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Collective Treatment of the Giant Resonances in spherical Nuclei~
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In a collective treatment the energies of the giant resonances are given by the boundary conditions at the
nuclear surface, which is subject to vibration in spherical nuclei. The general form of the coupling between
these two collective motions is given by angular-momentum and parity conservation. The coupling con-
stants are completely determined within the hydrodynamical model. In the present treatment the inhuence
of the surface vibrations on the total photon-absorption cross section is calculated. It turns out that in most
of the spherical nuclei this interaction leads to a pronounced structure in the cross section. The agreement
with the experiments in medium-heavy nuclei is striking; many of the experimental characteristics are
reproduced by the present calculations. In some nuclei, however, there seem to be indications of single-
particle excitations which are not yet contained in this work.

than three states at approximately that energy, and
frequently the splitting in the multiplet is of the same
order as the harmonic oscillator energy. The experi-
mental spectra are still more confused in odd nuclei.
Not much is known about the three-phonon states. It
seems worthwhile to undertake a systematic develop-
ment of the theory and to compare the results with the
experimental data at each step in order to obtain
information on the actual importance of the different
interaction terms.

The present paper has three aims. First, we present
a quantum-mechanical treatment of the coupled system
of surface vibrations and giant dipole oscillations which
encompasses all terms up to second order in the vibra-
tional amplitudes. The form of the Hamiltonian is
uniquely determined by angular-momentum and parity
considerations. All coupling constants are computed
in the adiabatic approximation from the collective
model. v The earlier paper by I.eTourneux considers
only the lowest order in the interaction. We also go
beyond LeTourneux's treatment by including the in-
huence of the surface vibrations on the dipole matrix
elements in the absorption cross section. We compare
the predictions of the theory with the available experi-
mental data. This part is contained in Secs. II through
VI.

Second, we give a series of photon-absorption cross
sections computed for different nuclear parameters.
They have been chosen such that the complete range
of the experimentally observed parameters is covered
with a sufhcient density. This way it is possible to obtain
a "predicted" cross section for any particular nucleus
as an interpolation between the given curves. We have
done this to facilitate the planning of photonuclear
experiments (Sec. VII).

Third, we present a discussion on the limits of validity

I. INTRODUCTION

' 'T is known from the location of the low-energy states
~ - and from the magnitudes of the E2 transition
probabilities between these states that in the vibrational
nuclei the shape oscillations have rather large ampli-
tudes. ' In fact, very frequently the mean-square
deformation associated with the surface vibrations is
comparable in magnitude with that of the permanently
deformed nuclei. ' The interaction of the giant resonance
oscillation with the surface vibrations, therefore, must
be expected to be very important. In contrast to the
heavy deformed nuclei, where a static treatment of the
nuclear surface already leads to a qualitatively correct
description of the splitting of the giant resonance, "
here the interaction is totally a dynamic effect, viz. ,
that of coupled oscillators. ' ' Also, because of the large
amplitudes of the surface vibrations, it should be ex-
pected that a treatment considering these vibrations
to be harmonic will have only limited accuracy. How-
ever, a power-series expansion in terms of the vibra-
tional amplitudes should converge quite rapidly.

The need to go beyond the harmonic approximation
is evident from the low-energy spectra. In even-even
nuclei the two-photon states should form a degenerate
triplet 0+, 2+, 4+ at an energy twice that of the first
excited 2+ state. Instead, in many nuclei there are more
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of the theory and on the accuracy of the solutions ob- by the Helmholtz equation'
tained. This is done in Sec. VIII.

hil+k'il =0, (6)

Here the n2„are considered to be time-dependent,
n2„(t), and their motion is assumed to be harmonic.
Introducing the conjugate momenta

ir2p = BH/86'2p

and using the notation of angular-momentum coupling
of Fano and Racah' the Hamiltonian of these quad-
rupole vibrations has the following form:

H „d= (-'+5) (82-'[ir '1 Xir 1'1]1'1

+C [0J2 X& J21] si J ) ~ (3)

The harmonic approximation describes the low-

energy properties in the spherical even-even nuclei to
some extent. However, for instance, the two-phonon
states are observed to be nondegenerate in almost all
vibrational nuclei. To describe this, anharmonic terms
would have to be added. to Eq. (3); we neglect them at
this time.

The giant dipole resonances can be understood in
terms of protons and neutrons vibrating against each
other because of a potential of the form

~q '(J p J.)'dl . —

Assuming constant total density we write for the proton
and neutron densities

z
n p= —no[1+v(r)d '"'], (Sa)

r z
p-= —Jo 1—~(r)d '"' .

