PHYSICAL REVIEW

VOLUME 155,

NUMBER 4 20 MARCH 1967

Collective Treatment of the Giant Resonances in Spherical Nuclei*

M. G. HuBer{ AND M. Danos
National Bureau of Standards, Washington, D. C.
AND

H. J. WEBER AND W. GREINER
Institut fuer Theoretische Physik, University of Frankfurt, Frankfurt, Germany

(Received 27 July 1966)

In a collective treatment the energies of the giant resonances are given by the boundary conditions at the
nuclear surface, which is subject to vibration in spherical nuclei. The general form of the coupling between
these two collective motions is given by angular-momentum and parity conservation. The coupling con-
stants are completely determined within the hydrodynamical model. In the present treatment the influence
of the surface vibrations on the total photon-absorption cross section is calculated. It turns out that in most
of the spherical nuclei this interaction leads to a pronounced structure in the cross section. The agreement
with the experiments in medium-heavy nuclei is striking; many of the experimental characteristics are
reproduced by the present calculations. In some nuclei, however, there seem to be indications of single-
particle excitations which are not yet contained in this work.

I. INTRODUCTION

T is known from the location of the low-energy states
and from the magnitudes of the E2 transition
probabilities between these states that in the vibrational
nuclei the shape oscillations have rather large ampli-
tudes.! In fact, very frequently the mean-square
deformation associated with the surface vibrations is
comparable in magnitude with that of the permanently
deformed nuclei.? The interaction of the giant resonance
oscillation with the surface vibrations, therefore, must
be expected to be very important. In contrast to the
heavy deformed nuclei, where a static treatment of the
nuclear surface already leads to a qualitatively correct
description of the splitting of the giant resonance,’*
here the interaction is totally a dynamic effect, viz.,
that of coupled oscillators.?$ Also, because of the large
amplitudes of the surface vibrations, it should be ex-
pected that a treatment considering these vibrations
to be harmonic will have only limited accuracy. How-
ever, a power-series expansion in terms of the vibra-
tional amplitudes should converge quite rapidly.

The need to go beyond the harmonic approximation
is evident from the low-energy spectra. In even-even
nuclei the two-photon states should form a degenerate
triplet 0+, 2+, 4+ at an energy twice that of the first
excited 2+ state. Instead, in many nuclei there are more
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than three states at approximately that energy, and
frequently the splitting in the multiplet is of the same
order as the harmonic oscillator energy. The experi-
mental spectra are still more confused in odd nuclei.
Not much is known about the three-phonon states. It
seems worthwhile to undertake a systematic develop-
ment of the theory and to compare the results with the
experimental data at each step in order to obtain
information on the actual importance of the different
interaction terms.

The present paper has three aims. First, we present
a quantum-mechanical treatment of the coupled system
of surface vibrations and giant dipole oscillations which
encompasses all terms up to second order in the vibra-
tional amplitudes. The form of the Hamiltonian is
uniquely determined by angular-momentum and parity
considerations. All coupling constants are computed
in the adiabatic approximation from the collective
model.” The earlier paper by LeTourneux® considers
only the lowest order in the interaction. We also go
beyond LeTourneux’s treatment by including the in-
fluence of the surface vibrations on the dipole matrix
elements in the absorption cross section. We compare
the predictions of the theory with the available experi-
mental data. This part is contained in Secs. II through
VI

Second, we give a series of photon-absorption cross
sections computed for different nuclear parameters.
They have been chosen such that the complete range
of the experimentally observed parameters is covered
with a sufficient density. This way it is possible to obtain
a “predicted” cross section for any particular nucleus
as an interpolation between the given curves. We have
done this to facilitate the planning of photonuclear
experiments (Sec. VII).

Third, we present a discussion on the limits of validity

"T. Urbas, Diplomarbeit, University of Frankfurt, 1966
(unpublished).
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of the theory and on the accuracy of the solutions ob-
tained. This is done in Sec. VIII.

II. THE HAMILTONIAN

The Hamiltonian describing the surface quadrupole
vibrations, the giant dipole resonances, and the inter-
action between these two collective motions can be
written

H=H woat+Haip+Haip quad- 1)

We discuss the different terms separately. We begin
with Hguaa. The nuclear surface usually is expanded in
spherical harmonics. Taking into account only quad-
rupole deformations the surface is described by

R=R(1+¥, a5,V 2). (2)

Here the e, are considered to be time-dependent,
as,(f), and their motion is assumed to be harmonic.
Introducing the conjugate momenta

Tou=0H/dcz,

and using the notation of angular-momentum coupling
of Fano and Racah® the Hamiltonian of these quad-
rupole vibrations has the following form:

Houaa=(b/5) (B [ X ]
+CofalIXal]01,  (3)

The harmonic approximation describes the low-
energy properties in the spherical even-even nuclei to
some extent. However, for instance, the two-phonon
states are observed to be nondegenerate in almost all
vibrational nuclei. To describe this, anharmonic terms
would have to be added to Eq. (3); we neglect them at
this time. '

The giant dipole resonances can be understood in
terms of protons and neutrons vibrating against each
other because of a potential of the form

V=K / pi (op—pn)?dV . @

Assuming constant total density we write for the proton
and neutron densities

7
pp=—po[ 1+n(r)e~®"], (5a)
A
NpoZo
pn=zpo[1—;v~n(r>e i ] (5b)

Here p, is the mass density distribution of the nucleus.
The spatial part of the function 5(r) is determined

8 U. Fano and G. Racah, Irreducible Tensorial Sets (Academic
Press Inc., New York, 1959).
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by the Helmholtz equation®
An+E2=0, (6)
with
eut/ic, (7a)
w?=8K/M)(NZ/A?), (7p)

and K is the symmetry energy parameter of the Bethe-
Weizsidcker formula. The deviation density is written as

7(r,0)=2x Crnons O (oar) Vo, (7). ©)]

The Cy, and a», are normalization constants and ampli-
tudes of the different modes of motion, respectively.
We will restrict ourselves to the dipole case, i.e., A=1.

