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general agreement of the experimental data with the
theory is fairly good for values of ¢ above 400 MeV/c.
However, the diffraction minimum predicted by the
theory is not observed.

The failure of the data to show a diffraction minimum
may not be due to a failure of the theory. It is possible
that this effect is due to the enhancement of yet another
unresolved level. Such an enhancement of a level would
of course be more noticeable in a region where the cross
section of the 19.5-MeV level is diminished.

At the same time that excitations in the region of 19
MeV were being studied, a search for higher energy
levels was also conducted. A region of the inelastic
electron spectrum corresponding to an excitation energy
of up to 45 MeV was studied. No excitation of an
excited state with an energy greater than the 19.5-MeV
level was seen. In particular, the “giant resonance’” and
the level at 35.8 MeV predicted by Lewis and Walecka
were not observed. However, because of the masking
effects of the break-up continuum in the inelastic
scattering spectrum, any state with a probability of
excitation reduced by approximately a factor of 5 from
that for the 19.5-MeV level would not have been
observed.
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CONCLUSION

We have studied the excitation of a level at about 19
MeV in C2, and have presented two simple methods of
obtaining cross sections. The agreement between the
experimental results and the theory presented by Lewis
and Walecka is good, except in the region of the Born-
approximation minimum. Even there, however, the
agreement may be better than it appears to be, if we
allow the possibility that the peak observed at 19.5
MeV may really be two or more unresolved peaks, only
some of which should be considered in the comparison
with the theory. An experiment with improved resolu-
tion might be of great assistance in clarifying the many
questions still remaining.
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A description of the symmetric noncoplanar (p,2p) reaction is given in terms of the distorted-wave impulse
approximation and using a simple model of the three-body final state. It is shown that a study of non-
coplanar scattering could give information on the population of substates in the final nucleus and on the way
this is affected by distortion. Through such a study the advantages of the (p,2p) reaction as a correlation
experiment can be realized. It is also shown that coplanar and noncoplanar scattering are sensitive to defor-
mation of the target nucleus and that a combined study of these processes could provide a method of in-
vestigating the spatial distribution of bound protons in nonspherical nuclei. A possible experimental arrange-
ment for the noncoplanar scattering is discussed.

1. INTRODUCTION

A NEW treatment of the final state of the sym-
metric (p,2p) reaction has recently been given! in
which the two outgoing protons are described in terms
of their relative motion and the motion of their center
of mass in an optical potential which is twice that for
a single proton. By means of the assumption that the
proton-proton interaction is short range, a matrix
element is obtained in distorted-wave impulse approxi-
mation which has exactly the same form as the matrix

element for the pickup of a single nucleon, except that
the distorted wave function for the deuteron in the
pickup reaction is replaced by the distorted wave
function for the center of mass of the two protons.
Because of the presence of this wave function for the
center of mass, this model is referred to as the “di-proton
model,” although it is not intended to imply that the
two protons form a bound state or are correlated on
leaving the nucleus. The three-body system is thus
approximated by a two-body system with a consequent
simplification in the calculation, and also, we believe,
increased insight into the mechanism. It was pointed

* Formerly Battersea College of Technology. - .
out in Ref. 1 that this model could be used for a simple

1 D. F. Jackson, Nucl. Phys. A90, 209 (1967).
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Y Fic. 1. The scat-
tering system. (In
the laboratory sys-
tem, the scattering
angle and the angle
of  noncoplanarity
are represented by
the symbols 6z and
wr.)

ks «
___,/_é_- t.,

description of noncoplanar scattering. In this paper we
give such a description, and discuss the information that
can be obtained from noncoplanar scattering.

In the symmetric (p,2p) reaction, the two outgoing
protons have equal energies and make equal angles
with the incident beam (see Fig. 1). In the center-of-
mass system, the momenta of the incoming and out-
going protons are taken to be ko, ki, and ko, respectively,
with |ki| = k.|, so that the momentum of the center
of mass of the two outgoing protons (the ‘“di-proton”)
is ky=k;+k,. We take the momenta ko, 2z to define
the xz plane and the angle between them to be the
angle of noncoplanarity w. The cross section for the
symmetric noncoplanar (p,2p) reaction is given in
distorted-wave impulse approximation by?

d’o do
=K'_“Z 'glmP’ (1)

dUdQAE  dQyp ™

where K represents kinematical factors, do/dQy, is the
cross section for proton-proton scattering evaluated at
90° in the c.m. system, and g;” is given in the di-proton
model by!

gim= (X5~ (ks,1) [ (1%, (ko,ax)) (2)

where X,*, Xg~ are distorted waves for the proton and
the di-proton, a=1—1/4, and y,, is the overlap integral®

V()= / B (B4 (E)IE, 3)

which we shall approximate by a single-particle wave

function
Y (1) =Ru(r)Ym(7). 4)

