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a sufficiently accurate description of the low-energy
collective spectrum—at least as far as the 0+ and 2+
states are concerned, which alone can participate in
the dipole states. Then one may hope to achieve quite
a good description when adding the dipole excitation
since, as already mentioned, the two modes contain to
a large extent different single-particle states.

The most conspicious discrepancy between theory
and experiment is, however, the structure at the low-
energy side of the resonance. No consistent explanation
of this discrepancy has as yet been given. It seems very
likely that the excess cross section should be associated
with some of those states which in the schematic model?®
have been swept clear of any transition strength.?”

26 G. E. Brown and M. Bolsterli, Phys. Rev. Letters 3, 472
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In the language of the collective model the giant
resonance is an isospin wave. It can be coupled to the
spin wave. This would result in a splitting of the giant
resonance, as observed in the calculations concerning
0% where two states carry appreciable dipole strength,
the upper being the spin-flip state. It is possible that
the same coupling would lead to a structure on the low-
energy side of the giant resonance. However, it is very
unlikely that this structure would be as complicated as
that in praseodymium, Fig. 11. This point thus merits
a quantitative exploration.
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The general features of the expressions useful for numerical calculations of the projected deformed Hartree-
Fock (HF) spectra for finite nuclei are investigated. It is proved that the projected deformed HF wave-
function gives the possible nuclear spins as =0, 2, 4, ..., Imax for a K=0band and I =K, K+1, ..., Imax for
a K 50 band. It is further proved that if the energy Er_x of the projected I =K state is greater (less) than
the HF energy Ex™F, then E;is greater (less) than E;’ for I <I’. A plausible reason why one should use the
deformed HF state rather than any other deformed state is also pointed out.

1. INTRODUCTION

ECENTLY there has been considerable interest
in Hartree-Fock (HF) calculations for finite
nuclei. In nuclear HF calculations there is a special
difficulty due to the nucleon-nucleon interaction inside

the finite nucleus. Various different approaches are

suggested in the literature to cope with this difficulty.!
Here we will not be concerned with this aspect of the
problem. We simply assume some effective inter-
nucleon potential inside the nucleus. In the literature,
two types of HF calculations are reported: (1) radial
HF calculations for nearly closed-shell nuclei,® and
(2) deformed HF calculations for nonspherical nuclei.
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110, 431 (1958); S. A. Moszkowski and B. L. Scott, Ann. Phys.
(N. Y.) 11, 657 (1960); R. K. Bhaduri and E. L. Tomnsiak,
Proc. Phys. Soc. (London) 86, 451 (1965); C. Shakin and Y. R.
Waghmare, Phys. Rev. Letters 16, 403 (1966).

2 Nazakat Ullah and R. K. Nesbet, Nucl. Phys. 39, 239 (1962);
46, 254 (1963); Phys. Rev. 134, B308 (1964); R. Muthu-
krishnan and M. Baranger, Phys. Letters 18, 160 (1965); A. K.
Kerman, J. P. Svenne, and F. M. H. Villars, Phys. Rev. 147, 710
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Following the finding that one can obtain nearly the
same physical results for a nucleus by doing the inter-
mediate coupling calculations or by doing the de-
formed HF calculations and then projecting good
angular momentum states from it, deformed HF calcu-
lations gained popularity.? By deformed HF calcula-
tions, we mean those in which the radial parts of the
single-particle orbitals are taken as harmonic-oscil-
lator radial wave functions while the angular momentum
parts are determined from the HF variational calcu-
lation. Here we will be dealing with deformed HF
calculations only.

We investigate the general broad features of the
low-lying excited states of nuclei as obtained by pro-
jecting the good angular momentum states from the
deformed HF wave function, and we derive the proper-
ties of the projected spectrum. We also give a justi-
fication of why one should project from the HF state

3 M. Redlich, Phys. Rev. 110, 468 (1958); D. Kurath and L.
Picman, Nucl. Phys. 10, 313 (1959); W. H. Bassichis, B. Giraud,
and G. Ripka, Phys. Rev. Letters 15, 980 (1965).
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rather than any other deformed state to obtain the
low-lying states of nuclei.

