
the dipole states. Then one may hope to achieve quite
a good description when adding the dipole excitation
since, as already mentioned, the two modes contain to
a large extent different single-particle states.

The most conspicious discrepancy between theory
and experiment is, however, the structure at the low-

energy side of the resonance. No consistent explanation
of this discrepancy has as yet been given. It seems very
likely that the excess cross section should be associated
with some of those states which in the schematic modeP'
have been swept clear of any transition strength. '7

'6 G. E. Brown and M. Bolsterli, Phys. Rev. Letters 3, 472

In the language of the collective model the giant
resonance is an isospin wave. It can be coupled to the
spin wave. This would result in a splitting of the giant
resonance, as observed in the calculations concerning
0"where two states carry appreciable dipole strength,
the upper being the spin-Qip state. It is possible that
the same coupling would lead to a structure on the low-

energy side of the giant resonance. However, it is very
unlikely that this structure would be as complicated as
that in praseodymium, Fig. 11.This point thus merits
a quantitative exploration.

(1959); G. E. Brown, Modifi'ed Theory of lV'Nclear Models (North-
Holland Publishing Company, Amsterdam, 1964).

"M. Danos and E. G. Fuller, Ann. Rev. Nucl. Sci. 15, 29
{1965).
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The general features of the expressions useful for numerical calculations of the projected deformed Hartree-
Fock (HF) spectra for finite nuclei are investigated. It is proved that the projected deformed HF wave-
function gives the possible nuclear spins as I=O, 2, 4, ..., I for a E=O band and I=E, E+1, ..., I „for
a Z &0 band. It is further proved that if the energy Er rr oi the projected I=I: state is greater (less) than
the HF energy E~, then EI is greater (less) than El' for I&I'. A plausible reason why one should use the
deformed HF state rather than any other deformed state is also pointed out.

1. INTRODUCTION

ECKNTI.Y there has been considerable interest
~ - in Hartree-Fock (HF) calculations for finite

nuclei. In nuclear HF calculations there is a special
difIi.culty due to the nucleon-nucleon interaction inside

the finite nucleus. Various different approaches are

suggested in the literature to cope with this difhculty.
'

Here we will not be concerned with this aspect of the
problem. We simply assume some effective inter-

nucleon potential inside the nucleus. In the literature,
two types of HF calculations are reported: (1) radial

HF calculations for nearly closed-shell nuclei, ' and

(2) deformed HF calculations for nonspherical nuclei.

~ K. A. Brueckner, J. L. Gammel, and H. Weitzner, Phys. Rev.
110, 431 (1958); S. A. Moszkowski and B. L. Scott, Ann. Phys.
(N. Y;) 11, 657 (1960); R. K. Bhaduri and E. L. Tomnsiak,
Proc. Phys. Soc. (London) 86, 451 (1965); C. Shakin and Y. R.
Waghmare, Phys. Rev. Letters 16, 403 (1966).' Nazakat Ullah and R. K. Nesbet, Nucl. Phys. 39, 239 (1962);
-46, 254 (1963); Phys. Rev. 134, 3308 (1964); R. Muthu-
krishnan and M. Baranger, PhyS. Letters 18, 160 (1965); A. K.
Kerman, J. P. Svenne, and F; M. H. Villars, Phys. Rev. 147, 710
(1966).

Following the finding that one can obtain nearly the
same physical results for a nucleus by doing the inter-
mediate coupling calculations or by doing the de-
formed HF calculations and then projecting good
angular momentum states from it, deformed HF calcu-
lations gained popularity. ' By deformed HF calcula-
tions, we mean those in which the radial parts of the
single-particle orbitals are taken as harmonic-oscil-
lator radial wave functions while the angular momentum
parts are determined from the HF variational calcu-
lation. Here we will be dealing with deformed HF
calculations only.