A E
(5b)

Here po is the mass density distribution of the nucleus.
The spatial part of the function il(r) is determined

II, THE HAMILTONIAN

The Hamiltonian describing the surface quadrupole
vibrations, the giant dipole resonances, and the inter-
action between these two collective motions can be
written

+quad+ +dip++dip quad ~

We discuss the different terms separately. We begin
with II~„,d. The nuclear surface usually is expanded in
spherical harmonics. Taking into account only quad-
rupole deformations the surface is described by

E=Eii(1++„ng„F2„). (2)

with
k2=co2 Q2

I'= (SE/M) (cVZ/A'),

(7a)

(7b)

k R=s„, (9)

where s is the nth zero of the derivative ji'(s). These
zeros are well known' to be 2.08, 5.95, 9.20 for e= 1, 2, 3,
respectively.

To go from classical to quantum hydrodynamics, the
amplitudes n~„are taken to be operators. Introducing
conjugate momenta x&„, the Hamiltonian of this col-
lective motion is given by

Hd~p ————,'V3 (Bi—'[ir P 1 X ir 1'1]1'1+Ci[n 1'JXn 1'1]1'1) . (10)

The coupling between the surface and the giant dipole
oscillations arises via the boundary conditions.

According to Eq. (9) the energy of the dipole reso-
nance is determined by the nuclear surface, Eq. (2),
which in turn depends on the collective variables of the
quadrupole oscillations, n». Therefore the total Hamil-
tonian contains interaction terms. From angular mo-
mentum and parity considerations the interaction
Hamiltonian must be of the following form:

d
—+i[~ l21Xa PJX~ Pl] Jql

+Q M[ii, J21 Xo 121]1& 1 [~P 1 Xo, P J] 1&1

+Qq2[[ii l2J Xii 121]l~J X [~PJXa PJ] l&lt JPJ+. . . (11)

The coupling constants can be evaluated in the
adiabatic approximation which here can be expected
to give very good results. In the even-even spherical
nuclei the ratio of the energies of the giant dipole
resonance Ej ——Ace~, and the quadrupole phonons
E~= Itco2, lies between 10 and 30. That means that the
nuclear shape does not change appreciably during one
period of the dipole oscillation. Therefore the fre-
quencies of the dipole oscillation can be computed as if
the nucleus were statically deformed. This defor-
mation leads to a splitting of the three possible dipole
modes as has been shown by Danos and Okamoto. '4

and E is the symmetry energy parameter of the Bethe-
Weizsacker formula. The deviation density is written as

il(r, t) =p&,.CJ,~J,„(t)jl, (kl,r)FJ,„(r'). (8)

The C),„and n), „are normalization constants and ampli-
tudes of the diferent modes of motion, respectively.
We will restrict ourselves to the dipole case, i.e., X=1.

The energies of the different modes are determined
by the condition that the radial Aux vanish on the
nuclear surface. Thus the energy is determined by the
relation

U. Fano and G. Racah, Irreducible Tensorial Sets (Academic
Press Inc. , New York, 1959).

~ M. Danos, University of Maryland Technical Report No. 221,
1961 (unpublished).
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E r ———1.~88C&,

E2p = —0.708Cg,

E22———0.936Cg.
(13)

In principle the same procedure can also be used for
the evaluation of the coupling constants of the higher-
order interaction terms. Here we restrict ourselves to
the second-order terms in the o.2„. However, as will be
seen later, the higher-order interaction terms as well

as the anharmonicity of the surface vibrations very
likely give nonnegligible contributions and should also
be included. This point is under investigation at this
time.

III. SOLUTION OF THE SCHRODINGER
EQUATION

Writing the total Hamiltonian as

H:H +Hdi&p quad y (14)

H' describing the unperturbed surface and charge
vibrations,

=Hdip+Hquad y (15)

and introducing creation and annihilation operators

ni„——(hp)1/2C1)'"[d t+ (—1)"d ]
1ri y

—2 (AC1/2p11)'"[ (—1)"d—,t—d.])

(16.1)

(16.2)

The energies of the three modes are then given by

E„=(2.08/R„) [1+0.88 (AR„/Rp)]. (12)

R„,K„are the three principal axes and the corresponding
wave vectors, respectively.