The energies of the different modes are determined
by the condition that the radial flux vanish on the
nuclear surface. Thus the energy is determined by the
relation

knR=2,, )

where 2, is the nth zero of the derivative j;'(z). These
zeros are well known® to be 2.08, 5.95, 9.20 for =1, 2, 3,
respectively.

To go from classical to quantum hydrodynamics, the
amplitudes ay, are taken to be operators. Introducing
conjugate momenta i, the Hamiltonian of this col-
lective motion is given by

Haip=—3V3 (B [r WX 7 W04 Cy[a X o 11]07), (10)

The coupling between the surface and the giant dipole
oscillations arises via the boundary conditions.
According to Eq. (9) the energy of the dipole reso-
nance is determined by the nuclear surface, Eq. (2),
which in turn depends on the collective variables of the
quadrupole oscillations, as,. Therefore the total Hamil-
tonian contains interaction terms. From angular mo-
mentum and parity considerations the interaction
Hamiltonian must be of the following form:

Haip quaa= K1 o1 X a1 X110
+ K o[ 21X @ 2] 01 [ 111 3¢ g 1117 0]
+K22[[a[2]Xam][2]X|:(xm>(am:|[2]][°1+- ... (11)

The coupling constants can be evaluated in the
adiabatic approximation which here can be expected
to give very good results. In the even-even spherical
nuclei the ratio of the energies of the giant dipole
resonance Fi=/%hw;, and the quadrupole phonons
Es=hws, lies between 10 and 30. That means that the
nuclear shape does not change appreciably during one
period of the dipole oscillation. Therefore the fre-
quencies of the dipole oscillation can be computed as if
the nucleus were statically deformed. This defor-
mation leads to a splitting of the three possible dipole
modes as has been shown by Danos and Okamoto.?*

9 M. Danos, University of Maryland Technical Report No. 221,
1961 (unpublished).
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The energies of the three modes are then given by
K,=(2.08/R,)[1+0.88(AR,/Ry)]. (12)

R,, K, are the three principal axes and the corresponding
wave vectors, respectively.

For practical reasons the dependence of the K,’s on
the deformation parameters is calculated in the in-
stantaneous intrinsic coordinate system. Such a system
can be defined for times which are short compared with
the period of the surface vibrations. In order to obtain
the coupling constants K1, K 59, and K 52 one has to make
a transformation back into the laboratory system. This
has been done by Urbas.” For the coupling constants
he obtains the following values:

K1=—1.588C1,
K a=—0.708C1, (13)
K22= —0.936C1.

In principle the same procedure can also be used for
the evaluation of the coupling constants of the higher-
order interaction terms. Here we restrict ourselves to
the second-order terms in the as,. However, as will be
seen later, the higher-order interaction terms as well
as the anharmonicity of the surface vibrations very
likely give nonnegligible contributions and should also
be included. This point is under investigation at this
time.

III. SOLUTION OF THE SCHRODINGER
EQUATION
Writing the total Hamiltonian as
H=H0+Hdip quad ) (14)

H® describing the unperturbed surface and charge
vibrations,

H0=Hdip+Hquad, (15)
and introducing creation and annihilation operators

ar,= (hwt/2C)Y2d,H (—1)"d_,], (16.1)
7r1,=i(hC1/2w1)1/2[(—I)Vd_,f-—d,,], (162)

H'gip quaa=H1{+Ho'+Ho
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an= (hws/2Co) P [B+ (—1)*8-],  (16.3)
o= 1(hCo/ 20 [ (= 1)48_,1—B,],  (164)
w1= (C1/B)*?, 17.1)
wy=(C2/B2)"?, (17.2)
one immediately obtains
H= —V3hey ([dT M X dM]01—4v3)
+(/8) oo ([BTEIXBE]4-34/5). (18)
The energies of H° are given by
E(Ny,Ny)= (N1+Phort+ (Not+-5)lws.  (19)

A very important quantity is the mean-square ampli-
tude of the surface vibrations, 8¢, which is in terms of
the diverse constants

Bo*= (54)/[2(B+C2)""]
=5E5/2C,. (20)

It is connected with the E. transition probability of the
low-energy spectrum by the relation

B(Ey)=[(3/4m)ZRs* B¢ (21)

The eigenstates of (18) are |Nyli; Novsle; I,M ). The
quantum numbers Ny, J; and Ny, 5 are the number of
phonons and the angular momentum of the dipole and
the quadrupole states, respectively, vs is the seniority of
the quadrupole states, and I and M are the total angular
momentum and its z component.