2. GENERAL EXPRESSIONS AND THEIR
PROPERTIES
Let
H =Z Tit3 2 v

]

be the Hamiltonian of the nucleus under consideration.
Since H is invariant under time inversion, its eigen-
functions should have definite symmetry under that
operation. If, however, the actual eigenfunctions are
approximated by the HF wave functions, one should
project the good angular momentum wave functions
from the latter in order to obtain the same symmetry.
Let ¢x be the axially-symmetric deformed HF state
with the azimuthal quantum number K and HF energy
ExHF, For K=0, ¢x itself has definite symmetry un-
der time inversion (7)), namely Téo=¢o. For K0,
however, we employ the states Yx= (¢px+Tox)/V2,
which satisfy Tyx=yx.3* The operators which project
the good angular momentum (M )states from ¢x are

2U41 pom 27 1r
Pyl= / da f dy / sinBdg
87‘.2 (1] Q )

X Darx™(aBy)eialz ¢~y g=iv7s (1)

In order to project good IM states from yx, the proper
operators are

2[+1 27 27 ™
Pyl= / da / dvy / sinBdB
8r% Jo 0 0

X[Dur™(aBy)+(—=)EDy_x™(eBy)]

e—aJ; e—iﬂJy e—z'sz. (2)

The required good IM states are Pyl¢y and P’y fyk.
Since the energies of these states do not depend on M,
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we consider the M=K projection only. The low-lying
excited states of the nucleus under consideration can
then be approximated by

Eof=(Pol¢o| H| Po'o)/{Po'do| Po'bo) ,
and
Ex'=(P'xx|H|P'xWx)/(P'x¥x|P'x"¥x). (3)

Similarly the expectation value in the projected state of
any other operator (such as quadrupole moment, mag-
netic moment, etc.) can be found. Using (Px?)?=Px?,
[H,Px"]=0 and similar relations for P'x!, Eq. (3)
can be written in the following form valid for all K:

Fale / el (0)x| Hlexp—i07) | grisingdo /
f ) drx'(0)(ox | (exp—i0T )| Px )sinbdo

=hx!/px?. 4)
From Eg. (4) it is clear that one needs to know
(@x|H exp(—i6J,) |¢x) and (px|exp(—iJby|¢x)

for the numerical computation of Ex!. We evaluate
these expressions below for the axially symmetric
deformed single-particle HF orbitals

Cmiri D=2 Cmgrs l jimi"'i> .
Ji

After some straightforward but lengthy algebra one
obtains
(¢x| exp(—1i6J ) I ¢x)=D¥(aus) D (ays) ®)
and
(¢x|H exp(—i0J,)| ¢x)=TPD¥(aas)+T¥DP(a0p)
+VPEDY(a0)+ VIVDP (0 + VP, (6)

where

N N
V=3 2 (G| T|j'ms) 3 (=) enicn dmm(0) Di ¥ (aap) ,
k=1

=1 jij’s

N
V=3 ¥ X

1<92 JiyFig 54,7 iym’ iym’ iy

(jilmilyjizmiz l oV { j,ilm’inj/izm,iz)

N
X X (“)i1+i2+k1+k2€mi1i“5mk1j,“ m’ilmklj’“(o)6mi2jizcmk2j,i2dm'izmkzj’iz(e)Dil’iz.kxkzN_2(aaﬁ)' (7)

k1<ks

T and vV¥ are the single-particle Hamiltonian and the neutron-neutron interaction, respectively; TP and VPP
in Eq. (6) are given by similar expressions to 7% and V¥¥ with the replacement of N by P. The neutron-proton

% This holds for integral values of K; for half integral values of K,

Vi =(¢px+iT¢x)/V2.
¢ E. P. Wigner, Group Theory (Academic Press Inc., New York, 1959).
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interaction term VF¥ is given by