For practical reasons the dependence of the E„'s on

the deformation parameters is calculated in the in-

stantaneous intrinsic coordinate system. Such a system
can be de6ned for times which are short compared with
the period of the surface vibrations. In order to obtain
the coupling constants K~, E~p, and E22 one has to make
a transformation back into the laboratory system. This
has been done by Urbas. 7 For the coupling constants
he obtains the following values:

n2„——(itip12/2C2)'"[8 t+ (—1)&p „])

pr2„= 2 (AC2/2(p2)'"[( —1)&p —p ]
co1——(C,/8, )'"
pi 2

——(C2/82)'",

one immediately obtains

(16.3)

(16.4)

(17.1)

(17.2)

=582/2C2. (20)

It is connected with the E2 transition probability of the
low-energy spectrum by the relation

8(E,) = [(3/42r)ZR ']'p ' (21)

The eigenstates of (18) are ~1V1,li, Xp,pp, lp, I,M). The
quantum numbers E~, l~ and E2, l~ are the number of
phonons and the angular momentum of the dipole and
the quadrupole states, respectively, ~2 is the seniority of
the quadrupole states, and I and M are the total angular
momentum and its s component.

The interaction Hd p q p is too strong to be treated
by perturbation methods. Therefore one has to diago-
nalize the interaction in the basis of the solutions of H'.
However the admixture of the 3-phonon dipole state
to the 1-phonon state, the usual giant dipole state, still
can be treated by perturbation methods since the dipole

energy M& is much larger than both the interaction
energy and the quadrupole energy Ace&. We therefore
neglect in Hd;~ ~„,q all the terms which do not commute
with [dtXd]"' correcting later for the error thus intro-
duced. Denoting the truncated interaction Hamiltonian
by H'd;p, „,p we have

Hp gyp)1([dt pi Xd pi] ipse ~3)

+(C5)~ .([Bt"'XO"']"'+-:V'5). (»)
The energies of H' are given by

+p lp 2) @1+2)~ppl+ (+2+2)~p12 ~ (19)

A very important quantity is the mean-square ampli-

tude of the surface vibrations, Pp, which is in terms of
the diverse constants

H dip quad H1 +H2P +H22
= —0.16Eipp(p&„(—1)"(1 1 2~ vp, —vp)[( —1)a "d td„& j (—1)"d d "][8 &2+ (—1)&p&]}

—005%OP (21=2,2 qi Zp. p "nr ( 1) (2 2 ~~Pv~)(1 1/~12'v' M)—
X[(—1)"'d, td a+(—1)"'d pdat]Diving, t+(—1)"P P t+(—1)PP„tP „+(—1)Pi'P,P ]}.

imp= 1.58
& F2=0.94 ~ (22)

The interaction Hamiltonian, H'd;, ~„,~, has both
diagonal and nondiagonal elements. The diagonal
elements of H~p' have the following effect. Af ter
integrating over the dipole oscillations they have the
same form as the potential term in H~„,q. This means
that the giant dipole resonances contribute to the C2'"p ——Cpp+ 0.547 hq11. (23)

restoring force of the surface vibrations. Therefore the
C2 value, usually taken from the experiment, has to be
renormalized. For the case of no dipole oscillation
present, Ej=0, there holds
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give a rough estimate of the energy shift produced by
8"g'.

W = —0.356Am)iP {[Ldtxdtjt"XPt]t'i

+[l dtxdt7"'XP]tP'+[[dxd]"'XPt]"'
+[[:dXdjt'EXP]t'i]. (26)

As stated earlier, we will treat this interaction by
perturbation methods. Then one obtains for the energy
shift

I &il wil f) I'

E,—Et
0

26—
4

6

Kao

Kaa KI Ho Kao W

Kaa

1

2korg x

FIG. 1. A schematic picture of the energy matrix. The boxes
contain the nonvanishing matrix elements. The contributions of
the diferent parts of the Hamiltonian, Eq. (14), are indicated by
the corresponding coupling constants

C Ho and 8 refer to the
unperturbed Hamiltonian, Eq. (15), and the perturbation, Eq.
(27l, respectively].

C2' is the renormalized potential constant. For the 1—

states, where one dipole quantum is excited, one obtains

Cp"' ——Ce' &+0.368htpt. (24)

This means that the restoring force for the surface
vibrations is stronger when a giant resonance photon
is excited than in the ground-state band. This renor-
malization eGect is for the diferent nuclei between
5% and 25%.