The interaction Hgi, quaa 18 too strong to be treated
by perturbation methods. Therefore one has to diago-
nalize the interaction in the basis of the solutions of H°.
However the admixture of the 3-phonon dipole state
to the 1-phonon state, the usual giant dipole state, still
can be treated by perturbation methods since the dipole
energy #w; is much larger than both the interaction
energy and the quadrupole energy #ws. We therefore
neglect in Hyip quaa all the terms which do net commute
with [dtXd]"! correcting later for the error thus intro-
duced. Denoting the truncated interaction Hamiltonian
by H'qip quaa We have

=—0.16E1Bo{ 2 1» (—1)*(1 1 2| su—ww)[ (= 1)*~d, d,_ 4 (—1)"d_d -, J[B-uT+ (—1)#8, ]}
—0.05E1822 10,2 @1 2w war ()M (221 wwM) (11 Hu'v'—M)
XL(=1)"dp 4+ (= D#d_wdyTIB,18,"+ (— 1)8-.8,14 (— 1)#8,18_ 4 (— 1) MB_,8_, 1} 5

The interaction Hamiltonian, H’4ip quaa, has both
diagonal and nondiagonal elements. The diagonal
elements of Ha' have the following effect. After
integrating over the dipole oscillations they have the
same form as the potential term in Hqyaa. This means
that the giant dipole resonances contribute to the

go=1.538, ¢2=094. (22)

restoring force of the surface vibrations. Therefore the
Cq value, usually taken from the experiment, has to be
renormalized. For the case of no dipole oscillation
present, N;=0, there holds

Cyx?=C240.547hw;. (23)
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F1c. 1. A schematic picture of the energy matrix. The boxes
contain the nonvanishing matrix elements. The contributions of
the different parts of the Hamiltonian, Eq. (14), are indicated by
the corresponding coupling constants [Ho and W refer to the
unperturbed Hamiltonian, Eq. (15), and the perturbation, Eq.
(27), respectively].

C,® is the renormalized potential constant. For the 1~
states, where one dipole quantum is excited, one obtains

Cofi=C*40.368 %1, . (24)

This means that the restoring force for the surface
vibrations is stronger when a giant resonance photon
is excited than in the ground-state band. This renor-
malization effect is for the different nuclei between
5% and 25%,.

Furthermore, the interaction Hamiltonian H’gi, quad
provides nonvanishing off-diagonal elements. They
connect states with different surface quanta and
different seniorities. H," admixes states whose number
of quadrupole phonons N, and whose seniority v
differ by 1, Hy' and H,y' change N, by 2 and v by 0 or
2, respectively. A schematic picture of the energy
matrix is given in Fig. 1. The elements of the different
parts of the interaction Hamiltonian are indicated by
the corresponding coupling constants. The matrix
elements of H'4ip quaa recently have been evaluated.!
Even though these calculations were somewhat in-
volved, the algebraic expression for the elements are
relatively simple.

All the contributions which do not conserve the
number of dipole phonons have been neglected in the
interaction Hamiltonian H’gip quaa, 1.€., the terms of
the form [dtd#81]0! or [ddB]" which admix the three-
phonon states to the one-dipole phonon state have been
omitted. This part, W, of the Hamiltonian can be
separated into two terms, Wy and W,

W=H—H,—H'4ip quaa=W1+W, (25)
which arise from H; and Hgg+Has, respectively. We

0 H. J. Weber, M. G. Huber, and W. Greiner, Z. Physik 192,
182 (1966).
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give a rough estimate of the energy shift produced by
W st

W1=—0.3567w18{ [[dTX dT] 1 X g1]10]
+[[atXd]RIX BI04 [[dX d]11 X 81!
X d]PIXpI“T}.  (26)

As stated earlier, we will treat this interaction by
perturbation methods. Then one obtains for the energy

shift
gy [EITAIDL
+ E,—Es
1
2%y
1
2%y

A

~ —
=

2 G Hl?
7

~ —

@ weld), @7)

using the approximation |E;—E;|=2hw;. A rough
estimate leads to |AE|<04 MeV. This justifies a
posteriori the application of perturbation methods as
well as the neglect of the interaction W, which is
smaller than the contribution of W, by a factor of
about B¢, i.e., 0.1 to 0.01. Explicit formulas for the
contribution of Wy to the different matrix elements are
given in Ref. 10.

In Fig. 1 the matrix elements which are affected by
Wy are schematically indicated by W.

IV. THE DIPOLE OPERATOR
The dipole operator is defined by

4\ 1/2
D,= (~> / o V1dV .
3 vol

Here the integration has to be performed over the whole
nuclear volume. Using the relations (5a), (8) and (2),
its general form is easily seen to be!!