PRy Y Y %

p=1 n=1 jpj’n. j,pj/nm'p'm’n
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(jpmp:jnmn1 VPN | 57 i y j )

P N
X Z Z (—)p+n+p/+n,cm14jp5mp’j'pdm'pmp'j,p(e)cmnjncmn’j,"dm’nmn’j’"(e)Dz’.P'P—I(aaﬂ)Dn.n'N—I(d'y&) . (8)

p'=1n'=1

One can convince oneself that the expectation value of the quadrupole moment in the projected state with angular

momentum I is given by

kg m 2
QxI(P)=(I+3) / / drx?(0)dxxX(0) Y doa(0)Q2uT(6—0’) sinfdo sing’de’
0o Jo M==2

It can also be written as

//T dKKI(0)<¢K18Xp(—i0Jy)|¢K> sinfdf.

03 (P) = (12M0| M) (12K — | IK) f G (6)08,7(0) sinddb)/ pe,

where

P P
02.20)=3 > (jami| (167/5) e pr 2y2,(3)| jimi—n) kZ (=) CmiTicm iy, mi? (0) Di kP @),  (9)
=1

=1 jij’'¢

and (J1J2MiM.|JM) stands for the Clebsch-Gordan
coefficient. The definition of the quantities appearing
in Egs. (5)-(9) is as follows:

aaa=z Cmajacmﬂj“dmamﬁj“(o) .
Ja
Dijigerip kg, ?(@ap) denotes the determinant of rank
N—p whose elements are @.5, where o takes all the
values from 1 to N excluding 4y, 43, - 15, and B takes

all the values from 1 to N excluding ki,kq, -« - kp.
Let

hx(0)= (x| H exp(—i8J,)|¢¥x)

Pr(8)=Wx|exp(—i87,) |¥x).
For K =0 band, Yk should be replaced by ¢, in the above
equations. We then have
hg(r—0)= x| H exp(—i07 ) | exp(—inJ ¥x)
= (Vx| Hexp(—i8J,) | T¥x)=hx(—06). (10)
In arriving at Eq. (10), we have used T¥x=v¥x.

Similarly one can see that Px(r—6)=Pg(—0). Ex-
panding the exponential in %x(6), we see that

and

hx(6)= é Wi H(=iT)" | $x)6"/n!

=3 [1+(=)"]/2
X Wx|H(—=iJ )" |¥x)0"/n!=hx(—0). (11)

In deriving Eq. (11), we have used the facts that H is
diagonal in azimuthal quantum number K and that
(px | H(—1iJ,)"*| T¢x) is real. The latter statements holds

for the Condon-Shortley® phase convention. Combining
Egs. (10) and (11) we have proved that
hx(r—60)=hx(—0)=hx(6), 12)
and similarly
Px(r—0)=Pg(—8)=Px(0). (13)

It is clear from Egs. (12) and (13) that dhg/d6 and
dPx/df are zero at §=4%w. Furthermore,

[dhx/d0)o—o= x| H(—iJ,) |¥x)=0,

[dPk/db)smo= Wi | (—iT ) |¥x)=0, (14)
and
[dhg/d0)omr= Wx|H(—iJ,)| T¥x)
={x|H(—iJ,)|¥x)=0,
[dPx/d0]o—r= WYx|(—i],) | T¥x)
=Wx|(—=iJ,)|¥x)=0. (15)

In obtaining Eqs. (14) and (15), we have used the same
arguments as those used in deriving Eq. (11). Collecting
together the results on the slopes of #x and Px and
the fact that for 640, 7/2, and = these will not vanish in
general, we have proved that dhx/d6 and dPg/d8 will
vanish only at =0, 3, and =, i.e.,

[dhK/d0]a=o, /2, ,,-=0 3 [dPK/d0:|0=o, /2, ,r=0. (16)