Furthermore, the interaction Hamiltonian H'd p q

provides nonvanishing o8-diagonal elements. They
connect states with different surface quanta and
diferent seniorities. IIl admixes states whose number
of quadrupole phonons E2 and whose seniority e

di6er by 1, B&0' and H»' change E2by 2 and e by 0 or
2, respectively. A schematic picture of the energy
matrix is given in Fig. 1.The elements of the diferent
parts of the interaction Hamiltonian are indicated by
the corresponding coupling constants. The matrix
elements of B Q p q J recently have been evaluated. "
Even though these calculations were somewhat in-
volved, the algebraic expression for the elements are
relatively simple.

All the contributions which do not conserve the
number of dipole phonons have been neglected in the
interaction Hamiltonian H J;pq Q i.e., the terms of
the form

l
dtdtPt]"' or LddP]"' which admix the three-

phonon states to the one-dipole phonon state have been
omitted. This part, 5', of the Hamiltonian can be
separated into two terms, 8'~ and W~,

W=H Hp H'pip, „,e=W,+We — —(25)

which arise from Hi and H2p+He2, respectively. We

'0 H. J. Weber, M. G. Huber, and W. Greiner, Z. Physik 192,
182 (1966).

1

2kcog
(27)

using the approximation
l
E, Etl =2hcui.—A rough

estimate leads to lhEl(0.4 MeV. This justifies a
posteriori the application of perturbation methods as
well as the neglect of the interaction 8'2, which is
smaller than the contribution of F& by a factor of
about Ppe, i.e., 0.1 to 0.01. Explicit formulas for the
contribution of 8'y to the different matrix elements are
given in Ref. 10.

In Fig. 1 the matrix elements which are affected by
8'& are schematically indicated by W.

IV. THE DIPOLE OPERATOR

The dipole operator is defLned by

ol
p„rI'g„d V. (28)

Here the integration has to be performed over the whole
nuclear volume. Using the relations (5a), (8) and (2),
its general form is easily seen to be"

D"'=Dp[nt" +DtLn "ixn"'j"'} (29)

neglecting higher-order terms. The constants Do and
Dj can be calculated straightforwardly in the adiabatic
approximation. As already stated, this means that the
nucleus actually is deformed as far as the giant dipole
resonances are concerned. In the intrinsic coordinate
system the dipole resonance generally splits into three
nondegenerate modes. Their energies are determined

by the relation (12). Introducing a spherical rather
than a Cartesian frame of reference for the represen-
tation of the wave functions, the matrix elements of
the dipole operator (28) can be evaluated in the in-

trinsic coordinate system. Similarly, the matrix
elements of the dipole operator (29) can also be com-

"H. Arenhoevel, dissertation, University of Frankfurt, 1965
(to be published).
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Dp (0 4——78It. )[6NZ/(trAm*hpi )g'"
Di ———0.247Pp. (30)

Here m* is the effective mass of the nucleon. It should
be pointed out that the dipole operator, Eq. (29), takes
into account only transitions into the lowest dipole
mode. " So the corresponding integrated cross section
covers only 86% of the dipole sum rule. ' It is common
use to interpret the effective mass m* in terms of an
enhancement factor" (1+rr), which in our case is defined

by

puted after transformation into the intrinsic system.
Comparing both these expressions the constants Do
and Di in Eq. (29) are found to be

a'"'= a (y,tt)+a (y, 2tt) . (37)

VI. COMPARISON WITH EXPERIMENTS

The photon-absorption cross section is given by

aebe=a(y, tt)+a(y&p)+a(y, pit)+a(y, 2p)+a(&,2tt). (36)

For energetic reasons the emission of more than two
particles is excluded in most nuclei (see Fig. 2). For
medium and heavy elements the emission of protons
is strongly inhibited by the Coulomb barrier, and except
for the Ni isotopes their contribution to the total cross
section is less than 10%." In the following discussion
we therefore will neglect the contribution of the proc-
esses involving proton emission. Then we obtain

m*= 0.86m/(1+n) .

V. THE PHOTOÃ-ABSORPTION
CROSS SECTION

(31) In addition to the resonating process direct continuum
transitions also contribute to the absorption. They lead
to fast-neutron emission. Thus we have

All the states calculated in Sec. II are eigenstates
of the Hamiltonian (14). They will be broadened by
the coupling of the other degrees of freedom. The most
important damping mechanism is the thermalization
of the energy. " Here we shall restrict ourselves to a
phenomenological description of this process by intro-
ducing a total width of the states. The widths of the
different states, F&, may be different. The photon-
absorption cross section then is given by

a(E) =Z
b L(E'—Eb')/EFh]p+1

where 0-1, is given by

(32)

ab 8 (e t/—r—Ac)
I

&Ctp ID I
nlrb) I'(Eb/Fb) (33)

Here Co represents the ground state. Corresponding to
the structure of the dipole operator in (28), the matrix
element has the following form:

a(~ tt) acoll(+ tt)+adirect(+ tt) (3g)

In order to obtain the cross section for the excitation
of the collective dipole states one, therefore, has to
subtract this nonresonating contribution:

adip acoll(+ tt)+a(+ 2N) —aebe adirect(+ tt) (39)

Unfortunately, very little is knwon about ad'""(y, tt).
From several experiments" one can conclude that their
contribution to the integrated cross section is less than
15%. Furthermore, we assume a smooth energy de-

pendence. The uncertainties introduced by this cor-
rection are indicated in the figures by the boxes.