We investigate the general broad features of the
low-lying excited states of nuclei as obtained by pro-
jecting the good angular momentum states from the
deformed HF wave function, and we derive the proper-
ties of the projected spectrum. We also give a justi-
fication of why one should project from the HF state

' M. Redlich, Phys. Rev, 110, 468 (1958); D. Kurath and L.
Picman, Nucl. . Phys. 10, 313 (1959); W. H. Bassichis, B. Giraud,
and G. Ripka, Phys. Rev. Letters 15, 980 (1965).



rather than any other deforIned state to obtain the
low-lymg states of nuclei.

we consider the M=K projection only. The love-lying
excited stRtcs of thc nucleus UDder consideration can
then be approximated by

Fo'= (I'o'eo
I
H

I I'o'4oV(pe'eel I'o'4o),

be tlM HRImltonlan of the nucleus UndeI' consBieratlon.
Since H is invariant under time inversion, its eigen-
functIons should have de6mtc symmetry under that
operation. If, however, the actual eigenfunctions are
approximated by the HF wave functions, one should
project the good angular momentum wave functions
froID the latter in order to obtRin the sanM syInnmtry.
Let itx be the axially-symmetric deformed HF state
with the azimuthal quantum number K and HP energy
Zx». For K=0, Px itself has definite symmetry un-
der time inversion (T), namely Tijso Po F—o—r K. pe0,
liowcvcl', wc cIIiploy 'tlic states fx= (Qx+ T@x)/%2s
which satisfy Tgx=sjrx."The operators which project
the good angular momentum (IM)states from Qx are'

dn dy sinl8dP

XD I@(esp~)o ia js p ip js e
—iyzg-—(])

In order to project good I3I states from fx, the proper
operRtols arc

~xi= {I"xVxlH II"xr4x&l(p'xr4xl I"xi4x& (3)

Similarly the expectation value in the projected state of
any other operator (such as quadrupole moment, mag-
netic moment, etc )ca. n be found. Using (I'xi) s= I'xr,
tH, Pxij=0 and similar relations for I"xr, Eq. (3)
can be written in the following form valid for RB E:

dxxr(8) Q x I H(exp —o8J„)I px&sin8d8

dxxi{8)(gx I (exp —s8J„) I @x&sin8d8

From Eq. (4) it is clear that one needs to know

(@xIH exp( s8J„—) I @x) and (@xlexp( iJ8—o) I yx)

for the numerical computation of E~I. %e evaluate
these expressions beloved for the axially symmetric
deformed single-particle HF orbitals

os,.„. —~~ c,.„''I j;m;r,).(s) —~

Qxlexp( —s8J.) I4x&=D"(~-p)D'(~»)

Thc required good IM states alc Psr Qo and I"sritpx.
Since the energies of these states do not depend on 3f, where

&&ID '*(.~~)+(-)'- D '*( ~~)]
()

p(—8J.&le )=T'D"{ ~ )+T"D'{~ )
+PPPDN(g )+IrrNNDP(g )+P'PX (6)'

T"=p p (j,m, lTI j',m;)p { )'+'c,.s"c —ss"d, ss"(8)D;,o" I(u„p), -
s=& i'�'s k=1,

sI«S astgs2 g spa sq~ sj~ s~

~ ~ ~
'I

Jum~s~lIsm~sl e I2 ism isis asm is)

X Z (-)'+'+"""-,,""-„"d-, ,-.,"'(8).-., '"-„"d. .;. '(8)D;„...;."-'(.p). (I)
ky&ko

T and e are the single partIcle Harmltonlan and the neutron neutron Ulteractron respectful. vely T" and V~p
in Eq. (6) are given by similar expressions to T~ and V~~ with the replacement of X by I'. The neutron-proton

3' This hoMs for integral values of E; for half integral values of E,
Wx= (4x+s&ex)l~

i K. P. Wigiier, Group Theory (Academic Press Inc., New York, 1959).
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interaction term V~~ is given by

v~~= p p p p (j„mj, „m„lvp~lj'„m'„j' m'„)
P=l n=1 j'yj'~ j'yj'„m, 'ym'~

One can convince oneself that the expectation value of the quadrupole moment in the projected state with angular
momentum I is given by

Q- (P) =(I+-,) dxrrr(8)dIrxr(8 ) P do312(8 )Q2~~(8 8) s—in8d8 sin8 «

dxrrr(8) /xi exp( —i8J„)I yx) sin8d8.