DW= DyfaV4D;[alll X211} (29)

neglecting higher-order terms. The constants Dy and
D; can be calculated straightforwardly in the adiabatic
approximation. As already stated, this means that the
nucleus actually is deformed as far as the giant dipole
resonances are concerned. In the intrinsic coordinate
system the dipole resonance generally splits into three
nondegenerate modes. Their energies are determined
by the relation (12). Introducing a spherical rather
than a Cartesian frame of reference for the represen-
tation of the wave functions, the matrix elements of
the dipole operator (28) can be evaluated in the in-
trinsic coordinate system. Similarly, the matrix
elements of the dipole operator (29) can also be com-

(28)

11 H. Arenhoevel, dissertation, University of Frankfurt, 1965
(to be published).
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puted after transformation into the intrinsic system.
Comparing both these expressions the constants Dy
and D; in Eq. (29) are found to be

Do=(0.478W)[6NZ/ (x Am*her) T2,

Dy=—0.2478,. (30)

Here m* is the effective mass of the nucleon. It should
be pointed out that the dipole operator, Eq. (29), takes
into account only transitions into the lowest dipole
mode.? So the corresponding integrated cross section
covers only 869, of the dipole sum rule.® It is common
use to interpret the effective mass m* in terms of an
enhancement factor®® (1+4-a), which in our case is defined
by

m*=0.86m/(14a). 31)
V. THE PHOTON-ABSORPTION

CROSS SECTION

All the states calculated in Sec. II are eigenstates
of the Hamiltonian (14). They will be broadened by
the coupling of the other degrees of freedom. The most
important damping mechanism is the thermalization
of the energy.* Here we shall restrict ourselves to a
phenomenological description of this process by intro-
ducing a total width of the states. The widths of the
different states, I';, may be different. The photon-
absorption cross section then is given by

a(E)= i , 32
Ot mmy Y
where o, is given by
o= 87r(e2/h6) ] (4’0 | D I\I’k> I2(Ek/rk) . (33)

Here ®, represents the ground state. Corresponding to
the structure of the dipole operator in (28), the matrix
element has the following form:

|{®o| D| ¥} |2=Do*¢s?,
or=pr+Digi. (34)
Here the admixture coefficients of the components
[1,1;0,0,0; 1M) and |1,1;1,1,2;1M) of the wave
function are given by px and gx, respectively.

Inserting o in (32), one finally obtains for the
photon-absorption cross section

NZ Eyop?
o(E)= 0.038(1+a)<-——> >
A k ElI‘k

X . (35
[(E—E*)/ETy P+1

(All energies in MeV, ¢ in 102 cm?.)

2 We thank E. G. Fuller for clarifying discussions of this point.

B 1. S. Levinger, Nuclear Photodisiniegration (Oxford University
Press, New York, 1960). :

14 M. Danos and W. Greiner, Phys. Rev. 138, B876 (1965).
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VI. COMPARISON WITH EXPERIMENTS
The photon-absorption cross section is given by

=0 (y,n)+0 (v,p) 0 (v,pn)+0 (v,2p)+0 (7,2n) . (36)

For energetic reasons the emission of more than two
particles is excluded in most nuclei (see Fig. 2). For
medium and heavy elements the emission of protons
is strongly inhibited by the Coulomb barrier, and except
for the Ni isotopes their contribution to the total cross
section is less than 10915 In the following discussion
we therefore will neglect the contribution of the proc-
esses involving proton emission. Then we obtain

o*** =0 (y,n)+0o(v,2n). 37)

In addition to the resonating process direct continuum
transitions also contribute to the absorption. They lead
to fast-neutron emission. Thus we have

o (v,m) =0 (y,n)+o(y,n). (38)

In order to obtain the cross section for the excitation
of the collective dipole states one, therefore, has to
subtract this nonresonating contribution:

0t = g1l 1)+ (7, 20) == (). (39)

Unfortunately, very little is knwon about o%t(y,n).
From several experiments!® one can conclude that their
contribution to the integrated cross section is less than
159,. Furthermore, we assume a smooth energy de-
pendence. The uncertainties introduced by this cor-
rection are indicated in the figures by the boxes.

The measured neutron-yield cross sections

o= oy )+ 20, 2m)F 0 ) (40)

have to be corrected for the neutron multiplicity. This
can be done using the statistical neutron-evaporation

ENERGY //

DIPOLE
STATES

1IN

m
<

NN

SO

~

A-| A-2

F16. 2. Decay scheme of the giant resonance states. The hatched
area represents the continuum states. Each arrow symbolizes the
emission of a particle (proton or neutron). E, is the energy of the
absorbed y quantum.

15 E. Hayward, Photonuclear Reactions, Scottish Universities’s
Summer School, 1964 (unpublished).

16 G. Mutchler, Ph.D. thesis, Massachusetts Institute of Tech-
nology, 1965 (unpublished).
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theory. The multiplicity correction factor F(E) is
defined by

geoll = gexp _ ydirect (,y,n) —0 (7,2”)
— {a_exp_o.direct(,y’n)}F(E). (4:1)
Then we have!”
F(E)=1/[2— (1+X)eX] for E>Ex™,
=1 for E<E.t™, (42)

X=(E—E:™)/8.

F(E)

8= 0.5 MeVv

o 1.0 20 3.0 4.0 5.0
E-E}h, MeV

FiG. 3. Neutron multiplicity correction. F (E) is the factor which
relates the experimental to the total (y,n) cross section.

Tgps» b

2 14 16 18 20 22 24
MeV

Fi1c. 4. Photon-absorption cross section of V5. The dashed line
represents the experimental points (Ref. 18), the solid line the
calculations.