The measured neutron-yield cross sections

aexp acoll(+ tt)+2a(+ 2tt)+adirect(+ tt) (40)

have to be corrected for the neutron multiplicity. This
can be done using the statistical neutron-evaporation

JtENERGY

I &C'pID I+.) I'=Dp'p ",
prh= pb+Dii7h. (34)

DIPOLE

STATES

Here the admixture coeKcients of the components

~
1,1;0,0,0; 1M) and

~
1,1; 1,1,2; 135) of the wave

function are given by Ph and q&, respectively.
Inserting a& in (32), one finally obtains for the

photon-absorption cross section

Ebp h'

a (E)=0.038(1+n)
i

kA h EFh

Ey

Ey

Eth
tn

A-I

th
Esn

A-2

X . (35)
L (E'—Eh')/EFh]'+ 1

(All energies in MeV, a in 10 '4 cm'. )
"Ke thank E. G. Fuller for clarifying discussions of this point."J.S. Levinger, Nuclear I'hotod~sintegration (Oxford University

Press, New York, 1960).
'4 M. Danos and %. Greiner, Phys. Rev. 138, 8876 (1965).

FIG. 2. Decay scheme of the giant resonance states. The hatched
area represents the continuum states. Each arrow symbolizes the
emission of a particle (proton or neutron). E~ is the energy of the
absorbed y quantum.

"E.Hayward, Photonuclear Reactions, Scottish Universities's
Summer School, 1964 (unpublished).

16 G. Mutchler, Ph.D. thesis, Massachusetts Institute of Tech-
nology, 1965 (unpublished).
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states with up to two phonons are listed here. In
contrast to the deformed nuclei it seems that here
the width of the giant resonance states is a very slow
function of the energy. Therefore we assumed in our
calculations the width to be the same for all the different
states. Furthermore we have adjusted the integrated
cross section. The effective mass parameters m*/m
(compare Table II), i.e., the exchange-force corrections,
are generally not in contradiction with the results of
I.evinger" considering the fact that they cannot be well
determined from the present experiments because of
the uncertainties of the absolute value of the neutron-
yield cross sections, the contribution of the direct
neutrons, and of the emission of protons.

As can be seen from the figures, the experimental
cross sections have a marked structure. The calculated

Nucleus

Mn'6
Co"
Ni"
Nl
Co68
Co"
Qa69
Ga"
As"

Relative
abundances

100.0
100.0
67.9
26,2
69.1
30.9
60.4
39.6

100.0

E2 '" (MeV)

19.2
19.0
22.5
20.4
19.7
17.8
16.6
17.0
18.3

TABLE II. Parameters used in the calculation of
the photon-absorption cross sections.

TABLE I. Relative abundances and threshold energies for the
2n emission of the nuclei studied in detail.

120—

80—
E

bo

40

natural Ga

Nucleus

V51

25Mn"
27Co"
Natural Ni
Natural Cu
Natural Ga
ssAs'6
59prl41
s2Pb2ps

pp

0.20
0.22
0.22
0.20
0.25
0.22
0.31
0.11
0.15

E2
(MeV)

1.60
1.30
1.30
1.10
1.00
1.20
0.64
1.40
4.20

~1
(MeV)

19.3
18.2
18.3
18.0
18.1
18.0
18.5
16.0
14.0

0.0
0.0—0.3—0.6—0.3—0.3
0.0—0.1
0.0

(Mev)

1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5

1

I8 20
MeV

22
I

"
I

24
TABLE III.Energies, dipole strengths, and wave functions of the

principal dipole states of Pr"'. The parameters used in the calcu-
lations are listed in Table II.