It can also be written as

Q~r(P) = {I2MOI IM)Q{12E pp I IE) —dJr „,Jrr(8)Q2„~(8) sin8«/pxr,

and (J~J2M~M2IJM) stands for the Clebsch-Gordan for the Condon-Shortley'phase convention. Combining
coeKcient. The definition of the quantities appearing Eqs. (10) and (11) we have proved that
in Eqs. (5)—(9) is as follows:

hx ~—8 =hx —8 =hx 8,
~-s=2 ~-«' ~-~' d-.-~' (8)

D;„,...;„,x,a,...y„N "(u s) denotes the determinant of rank
E pwhose —elements are a s, where u takes all the
values from 1 to E excluding i j, i2, ~ . i„, and P takes
all the values from 1 to S excluding k~, k2, k~.

Let
~x(8) =(~xl JJ -p(-'8J, ) I~x&

P (8)=Q lexp( —i8J„)lyx&.

For E=0 band, fx should be replaced by &0 in. the above
equations. We then. have

hlr (vr 8)= (Prr I
H exp—( i8J„)I

e—xp( iverJ„Prr
—)

= QirlHexp( —i8J„) I Tgx&=hx( 8). (10)—
In arriving at Eq. (10), we have used Tier Prr. ——
Similarly one can see that Prr(~ 8)=Prr( 8). Ex-— —
panding the exponential in br'(8), we see that

hx(8)= P g Ia(—iJ„)-Iy &8"/n!
n=o

= ZL1+(—)"]/2

&«~ lfI(-~J,)-l~-)8-/. !=h-(-8). (11)

In deriving Eq. (11), we have used the facts that H is

diagonal in azimuthal quantum number E and that

&Qx I H(—iJ„)"I Tplr& is real. The latter statements holds

and similarly

Px(x 8) =Px( 8—)=Px{8).— (13)

It is clear from Eqs. (12) and {13)that dhrr/d8 and
dPx/«are zero at 8= ~~~. Furthermore,

LdI x/d8]s=o= Qx I
II(—iJw)14x) =o,

!tdPx/«)a=0= &IxI ( ~J,) I le&=o,— {14)

[dh /d8] =.=Q III( J,)IT4 )—
=QxlfI( —iJw) I4x&=0

L~P./«] =.=&~ I( 'J,)IT~ &-
=&~ I(-'J,)l~-&=0 (»)

In obtaining Eqs. (14) and (15), we have used the same
arguments as those used in deriving Eq. (11).Collecting
together the results on the slopes of h~ and I'~ and
the fact that for 8/0, 7r/2, and ~ these will not vanish in

general, we have proved that dhrr/d8 and dPx/«will
vanish only at 8=0 x~x and m i

Ldhx/d8]y=o, p, =0; [dPrr/d8]y 0, i2, =0. (16)

In order to study the behavior of hlr(8) and Prr(8),
let us expand these in the neighborhood of 8=0. From
arguments similar to those used in deriving Eq. (11),
it follows that the linear term in 0 vanishes. Thus for

'E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, London, 1935).
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8=0 we have,

hz(8) =Ez" (z—J„pzI HI zJyfz&P',

Pz(8) =1—(»AzI»A'z)k8' (17)

It follows from Eq. (15) that Pz(8) is a decreasing
'

function of 8 while hz(8) is an increasing function of 8

in the region (0, ~~m). In. arriving at this conclusion, we

have used the fact that the expectation value of H is

negative and that the slopes of hz(8) and Pz(8), in

general, cannot vanish except at 0=0, -,'x, and x
[proved in Eq. (16)]. A sketch of hz(8) and Pz(8)
as given by Eqs. (12), (13), (16), and (17) is shown in

Fig. 1.
The number of zeros of dzzr(8) increases as I

increases, and hence hzr(hzr' and Pzr)Pzr' for ICI'
[see Eq. (4)]. However, this does not help us to say
anything about E~~.

From Eq. (4) we have

E '=h '/p '= d«'(8) hz(8) sfn8d8

dzz (8)Pz(8)sin8d8, (18)

where hz(8) and Pz(8) are the same as defined earlier:„
with fz replaced by pz. Changing the range of integra- »
tion from (0,~) to (O'er) and using Eq. (12) we have

n/2

[dzz'(8)+dzzr(7r 8)]hz(8)sin—8d8. (19)

Using the relation

dzz'(~ —8) = (—)' dz z'(8),

one sees that h~~ ——0 for odd I in the case of a E=O
band and h~~~0 for K&0. A similar result holds for
Pz'. This shows that the Ezr are not defined for odd
I in the case of a E=O band, so that these members
can be treated as nonexistent. Thus, one has the pro-
jected nuclear states with I=O, 2, 4, . I for a
E=O band, and I=X, X+1, I for a EWO
band.