In order to study the behavior of kx(f) and Px(6),
let us expand these in the neighborhood of §=0. From
arguments similar to those used in deriving Eq. (11),
it follows that the linear term in 6 vanishes. Thus for

8§ E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, London, 1935).
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6=~0 we have,
hx(6)~ Ex"F— (iJ W& |H|iJ Wx)56,
Pr(0)=1—(J Yx|iJ ¥x)56°.

function of 8 while %x(f) is an increasing function of 6

in the region (0, 37). In arriving at this conclusion, we -

have used the fact that the expectation value of H is

negative and that the slopes of kx(6) and Pk(6), in :

general, cannot vanish except at =0, 3r, and =
[proved in Eq. (16)]. A sketch of kx(f) and Px(6)
as given by Egs. (12), (13), (16), and (17) is shown in
Fig. 1.

The number of zeros of dgx!(f) increases as I
increases, and hence hx{(kx!’ and prl)px!’ for I<I’
[see Eq. (4)]. However, this does not help us to say
anything about Eg?.

From Eq. (4) we have

Egl= hKI/ﬁKI=/ dKKI(ﬁ)hK(G)Sinﬂdo/

0

/ ’ dxx’(0)Px(0)sindds, (18)

where hx(0) and Pg(f) are the same as defined earlier
with ¥ replaced by ¢x. Changing the range of integra-
tion from (0,7) to (0,37) and using Eq. (12) we have

/2
hKI:f [dKKI(())-}-dKK"(w—0)]hK(0)sin0d0. (19)

Using the relation
dxx!(r—0)=(—)""dg, -£'(60),

one sees that #x’=0 for odd I in the case of a K=0
band and Ax’#0 for K50. A similar result holds for
px!. This shows that the Ex! are not defined for odd
I in the case of a K=0 band, so that these members
can be treated as nonexistent. Thus, one has the pro-
jected nuclear states with I=0, 2, 4, ---In.x for a
K=0 band, and I=K, K41, ---Inx for a K0
band.

3. IF EKI=K<EKHF(EKI=K>EKHF) THEN
EKI<EKI’(EKI>EKI') FOR I<I

An alternative definition of the projection operator
Py, which projects out the state with total angular
momentum /=1, is

Pr=]1 (- 1+ D) V/]II [+ 1) - L(1A41)],
7#1 771 (20)

where J is the total angular momentum operator and I;
are all possible eigenvalues of J in the state to be
projected. With this definition one can easily obtain

Exli— Eglt= [Il(ll+1)—12(12+1)]NK/DK , (21)

an
It follows from Eq. (15) that Pg(6) is a decreasing °
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Fic. 1. Sketch of kx(6) and Px(6) as a function of 6.

where

Ng=(Ha)(J*a)—(HJ )},

Dix=[(I%)— LI+ 1)(@) (%)~ Lol 1)(a)],
a=II [*-I(:+1)],

17#1,2

and () denotes the expectation value in the HF state
¢x™F. One can express Ng in the form

NK:Z;' [(Ha)ox™F| T2 | i) dx’| a| px™F)
— (&7 | Ha| k') x’| J*| $x ")) ]
=§' [(Ha)ox'|a|px™F)
— (@™ | Ha|px ) Nox™T| 12| $x?).  (22)

The prime on the summation in Eq. (22) denotes that
in the complete set of HF states ¢x?, the ground state
¢xHT is to be excluded. We first observe that not all
theoff-diagonal elements{¢x*| | pxBF), (pxBF | Ha| px*),
and {¢x"¥|J?| &) can be zero since, if they were zero,
¢x™F would be a good angular momentum state and an
eigenstate of H. Moreover, not all (Ha)¢x'|a|dxHF)
will be equal to (a)¢x"F|Ha|px?). It is thus clear that
Nk in Eq. (21) will never vanish, and therefore, that
Er,=Es, will not vanish for I151,; thus Ex’ is either
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an increasing or a decreasing function of I. It is worth
pointing out that if the expression Nx/Dg remains
nearly constant and is positive, one will obtain a
spectrum similar to the rotational spectrum with the
moment of inertia §=Dg/2Nkg.