160 T I T I T I T T T
Mn

a
3 ~
80— Pl —
'3 4 ’-\6)
° \, VAR o o
- /I Na \ —
/ o °_s
, » \ P AN e
40— . » e
5 e
- e -
p -
o | l 1 l | [ ! | 1 I !
12 14 ie 18 20 22 24
MeV

FiG. 5. Cross section of Mn%. The dashed line represents the
experimental points (Ref. 19), the solid line the calculations.

17 J, M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
(John Wiley & Sons, Inc., New York, 1952).
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E2,* is the threshold energy for the two-neutron
emission. The temperature 6 was chosen to be 1 MeV.
In Fig. 3 this correction factor has been plotted for
several temperatures ; as can be seen, small uncertainties
in 6 have no appreciable effect on the corrections. Up
to now only a few (y,n) cross sections in the region of
medium-heavy nuclei have been measured. In Figs. 4
through 10 the theory developed in the preceding
sections is compared with the presently available
experimental data from V% through As™.182 With
the exception of V% the experiments give the total
neutron-yield cross section. The parameters used for
the conversion to the giant resonance absorption cross
section by means of (41) are collected in Table I.

In the calculations of the theoretical absorption cross
section, parameters obtained from the neighboring
even-even nuclei were used. They are listed in Table II.
As an example, the principal dipole states of Pr'#! are
listed in Table III. The surface phonon states are
classified by N, and v (see Fig. 1). The calculations
have been performed using all states up to 8 phonons,
ie., a 25X25 matrix was diagonalized. Only the

St A I B A L A L B

mb

Cabs

LI ¢ —
e .
' L]
[ } 1 }
1 L
14 e 8 20 22 24 26

MeV

F16. 6. Cross section of natural cobalt. The experimental points
are from Ref. 20. The solid line represents the calculated cross
section. Here and in the following figures the uncertainties due to
the direct emission of neutrons are indicated by the boxes.

re Tt T T Tt

natural Ni

Fic. 7. Experimental (Ref. 20) and calculated (solid line)
cross section of natural nickel.

185, C. Fultz, R. L. Bramblett, J. T. Caldwell, N. E. Hansen,
and C. P. Jupiter, Phys. Rev. 128, 2345 (1962).

¥ P, A. Flournoy, R. S. Tickle, and W. D. Whitehead, Phys.
Rev. 120, 1424 (1960).

2 G. Baciu, G. C. Bonazzola, B. Minetti, C. Molino, L. Pas-
qualini, and G. Piragino, Nucl. Phys. 67, 178.(1965).

2 D,’S. Fielder, J. LeTourneux, K. Min, and W. D. Whitehead,
Phys. Rev. Letters 15, 33 (1965).
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states with up to two phonons are listed here. In
contrast to the deformed nuclei it seems that here
the width of the giant resonance states is a very slow
function of the energy. Therefore we assumed in our
calculations the width to be the same for all the different
states. Furthermore we have adjusted the integrated
cross section. The effective mass parameters m*/m
(compare Table II), i.e., the exchange-force corrections,
are generally not in contradiction with the results of
Levinger®® considering the fact that they cannot be well
determined from the present experiments because of
the uncertainties of the absolute value of the neutron-
yield cross sections, the contribution of the direct
neutrons, and of the emission of protons.

As can be seen from the figures, the experimental
cross sections have a marked structure. The calculated

natural Ga —

Ggbs» Mb

F1c. 8. Experimental (Ref. 20) and calculated (solid line)
cross section of natural gallium.

S L L R L LY B

natural Cu

Gabs» Mb

Fi6. 9. Experimental (Ref. 20) and calculated (solid line)
cross section of natural copper.

mb

Oabs»

MeV

Fr6. 10. Experimental (Ref. 21) and calculated (solid line)
cross section of As’.
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TasLE I. Relative abundances and threshold energies for the
27 emission of the nuclei studied in detail.

Relative
Nucleus abundances Ezntt (MeV)
Mn56 100.0 19.2
Co® 100.0 19.0
Nis8 67.9 22.5
Nis0 26.2 20.4
Cot 69.1 19.7
Costs 30.9 17.8
Ga® 60.4 16.6
Ga™ 39.6 17.0
As™s 100.0 18.3

TaBLE II. Parameters used in the calculation of
the photon-absorption cross sections.

E, E, T
Nucleus Bo (MeV) (MeV) a MeV)
23 VoL 0.20 1.60 19.3 0.0 1.5
25Mn55 0.22 1.30 18.2 0.0 1.5
27C0% 0.22 1.30 18.3 -0.3 1.5
Natural Ni 0.20 1.10 18.0 —0.6 1.5
Natural Cu 0.25 1.00 18.1 —0.3 1.5
Natural Ga 0.22 1.20 18.0 —0.3 1.5
33As™ 0.31 0.64 18.5 0.0 1.5
soPridl 0.11 1.40 16.0 -0.1 1.5
3o P28 0.15 4.20 14.0 0.0 1.5

TasLE III. Energies, dipole strengths, and wave functions of the
principal dipole states of Pr#!, The parameters used in the calcu-
lations are listed in Table II.