3 IF Ezr=z &EzHF(Ezr=z) E HF)

Ez'&Ez'(Ez') Ez') FOR I&I'

An alternative definition of the projection operator
E'g, which projects out the state with total angular
momentum I=I1 is

Pr, =II [J'—I'(I'+I)]/II [I~(I~+I)—I'(I'+ 1)]
i&1 i/1 (20)

where J is the total angular momentum operator and Ii
are all possible eigenvalues of J in the state to be
projected. With this definition one can easily obtain

Pz '—Ez ' —[Ig(I(+1)—Im(I2+1)]1Vz/Dz—, (21)

Fn. 1. Sketch of k~{8) and E~(8) as a function of 8.

where

Xz ——(Hn)(J'n) —(HJ'n)(n),

D =[(I' )-I (I +1)( )][&J' )-I (I +1)( )],
[J2—I,(I;+l.)],

i&1,2

and ( ) denotes the expectation value in the HF state
One can express Xz in the form

&z=Z' [&H~&&@z"'IJ'I &z'&&&z'I ~l &z"'&

—&4z"'IH~I&z')&&z'I J'Iez"'&&~&]

=2' [(H~)&0 z*I~
I
&z"'&

—8z"'IH~14z'&&~&]Qz"'I J'Iez'& (22)

The prime on the summation in Eq. (22) denotes that
in the complete set of HF states P~', the ground state
&~H~ is to be excluded. We first observe that not all
the off-diagonal elements ($z'

I
n

I
pzn F) (Qz I

Ha
I pz'),

and (PzHF
I
J'I Pz'& can be zero since, if they were zero,

@~HF would be a good angular momentum state and an
eigenstate of H. Moreover, not all (Hn&gz'InIgzn )
will be equal to (n)(pzn~

I

Hn Ipz'&. It is thus clear that
Ez in Eq. (21) will never vanish, and therefore, that
E~,——EJ, will not vanish for I1/I2, thus E~' is either
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an increasing or a decreasing function of I. It is worth
pointing out that if the expression Ez/Dz remains

nearly constant and is positive, one will obtain a
spectrum similar to the rotational spectrum with the
moment of inertia J=DK/2NK.

Using the property

pz'=1,

one can easily obtain the following relation from Eq. (4):

energies satisfy

(4KIIII4K&=EK(E'x=(y'x(H($' ). (26)

Let E~~ and E'~~ be the corresponding energies of
the lowest I=K states projected from Pz and P'z,
respectively. From Eq. (4),

Ex hz ——/Pz and E'zz h'xz——/P'xz.

Using arguments similar to those used in deriving Eq.
(11), we have

p (Ex'—Ex"')px'= o
J7

(23)

where pzI —Qz»~I'KI~QKH ).From Eq. (23) wehave,

P (EKI EKHF)PKI (EKHF Ezz)P
I&X

lf Exz&EK»(Ezz& Ez"P) one obtains

p (Ex' Ez" )p—z'&o
I&K

( P (EKI EKHF)PKI(0) (24)
I&X

The matrix element on the right-hand side, in general,
will not vanish, and hence hx(8) —II'z(8) W 0. Combining
this with the fact that

hx(0) =Ex(E'Ir ——II'z(0),

we obtain the result hx(8)(h'x(8). Integrating both
sides over the region (Op-), we get hz &II'z . Then,
since I'z(0)=PK(0) =1 in both the states and most
of the contributions to Pzx and P'xx come from the
region near 0=0, we have

since from the definition of I'~~, one has I'~~) 0. From

Eq. (24) it follows that there must exist at least one

I&K state such that
px pK =2

n/2

Q.E.D.

(Q (Ezz EKHF) pKI( (EKK EKHF) (25)
I

4. JUSTIFICATION FOR THE USE OF THE
HF WAVE FUNCTION

What we have proved so far could also be proved for

any deformed state with good E. Here we explain why

one should take the deformed HF state for projection.
Let @~be the HF state and @'~ be any other determi-

nantal state having the same symmetries and class

of variation (the single-particle basis) as gz has. Then

from the variational principle, the corresponding

I&E HF (E I(E HF)

However, we have proved that EJ-„~ is either an increas-

ing or a decreasing function of I. Combining these

facts, one obtains the result that if E~~&E~II~
(E z&EKH ) then EKI&EKI' (Ez &EKI') for I(Il.