Fro. 8. Experimental (Ref. 20) and calculated (solid line)
cross section of natural gallium.
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15.647
17.526
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0.003
0.009

¹=0
@=0

0.91
0.40
0.07
0.10

Amplitudes
1 2
1 0

—0.41 0.06
0.78 —0.30
0.24 0.83
0.39 0.01

0.07—0.36—0.24
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Fro. 9. Experimental (Ref. 20) and calculated (solid line)
cross section of natural copper.
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Fio. 10. Experimental (Ref. 21) and calculated (solid line)
cross section of As".

cross sections are in fairly good. agreement with the
experimental data. They reproduce the number, the
energies, and even the dipole strengths of the absorption
peaks quite well. It is striking that even some of the
finer details are reproduced by the theoretical calcu-
lation without the introduction of additional param-
eters. Nevertheless, there still exist discrepancies
between theory and experiment. This is to be expected
since several factors, which should have an inQuence
on the giant resonance, have been neglected in this
treatment. One of them is the unpaired particle. Others
are the diverse nonharmonic terms, i.e., the terms
represented by the dots in Eq. (11).Finally, the central
assumption of this treatment, viz. , that, in the shell-
model language, the interaction between the 1 one-
particle —one-hole configurations results in one collective
dipole state definitely is not completely fulfilled in the
medium-heavy nuclei. Some of the dipole strength may
still be left at the positions of the unperturbed energies.
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FIG. 14. Cross section for different values of EI. The pp value
has been chosen so that the coupling constants are the same in
both cases. (Solid line: 8~=20.0 MeV, Pp=0.20; dashed line:
Ej.=16.0 MeV, Pp=0.25; E2=0.6 MeV, E h, „=8, 7=1 5
MeV).

0 1
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E, MeV

first- and the second-order interaction terms contain
ppE& and pppEI, respectively, as can be seen in Eq. (22).
This inhuence of the dipole energy E& on the spectrum
can be canceled. out in part by choosing a value for Pp
such that the coupling energy of the first interaction
term still remains unchanged. So, if the spectrum is
calculated for an energy, say E&', then one has to use
Pp given by the relation

pp= pp(&i/Kp).

The cross sections for two different values of Ej, viz. ,
16 and 20 MeV, are plotted in Fig. 14 while the Pp was
chosen to be 0.25 and 0.20, respectively. As can be seen,
the two curves no longer show any noticeable difference
in shape after correcting for the energy shift. Therefore
it will be sufhcient to evaluate the dipole strengths only
for one value of E~. This means that for an actual
nucleus with the dipole energy Ej we have to apply the
spectrum calculated with Pp rather than that calculated

FIG. 16. Calculated dipole-absorption cross section for different
values of the quadrupole phonon energy E2 (E&=18.0 MeV,
PP =0.20, Sphonon=82 I'=2.0 MeV).

with Pp and to shift the spectrum by the amount
Eg—Eg'.

The low-energy properties of the vibrational nuclei
are given in the harmonic approximation by the quad-
rupole phonon energy E&, Eq. (19), and the mean
vibrational amplitude Pp, Eq. (20), which can be ob-
tained from the experimental B(E2) values by means
of Eq. (21). These two parameters also determine the
interaction between the surface vibrations and the
dipole oscillations. In Fig. 15 the values of Pp and Ep
are plotted for a number of spherical even-even nuclei.
Vsually the quadrupole energy E2 lies between 0.4 and
1.2 MeV. In this region the calculated photon-absorp-
tion cross section depends only weakly on the exact
value of E2 (see Fig. 16). We therefore have computed
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FIG. 15. EneIgies E2 and mean vibrational amplitudes pp
of some even-even nuclei.

FIG. 17. Calculated dipole-absorption cross section for diferent
values of the vibrational parameter pp (81=18.0 MeV, Eg=0.4

Ãpho on =8, I' = 1.0 MeV) .



1082 HUBER, DANOS, WEBER, AND GREI NER
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~o = 0.250
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18 through 22 as a function of Po for different values of
E2 in the region of physical interest, Po(0.4. From these
figures one easily can evaluate the dipole strengths for
an arbitrary spherical nucleus in this mass region. As
already stated, the Hamiltonian matrix to be diagonal-
ized is in principle infinite. For practical reasons one
has to restrict the number of interacting phonons. How
many phonons one actually has to take into account
depends on the value of Po and the energy E2 of the
quadrupole phonons. The computed dipole strengths
using different numbers of interacting phonons are
plotted in Fig. 23. One sees that for the typical values
E2——0.6 MeV and Po ——0.2 it will be sufficient to take
six phonons into account. Usually we did the calcu-
lations with eight phonons. One then has to treat the
interaction between 25 eigenstates of the unperturbed
Hamiltonian Bo.