Amplitudes
N,=0 1 2 2
E(MeV) o =0 1 0 2
15.647 0.846 091 —041 0.06 0.07
17.526 0.142 0.40 0.78 —0.30 —0.36
18.868 0.003 0.07 0.24 0.83 —0.24
19.154 0.009 0.10 0.39 0.01 0.79

cross sections are in fairly good agreement with the
experimental data. They reproduce the number, the
energies, and even the dipole strengths of the absorption
peaks quite well. It is striking that even some of the
finer details are reproduced by the theoretical calcu-
lation without the introduction of additional param-
eters. Nevertheless, there still exist discrepancies
between theory and experiment. This is to be expected
since several factors, which should have an influence
on the giant resonance, have been neglected in this
treatment. One of them is the unpaired particle. Others
are the diverse nonharmonic terms, i.e., the terms
represented by the dots in Eq. (11). Finally, the central
assumption of this treatment, viz., that, in the shell-
model language, the interaction between the 1~ one-
particle-one-hole configurations results in one collective
dipole state definitely is not completely fulfilled in the
medium-heavy nuclei. Some of the dipole strength may
still be left at the positions of the unperturbed energies.
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F1c. 11. Experimental (Ref. 22) (dashed line) and calculated
(solid line) cross section of Pri4.,

This effect is expected to become the more important
the more the single-particle aspects prevail, viz., in
the shell-model nuclei. Two examples are given in Figs.
11 and 12.2-2* There both the cross sections of 5oPrgs'4!
and of g2Pbis?® clearly show a pronounced structure
on the leading edge of the giant resonance peak which
apparently is not reproduced by the present treatment.
This fact will be discussed in more detail in Sec. VIIL.
There also may be indications of the existence of the
giant quadrupole resonances on the high-energy side
of the cross section.?® Despite these discrepancies the
comparison between the experimental and the calcu-
lated cross sections seems to indicate that the present
theoretical treatment is able to describe the essential
properties of the giant resonance spectrum in spherical
nuclei.

mb

Yabs »

F1c. 12. Experimental (Ref. 23) and calculated (solid line)
cross section of Pb®8 (see Ref. 24).

2 B. C. Cook, D. R. Hutchinson, R. C. Waring, J. N. Bradford,
R. G. Johnson, and J. E. Griffin, Phys. Rev. 143, 730 (1966).

% E. G. Fuller and E. Hayward, Nucl. Phys. 33, 431 (1962).

24 The existence of a collective 2+ level in Pb®® recently has been
reported by J. Alster, Phys. Rev. 141, 1138 (1966).

2 R. Ligensa, W. Greiner, and M. Danos, Phys. Rev. Letters
16, 363 (1966).
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VII. PREDICTIONS

In this section we shall describe the way in which the
photon-absorption cross section depends on thedifferent
nuclear parameters and we shall give some examples as
a guide to the planning of photonuclear experiments.
We shall give only the dipole strengths ¢x?, Eq. (34),
to the different dipole states, because no numerically
accurate theory exists at the present concerning the
widths. The photon-absorption cross section can be
obtained from the strengths by assuming the total
widths of the diverse states.

The unperturbed giant resonance oscillations are
determined by the constants, C; and By, in the Hamil-
tonian Haip, Eq. (10). In the hydrodynamic model

their energy is given by the relation
E,=804"1% MeV. (43)

This formula is experimentally well proven for 4 >100.
For lighter nuclei one observes deviations up to 109,

L L L

E, MeV

F1c. 13. Dipole-absorption cross section for different energies
of the dipole phonons (E»=0.6 MeV, B¢=0.25, Nphonon=8, I'=2.0
MeV).

from (43).15 From the present available experimental
data one cannot determine a systematical trend in these
deviations. Furthermore, no theoretical refinement of
the energy formula of the hydrodynamic model exists
which takes into account the different possible modifi-
cations affecting the relation (43). Therefore one has
to treat the unperturbed dipole energy FE; as a free
parameter.

The dependence of the dipole absorption spectrum
when only E; is varied is shown in Fig. 13; the calcu-
lations were carried out assuming a linewidth I'y=1
MeV. As can be seen, a variation of E; results mainly
in a shift ef the spectrum. Therefore it will be sufficient
to plot the absorption spectrum only for one value,
E{. For the present calculations we assumed E,°=18.0
MeV. As can be seen from Fig. 13, a variation of E
produces, in addition to the energy shift, also a slight
modification of the spectrum. This results from the
dependence of the coupling strengths on Ej, viz., the
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FiG. 14. Cross section for different values of E;. The 8y value
has been chosen so that the coupling constants are the same in
both cases. (Solid line: E;=20.0 MeV, 8,=0.20; dashed line:
E1=§6.0 MeV, B0=0.25; E;=0.6 MeV, Nphonon=8, I'=1.5
MeV).

first- and the second-order interaction terms contain
BoEy and B2 Es, respectively, as can be seen in Eq. (22).
This influence of the dipole energy E; on the spectrum
can be canceled out in part by choosing a value for 8,
such that the coupling energy of the first interaction
term still remains unchanged. So, if the spectrum is
calculated for an energy, say E,% then one has to use
Bo given by the relation

Bo=Bo(E+/EY).