Let us now prove the converse of the above result,

namely, if Ex &Ez" (EKI&EKI') for I(I', then

K(E HP (E K& E HF)

Because Ez'&EKI' (EKI&EKI') for I(I', we have

from Eq. (23)

0=p (Ez'—Ez"')pz'

&P (E K E HP)pzI& Qzz EKHF
I

0=& (Ez' Ex"')px'—

XQ K+/'z
~
exp i8J„~—Pz —P'z&sin8d8=0.

If we taire pzx= p'zx approximately, then Ezz& E'zz.
In order to compare the theoretical spectrum with

the low-lying excited states of a nucleus, one must use
that state for projection which gives the lowest energy
for the ground state with I=X. Hence, in view of the
result E~ &E'~, one should use the HF state for
projection rather than any other state having the
same symmetry and class of variation.

S. CONCLUSIONS

It is found that the low-lying excited states of
nuclei calculated by projecting the good angular mo-
mentum states from the deformed HF wave function
have the possible spins I=0, 2, 4, , I for a E=0
band and I=K,K+1, ,I,„ for a KWO band. It is
clear from the expressions in Sec. 2 that, in the evalu-
ation of the projected I=K state energy (relative to
the HF energy EKHP), the contribution of the single-
particle part of the Hamiltonian is positive, while that
of the two-body interaction part is negative. The sum
of the two may be positive or negative, depending on
the single-particle input spectrum and the strength of
the two-body interaction. Depending on whether
E~~&E~" or E~~)E~~~, we proved that the pro-
jected spectrum would manifest Ez &Ez ' or Ez)Ez ', respectively, for I&I'. From this, one observes
that in order to obtain the realistic spectrum E~ &E~ '
for I&I', one must have the single-particle input
spectrum and the interaction such that E~~&.E~
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The spectrum whose ground state is lower than that
of any other spectrum would be closer to the physical
situation, This suggests that if the HF state gives the
experimental spectrum quite correctly then E~~&E'~~,
where E'~~ is the energy of the I=E state projected
from any other state @'~ having the same symmetries
and the single-particle basis as the HF state Prc. In the
last section we have shown, in a certain approximation,

that E~~&E'~~, explaining thereby the importance of
the HF state in obtaining the low-lying excited states
of nuclei by thc projection technique.
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Electric Quadrupole Transitions near A =16:the Lifetimes of the
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{ ontjnujng a program to study E2 lifetimes in the neighborhood of 2 = 16, we have remeasured the mean
lifetimes of the following states: the 0.1W-Mett level of F";the 0.241-MeV level of Ne"; the 0.120-MeV level
of N16 and the 1.125-Me& level of F".We And (129,9~2.3) &(10~sec, (26.6~1,2) &10 ' sec, (7.58+0.09)
X10 6 sec, and (221~21)&10 ' sec, respectively.

A S has been pointed out on numerous occasions, the
independent particle model (IPM) characterized

by the calculations of Kurath and others' ' describes
quite well level schemes in the 1p and (2s, id) shells;
and new calculations'4 indicate even more success.
However, the success in describing the level schemes
has not extended itself to the description of electro-
ITlagnctic transitions between thcsc stRtcs Dios t
particularly E2 transitions, although the most recent
ca,lculations'4 seem to indicate a more substantive
agreement' 6 with theory. Perhaps the IPM wave

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

)Present address: Lockheed Missiles and Space Company,
Palo Alto, California.
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of admixtures of higher states which will explain these
strong E2 transitions.

The region near 2=16 represents a fertile testing
ground as the number of additional particles or holes
past the filled 1p shell is small. Particularly, we have
remeasured~ the lifetimes of the first excited states of
0'~ and F'~ since, representing as they do 2s~ f.d
jumps, they are most relevant to the problem of E2
enhancement. |A'e have undertaken further remeasure-
ments' on K&2 transitions near 2 =16: the lifetimes of
the first excited states of Ne" (0.241-MeV) and N"
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MeV), and also the 1.125-MeV level of F".
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