O.I—
oi I I I J I III I I

18

E, MeV
20 22

0.3' '—

0.2—
P, *0.150

O.I—

0.2—
4 ~

Po = 0.200

O.I—

0

FIG. 18. Dipole strengths pi, 2 as defined in Eq. (34) for difterent
values of p0 (E1=18.0 MeV, E2=0.4 MeV, Sphpnpn=8).

VIII. CONCLUSIONS AND DISCUSSION

As can be seen from Figs. 4 through 12, the experi-
mental cross sections are reproduced by the theory in
a semiquantitative manner. The spreading of the
resonance over energy is given quite well by the theory,
and also the "collective" structure is qualitatively
reproduced, in particular in the stiffer vibrators, e.g. ,
V" Mn", Pb"' However, in some cases the rising side
of the resonance, i.e., the region below the "main peak, "
shows structure which is not accounted for by the
theory. To understand the reason for the successes and
the failure of the theory one has to take a more funda-
mental point of view, i.e., one has to interpret the theory
in terms of the shell model.

Both the giant resonance and the vibrational states
are one-particle —one-hole (1-ph) states. More precisely,
a one-phonon state is a 1-ph state, a two-phonon state

0.2— ~o 0.250

O.I— 04 P 0.150

0.2— I8 = 0.300
0.2 ——

O.I—

0
I4

t I

l6 IS 20
E, MeV

22 0.2 ——

P ~0200

FxG. 19. Dipole strengths yi,' for different values of p0
(Bi=18.0 MeV, L2=0.6 MeV, Sphpnpn —8).

p t I I I i I I I

the dipole strengths for E2=0.4, 0.6, 0.9, 1.2, 1.6 MeV
which should suffice for interpolation purposes. Actually
the spectrum of the 1 states is determined mainly by
the vibrational amplitude, i.e., Po. This can be seen in

Fig. 17, where the cross sections are plotted for several

values of Po. The widths of the states have been assumed

to be 1.0 MeV.
The dipole strengths qj,' have been~IIplotted in Figs.

0.2 ——
o 0 300

0
14 18 20 22 24

E, MeV

FIG. 20. Dipole strengths @i,' for diferent values of pII

(Zi= 18.0 MCV~ Eg=0.9 MeV, Sphonon=8}.
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is a 2-ph (two-particle —two-hole) state, etc. In the
vibrational region of the periodic table the particle
states and the hole states contained in the surface
phonons and the giant resonance are to a large extent,
but not completely, different. It is thus reasonable that
these two modes can exist side by side and interact
essentially only via the boundary conditions of the
giant dipole resonance, i.e., by the tuning of the dipole
mode by the surface and by the adiabatic reaction of
the dipole mode on the surface. The situation is quite
different when many-phonon states of the surface
vibrations are considered. A phonon state arises by the
diagonalization of the appropriate 1-ph states. In a
harmonic description of the surface vibrations a two-

phonon state is a 2-ph state consisting of two non-

interacting 1-ph states. There is no reason to assume
that the two particles or the two holes of the two 1-ph
states do not interact, and, as a matter of fact, it is

frequently impossible to tell which of the particles and
holes are the "real" and which are the "crossed"
partners. In short, the two 1-ph components of the
two-phonon states must be expected to interact
strongly. The same arguments, even more forcefully,

apply to the many-phonon states.
To include such interactions in a collective descrip-

tion one clearly must add anharmonic terms to the
Hamiltonian. The Hamiltonian (1) still does not include
such terms; only quadratic terms in a have been con-
sidered up till now. Still, it is not clear at all that it
would be sufficient to add such anharmonic terms. It
very well could be true that the many-phonon states
lose completely the phonon character, i.e., they may
retain very little of a structure corresponding to the
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Fro. 22. Dipole strengths qz' for different values of pp
(Eg= 18.0 MeV Eg= 1.6 MeV Ephpnpn=8) ~
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FzG. 23. Dipole strengths for different numbers of quadrupole
phonons admixed to the giant dipole state (BI=18.0MeV, E2=1.0
MeV, P0=0.20; straight line, Sphpnpz 8; dashed line, mph, , =6;
dot-dash line, Eph»pn=4).
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0 . 1
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FIG. 21. Dipole strengths pz' for different values of po
(81=18.0 MeV, 8~=1.2 MeV, Sph„, =8).

grouping into 1-ph states. However, it seems that in
fact the phonon character is retained to some approxi-
mation; otherwise it would be very dificult to explain
the qualitative agreement of the harmonic approxi-
mation with the experimental cross sections. In any
case, to obtain a more quantitative agreement between
experiment and theory, it will be necessary erst to give
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a suKciently accurate description of the low-energy
collective spectrum —at least as far as the 0+ and 2+
states are concerned, which alone can participate in
the dipole states. Then one may hope to achieve quite
a good description when adding the dipole excitation
since, as already mentioned, the two modes contain to
a large extent different single-particle states.