The cross sections for two different values of Ej, viz.,
16 and 20 MeV, are plotted in Fig. 14 while the 8, was
chosen to be 0.25 and 0.20, respectively. As can be seen,
the two curves no longer show any noticeable difference
in shape after correcting for the energy shift. Therefore
it will be sufficient to evaluate the dipole strengths only
for one value of E;. This means that for an actual
nucleus with the dipole energy £; we have to apply the
spectrum calculated with B, rather than that calculated

(44)
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F1c. 15. Energies F, and mean vibrational amplitudes 8,
of some even-even nuclei.
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F16. 16. Calculated dipole-absorption cross section for different
values of the quadrupole phonon energy E. (E;=18.0 MeV,
B0=0.20, Nphonon=38, T'=2.0 MeV).

with 8o and to shift the spectrum by the amount
E—EP.

The low-energy properties of the vibrational nuclei
are given in the harmonic approximation by the quad-
rupole phonon energy E, Eq. (19), and the mean
vibrational amplitude Bo, Eq. (20), which can be ob-
tained from the experimental B(E2) values by means
of Eq. (21). These two parameters also determine the
interaction between the surface vibrations and the
dipole oscillations. In Fig. 15 the values of 8y and E,
are plotted for a number of spherical even-even nuclei.
Usually the quadrupole energy E, lies between 0.4 and
1.2 MeV. In this region the calculated photon-absorp-
tion cross section depends only weakly on the exact
value of E; (see Fig. 16). We therefore have computed

£, MevV

T16. 17. Calculated dipole-absorption cross section for different
values of the vibrational parameter 8y (£;=18.0 MeV, E,=0.4
MeV, Nphonon=8, I'=1.0 MeV).
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F16. 18. Dipole strengths ¢i? as defined in Eq. (34) for different
values of 8y (E;=18.0 MeV, E2=0.4 MeV, N phonon=3).
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Fr1c. 19. Dipole strengths ¢ for different values of 8o
(E,=18.0 MeV, E2=0.6 MeV, Nphonon=23).

the dipole strengths for E,=04, 0.6, 0.9, 1.2, 1.6 MeV
which should suffice for interpolation purposes. Actually
the spectrum of the 1~ states is determined mainly by
the vibrational amplitude, i.e., 8o. This can be seen in
Fig. 17, where the cross sections are plotted for several
values of 8. The widths of the states have been assumed
to be 1.0 MeV.

The dipole strengths ¢;2 have been]plotted in Figs.
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18 through 22 as a function of B, for different values of
E,in the region of physical interest, 80<0.4. From these
figures one easily can evaluate the dipole strengths for
an arbitrary spherical nucleus in this mass region. As
already stated, the Hamiltonian matrix to be diagonal-
ized is in principle infinite. For practical reasons one
has to restrict the number of interacting phonons. How
many phonons one actually has to take into account
depends on the value of By and the energy E; of the
quadrupole phonons. The computed dipole strengths
using different numbers of interacting phonons are
plotted in Fig. 23. One sees that for the typical values
Ey=0.6 MeV and B8,=0.2 it will be sufficient to take
six phonons into account. Usually we did the calcu-
lations with eight phonons. One then has to treat the
interaction between 25 eigenstates of the unperturbed
Hamiltonian H.

VIII. CONCLUSIONS AND DISCUSSION

As can be seen from Figs. 4 through 12, the experi-
mental cross sections are reproduced by the theory in
a semiquantitative manner. The spreading of the
resonance over energy is given quite well by the theory,
and also the “collective” structure is qualitatively
reproduced, in particular in the stiffer vibrators, e.g.,
V5l Mn5%, Pb*8, However, in some cases the rising side
of the resonance, i.e., the region below the “main peak,”
shows structure which is not accounted for by the
theory. To understand the reason for the successes and
the failure of the theory one has to take a more funda-
mental point of view, i.e., one has to interpret the theory
in terms of the shell model.

Both the giant resonance and the vibrational states
are one-particle-one-hole (1-ph) states. More precisely,
a one-phonon state is a 1-ph state, a two-phonon state
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F16. 20. Dipole strengths ¢ for different values of 8o
(Ey=18.0 MeV, E;=0.9 MeV, Nyphonon=8).
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is a 2-ph (two-particle-two-hole) state, etc. In the
vibrational region of the periodic table the particle
states and the hole states contained in the surface
phonons and the giant resonance are to a large extent,
but not completely, different. It is thus reasonable that
these two modes can exist side by side and interact
essentially only via the boundary conditions of the
giant dipole resonance, i.e., by the tuning of the dipole
mode by the surface and by the adiabatic reaction of
the dipole mode on the surface. The situation is quite
different when many-phonon states of the surface
vibrations are considered. A phonon state arises by the
diagonalization of the appropriate 1-ph states. In a
harmonic description of the surface vibrations a two-
phonon state is a 2-ph state consisting of two non-
interacting 1-ph states. There is no reason to assume
that the two particles or the two holes of the two 1-ph
states do not interact, and, as a matter of fact, it is
frequently impossible to tell which of the particles and
holes are the “real” and which are the ‘“‘crossed”
partners. In short, the two 1-ph components of the
two-phonon states must be expected to interact
strongly. The same arguments, even more forcefully,
apply to the many-phonon states.