Using the property

Z ? =1 )
I
one can easily obtain the following relation from Eq. (4):

> (Ex!—Ex"F)px’=0, (23)

I
where px’= (px"¥| Px!| ¢xF). From Eq. (23) we have,

Z (EKI'—EKHF)PKI:‘ (EKHF—EKK)PKK .
I#K

If ExX< ExB¥(ExX> Ex"F) one obtains
Y. (Ex'—Ex"T)pr’>0
1=K
(X (Ex"—Ex"F)pr’<0),

I#K

(24)

since from the definition of Px!, one has Px’>0. From
Eq. (24) it follows that there must exist at least one
I#K state such that
EKI>EKHF (EKI<EKHF).

However, we have proved that Ex’ is either an increas-
ing or a decreasing function of 7. Combining these
facts, one obtains the result that if ExX<EgH¥
(ExX> Ex"Y) then Ex!<Eg!” (Ex'>Ex") for I<I'.

Let us now prove the converse of the above result,
namely, if Ex’<Eg! (Ex!>Ex") for I<I', then

EKK< EKHF (EKK> EKHF) .
Because Ex!<Ex! (Ex'>Ex!) for I<I’, we have
from Eq. (23)
0=3_ (Ex’— Ex"F)px’
! >ZI (EKK_EKHF)PKI>EKK__EKHF ,

0=Y (Ex’— Ex"F)px?
I
<Y (ExX—Ex"%)px’< (Ex®—Ex"F). (25)
1

Q.ED.

4, JUSTIFICATION FOR THE USE OF THE
HF WAVE FUNCTION

What we have proved so far could also be proved for
any deformed state with good K. Here we explain why
one should take the deformed HF state for projection.
Let ¢x be the HF state and ¢'x be any other determi-
nantal state having the same symmetries and class
of variation (the single-particle basis) as ¢x has. Then
from . the variational principle, the corresponding
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energies satisfy
(x| H|¢x)=Ex(E'k=(¢'c|H|¢'x).  (26)

Let ExX and E’'gX be the corresponding energies of
the lowest /=K states projected from ¢x and ¢'k,
respectively. From Eq. (4),

ExkK= ]’LKK/PKK and E’KK=}Z,KK/1§'KK.

Using arguments similar to those used in deriving Eq.
(11), we have

hx(0)—H k(0) = {¢px+¢'x | He v | pr—'k).

The matrix element on the right-hand side, in general,
will not vanish, and hence %x(6) — 4’k (6) 0. Combining
this with the fact that

hg(0)=Ex<E'gx=hx(0),

we obtain the result hx(6)<A'x(f). Integrating both
sides over the region (0,7), we get hxX<h'kX. Then,
since Pg(0)=P’k(0)=1 in both the states and most
of the contributions to px%¥ and p’xX come from the
region near =0, we have

/2
prE—p'rE=2 / dxx(6)

0
X{px+¢'x | exp—i0J | dx— ¢k )sinfdf=0.

If we take pxX= p'xX approximately, then ExE< E'gX.

In order to compare the theoretical spectrum with
the low-lying excited states of a nucleus, one must use
that state for projection which gives the lowest energy
for the ground state with /=K. Hence, in view of the
result ExEX<E'gX, one should use the HF state for
projection rather than any other state having the
same symmetry and class of variation.