The most conspicious discrepancy between theory
and experiment is, however, the structure at the low-

energy side of the resonance. No consistent explanation
of this discrepancy has as yet been given. It seems very
likely that the excess cross section should be associated
with some of those states which in the schematic modeP'
have been swept clear of any transition strength. '7

'6 G. E. Brown and M. Bolsterli, Phys. Rev. Letters 3, 472

In the language of the collective model the giant
resonance is an isospin wave. It can be coupled to the
spin wave. This would result in a splitting of the giant
resonance, as observed in the calculations concerning
0"where two states carry appreciable dipole strength,
the upper being the spin-Qip state. It is possible that
the same coupling would lead to a structure on the low-

energy side of the giant resonance. However, it is very
unlikely that this structure would be as complicated as
that in praseodymium, Fig. 11.This point thus merits
a quantitative exploration.

(1959); G. E. Brown, Modifi'ed Theory of lV'Nclear Models (North-
Holland Publishing Company, Amsterdam, 1964).

"M. Danos and E. G. Fuller, Ann. Rev. Nucl. Sci. 15, 29
{1965).
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The general features of the expressions useful for numerical calculations of the projected deformed Hartree-
Fock (HF) spectra for finite nuclei are investigated. It is proved that the projected deformed HF wave-
function gives the possible nuclear spins as I=O, 2, 4, ..., I for a E=O band and I=E, E+1, ..., I „for
a Z &0 band. It is further proved that if the energy Er rr oi the projected I=I: state is greater (less) than
the HF energy E~, then EI is greater (less) than El' for I&I'. A plausible reason why one should use the
deformed HF state rather than any other deformed state is also pointed out.

1. INTRODUCTION

ECKNTI.Y there has been considerable interest
~ - in Hartree-Fock (HF) calculations for finite

nuclei. In nuclear HF calculations there is a special
difIi.culty due to the nucleon-nucleon interaction inside

the finite nucleus. Various different approaches are

suggested in the literature to cope with this difhculty.
'

Here we will not be concerned with this aspect of the
problem. We simply assume some effective inter-

nucleon potential inside the nucleus. In the literature,
two types of HF calculations are reported: (1) radial

HF calculations for nearly closed-shell nuclei, ' and

(2) deformed HF calculations for nonspherical nuclei.

~ K. A. Brueckner, J. L. Gammel, and H. Weitzner, Phys. Rev.
110, 431 (1958); S. A. Moszkowski and B. L. Scott, Ann. Phys.
(N. Y;) 11, 657 (1960); R. K. Bhaduri and E. L. Tomnsiak,
Proc. Phys. Soc. (London) 86, 451 (1965); C. Shakin and Y. R.
Waghmare, Phys. Rev. Letters 16, 403 (1966).' Nazakat Ullah and R. K. Nesbet, Nucl. Phys. 39, 239 (1962);
-46, 254 (1963); Phys. Rev. 134, 3308 (1964); R. Muthu-
krishnan and M. Baranger, PhyS. Letters 18, 160 (1965); A. K.
Kerman, J. P. Svenne, and F; M. H. Villars, Phys. Rev. 147, 710
(1966).

Following the finding that one can obtain nearly the
same physical results for a nucleus by doing the inter-
mediate coupling calculations or by doing the de-
formed HF calculations and then projecting good
angular momentum states from it, deformed HF calcu-
lations gained popularity. ' By deformed HF calcula-
tions, we mean those in which the radial parts of the
single-particle orbitals are taken as harmonic-oscil-
lator radial wave functions while the angular momentum
parts are determined from the HF variational calcu-
lation. Here we will be dealing with deformed HF
calculations only.

We investigate the general broad features of the
low-lying excited states of nuclei as obtained by pro-
jecting the good angular momentum states from the
deformed HF wave function, and we derive the proper-
ties of the projected spectrum. We also give a justi-
fication of why one should project from the HF state

' M. Redlich, Phys. Rev, 110, 468 (1958); D. Kurath and L.
Picman, Nucl. . Phys. 10, 313 (1959); W. H. Bassichis, B. Giraud,
and G. Ripka, Phys. Rev. Letters 15, 980 (1965).