To include such interactions in a collective descrip-
tion one clearly must add anharmonic terms to the
Hamiltonian. The Hamiltonian (1) still does not include
such terms; only quadratic terms in @ have been con-
sidered up till now. Still, it is not clear at all that it
would be sufficient to add such anharmonic terms. It
very well could be true that the many-phonon states
lose completely the phonon character, i.e., they may
retain very little of a structure corresponding to the
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F16. 21. Dipole strengths ¢)? for different values of 8o
(E1=18.0 MeV, E,=1.2 MeV, Nphonon=8).
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Fi16. 22. Dipole strengths ¢i? for different values of B¢
(E1= 18.0 MCV, E,= 1.6 MeV, Nphonon=8)'
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F1c. 23. Dipole strengths for different numbers of quadrupole
phonons admixed to the giant dipole state (E,=18.0 MeV, E;=1.0
MeV, Bo=0.20; straight line, N phonon=38; dashed line, Npnonon=6;
dot-dash line, Nphonon=4).

grouping into 1-ph states. However, it seems that in
fact the phonon character is retained to some approxi-
mation; otherwise it would be very difficult to explain
the qualitative agreement of the harmonic approxi-
mation with the experimental cross sections. In any
case, to obtain a more quantitative agreement between
experiment and theory, it will be necessary first to give
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a sufficiently accurate description of the low-energy
collective spectrum—at least as far as the 0+ and 2+
states are concerned, which alone can participate in
the dipole states. Then one may hope to achieve quite
a good description when adding the dipole excitation
since, as already mentioned, the two modes contain to
a large extent different single-particle states.

The most conspicious discrepancy between theory
and experiment is, however, the structure at the low-
energy side of the resonance. No consistent explanation
of this discrepancy has as yet been given. It seems very
likely that the excess cross section should be associated
with some of those states which in the schematic model?®
have been swept clear of any transition strength.?”

26 G. E. Brown and M. Bolsterli, Phys. Rev. Letters 3, 472
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In the language of the collective model the giant
resonance is an isospin wave. It can be coupled to the
spin wave. This would result in a splitting of the giant
resonance, as observed in the calculations concerning
0% where two states carry appreciable dipole strength,
the upper being the spin-flip state. It is possible that
the same coupling would lead to a structure on the low-
energy side of the giant resonance. However, it is very
unlikely that this structure would be as complicated as
that in praseodymium, Fig. 11. This point thus merits
a quantitative exploration.

(1959) ; G. E. Brown, Modified Theory of Nuclear Models (North-
Holland Publishing Company, Amsterdam, 1964).
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The general features of the expressions useful for numerical calculations of the projected deformed Hartree-
Fock (HF) spectra for finite nuclei are investigated. It is proved that the projected deformed HF wave-
function gives the possible nuclear spins as =0, 2, 4, ..., Imax for a K=0band and I =K, K+1, ..., Imax for
a K 50 band. It is further proved that if the energy Er_x of the projected I =K state is greater (less) than
the HF energy Ex™F, then E;is greater (less) than E;’ for I <I’. A plausible reason why one should use the
deformed HF state rather than any other deformed state is also pointed out.

1. INTRODUCTION

ECENTLY there has been considerable interest
in Hartree-Fock (HF) calculations for finite
nuclei. In nuclear HF calculations there is a special
difficulty due to the nucleon-nucleon interaction inside

the finite nucleus. Various different approaches are

suggested in the literature to cope with this difficulty.!
Here we will not be concerned with this aspect of the
problem. We simply assume some effective inter-
nucleon potential inside the nucleus. In the literature,
two types of HF calculations are reported: (1) radial
HF calculations for nearly closed-shell nuclei,® and
(2) deformed HF calculations for nonspherical nuclei.

1K, A. Brueckner, J. L. Gammel, and H. Weitzner, Phys. Rev.
110, 431 (1958); S. A. Moszkowski and B. L. Scott, Ann. Phys.
(N. Y.) 11, 657 (1960); R. K. Bhaduri and E. L. Tomnsiak,
Proc. Phys. Soc. (London) 86, 451 (1965); C. Shakin and Y. R.
Waghmare, Phys. Rev. Letters 16, 403 (1966).

2 Nazakat Ullah and R. K. Nesbet, Nucl. Phys. 39, 239 (1962);
46, 254 (1963); Phys. Rev. 134, B308 (1964); R. Muthu-
krishnan and M. Baranger, Phys. Letters 18, 160 (1965); A. K.
Kerman, J. P. Svenne, and F. M. H. Villars, Phys. Rev. 147, 710
(1966).

Following the finding that one can obtain nearly the
same physical results for a nucleus by doing the inter-
mediate coupling calculations or by doing the de-
formed HF calculations and then projecting good
angular momentum states from it, deformed HF calcu-
lations gained popularity.? By deformed HF calcula-
tions, we mean those in which the radial parts of the
single-particle orbitals are taken as harmonic-oscil-
lator radial wave functions while the angular momentum
parts are determined from the HF variational calcu-
lation. Here we will be dealing with deformed HF
calculations only.

We investigate the general broad features of the
low-lying excited states of nuclei as obtained by pro-
jecting the good angular momentum states from the
deformed HF wave function, and we derive the proper-
ties of the projected spectrum. We also give a justi-
fication of why one should project from the HF state

3 M. Redlich, Phys. Rev. 110, 468 (1958); D. Kurath and L.
Picman, Nucl. Phys. 10, 313 (1959); W. H. Bassichis, B. Giraud,
and G. Ripka, Phys. Rev. Letters 15, 980 (1965).