5. CONCLUSIONS

It is found that the low-lying excited states of
nuclei calculated by projecting the good angular mo-
mentum states from the deformed HF wave function
have the possible spins I=0, 2, 4, - -+, I for a K=0
band and I=K,K-+1, -+, I max for a K50 band. It is
clear from the expressions in Sec. 2 that, in the evalu-
ation of the projected I=K state energy (relative to
the HF energy ExHT), the contribution of the single-
particle part of the Hamiltonian is positive, while that
of the two-body interaction part is negative. The sum
of the two may be positive or negative, depending on
the single-particle input spectrum and the strength of
the two-body interaction. Depending on whether
ExE< ExHF or ExX> EgPF, we proved that the pro-
jected spectrum would manifest Ex’<Ex? or Eg!
> ExY, respectively, for I<I’. From this, one observes
that in order to obtain the realistic spectrum Ex!< Eg!’
for I<I’, one must have the single-particle input
spectrum and the interaction such that ExX<Eg¥.
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The spectrum whose ground state is lower than that
of any other spectrum would be closer to the physical
situation. This suggests that if the HF state gives the
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that ExX< E'g¥, explaining thereby the importance of
the HF state in obtaining the low-lying excited states
of nuclei by the projection technique.

experimental spectrum quite correctly then ExX < E'gX,
where E’'xX is the energy of the =K state projected
from any other state ¢'x having the same symmetries
and the single-particle basis as the HF state ¢x. In the
last section we have shown, in a certain approximation,
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Electric Quadrupole Transitions near 4 =16: the Lifetimes of the
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Continuing a program to study E2 lifetimes in the neighborhood of 4 = 16, we have remeasured the mean
lifetimes of the following states: the 0.197-MeV level of F19; the 0.241-MeV level of Ne®; the 0.120-MeV level
of N1%; and the 1.125-MeV level of I8, We find (129.94-2.3) X 10 %sec, (26.62£1.2) X107 sec, (7.58-£0.09)

%1076 sec, and (22121) X 1070 sec, respectively.

INTRODUCTION

S has been pointed out on numerous occasions, the

independent particle model (IPM) characterized
by the calculations of Kurath and others!? describes
quite well level schemes in the 1p and (25, 1d) shells;
and new calculations®* indicate even more success.
However, the success in describing the level schemes
has not extended itself to the description of electro-
magnetic transitions between these states, most
particularly E2 transitions, although the most recent
calculations®* seem to indicate a more substantive
agreement®® with theory. Perhaps the IPM wave

* Work performed under the auspices of the U. S. Atomic
Energy Commission.

T Present address: Lockheed Missiles and Space Company,
Palo Alto, California.

1D. Kurath, Phys. Rev. 101, 216 (1956); 106, 975 (1957); A. M.
%arg? Proc. Phys. Soc. (London) A68, 189 (1955); A68, 197

1955).

2 B. H. Flowers and J. P. Elliot, Proc. Roy. Soc. (London)

‘(&2297,)536 (1955); J. P. Elliot and B. H. Flowers, ibid. A242, 62
1957).

¢ S. Cohen and D. Kurath, Nucl. Phys. 73, 1 (1965).

4¢D. Amit and A. Katz, Nucl. Phys. 58, 388 (1964).

8 D. E. Alburger, P. D. Parker, D. J. Bredin, D. H. Wilkinson,
P. F. Donovan, A. Gallman, R. E. Pixley, L. F. Chase, Jr., and
R. E. McDonald, Phys. Rev. 143, 692 (1966).

8 E. K. Warburton, J. W. Olness, K. W. Jones, C. Chasman,

functions may be repaired to include collective effects
of admixtures of higher states which will explain these
strong E2 transitions.

The region near 4=16 represents a fertile testing
ground as the number of additional particles or holes
past the filled 1p shell is small. Particularly, we have
remeasured’ the lifetimes of the first excited states of
O and F' since, representing as they do 25— 1d
jumps, they are most relevant to the problem of E2
enhancement. We have undertaken further remeasure-
ments® on E2 transitions near 4=16: the lifetimes of
the first excited states of Ne!® (0.241-MeV) and N6
(0.120-MeV), the second excited state of F19 (0.197-
MeV), and also the 1.125-MeV level of Fs,

Previous measurements of these mean lifetimes are
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