In the plane-wave approximation the matrix element
g™ reduces to

"= / e (r)dr, (5)

where
Q=dko—kz (6)
2Th. A. J. Maris, P. Hillmann, and H. Tyren, Nucl. Phys. 7,

1 (1958); K. F. Riley, ibid. 13, 407 (1959).
3T. Berggren, Nucl. Phys. 72, 337 (1965).
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is the recoil momentum of the residual nucleus in the
laboratory system. We take the z axis along the direc-
tion of the incident beam. For symmetric coplanar
scattering (w=0) the symmetry of the system with
respect to rotation about this axis* leads to a reduction
in the number of terms g;™. In the plane-wave approxi-
mation and the distorted-wave impulse approximation
with the di-proton model, the terms with w0 are
identically zero. In an exact treatment of the distortion
within the framework of the impulse approximation,?
there are contributions from terms with all even values
of m. In symmetric and nonsymmetric coplanar scat-
tering, the rotation symmetry is lost and contributions
from all values of m are to be expected.

The effect of noncoplanarity has been discussed
before.?® Jacob and Maris® used a diffraction model
based on strong-absorption theories, but the predictions
of their model do not appear to be in agreement with
such experimental data’ as exist at present. Sakamoto®
used an approximate distorted-wave method and
reached the conclusion that if the optical potential is
real there are no contributions from m340. In Sec. 2
we first give a simple description of symmetric non-
coplanar scattering using plane waves and then discuss
the effect of distortion. In Sec. 3 we discuss the informa-
tion obtainable from such scattering.

2. THE MATRIX ELEMENT FOR NONCOPLANAR
SCATTERING

In this section, we examine the behavior of the
matrix element for noncoplanar scattering. We do this
for plane waves first, to demonstrate simply the
dependence on the angle of noncoplanarity w, and then
to examine the distorted-wave formulas,

A. Plane-Wave Formulas

In order to evaluate Eq. (5), it is convenient to
resolve the recoil momentum Q into the components

Qo= —kpsinw, Q,=ak¢—kp cosw.
We use oscillator functions of the form
Rui(r)=Anpt {Fi{— (n—1), 14+%; 72/B2} e,

and substituting these into Eq. (5) we obtain the
following formulas for the matrix element for the first
few I values:

g0 = 2V2r3/p312g— 1R 01020

g10= 43 Ip3 12300 () ) e 10V

gt = 2V2r3 14312 () b) e Haat e

g0= V33 /4p3I12 (1 — 2 202 — 2 2B2) g 1Qa" %~ 1Q00 |
4D. F. Jackson and T. Berggren, Nucl. Phys. 62, 353 (1965).
5 G. Jacob and Th. A. J. Maris, Nucl. Phys. 20, 40 (1960).
6 Y. Sakamoto, Nucl. Phys. 46, 293 (1963).

7 G. Tibell, O. Sundberg, and U. Miklavzic, Phys. Letters 2,
100 (1962).
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etc., so that

S lgin|o= F(@)e .

For small w, such that Q,2«<1, it can easily be shown
that the dependence on Q, is given by Jo(V2bQ,) for
m=0 and J;(V2bQ,) for m= 1. Thus we may conclude
that terms with m>0 do contribute as soon as w>0.
Hence even for the coplanar experiment the finite angu-
lar resolution will permit small contributions from terms
with m>0, although the magnitude of these contribu-
tions will be negligibly small (except when Q,=0).

B. Distorted-Wave Formulas

In the di-proton model, the matrix element (2) is
given by

o= / X5 (i Wi (% (ko ar)d

and using a partial-wave expansion for the distorted
waves, this becomes!

gm=4r > th= 2L+ 1) (2141)/ 2+ 1) J2U (denl)
Uil
X (11017% | lzm) (11010 [ 120) YZZ’"(CO,O) , (7)
which for small w can be written as

g~ (412 Y i1 (20 4-1) (24 1)12U (1l

Lilg

X (llolmllzm) (llol()llgO)]m({h'*‘%}w) , 8

where U (l1lonl) is the integral over the radial parts of
the distorted waves and the single-particle wave
function,

U(lllznl) = /w le (koar)flz (kBr)Rnl (7)1’2(17’.

Equation (8) reduces to a particularly simple form if
one partial wave /=1y gives the dominant contribution
to the matrix element. We then have

lo=1lo—1

g~ (4t 30

la=lo+1

X (Lo0lm | 19m) (1000 150) T o ({ a3} ).

0-12(2041) (204 1)12U (loland)

For the special case of /=0, this reduces to
gooﬁ (47r)1/2 (2kBR) U(loloﬂ())]o(kBRw) ;

where we have put ly-+%=FkpR and have obtained the
dependence on a zero-order Bessel function, as in the
previous section. The assumption that a particular
partial wave gives the dominant contribution to the
matrix element is the condition for the validity of the
diffraction model for direct reactions.® The diffraction

8 K. A. Amos, I. E. McCarthy, and K. R. Greider, Nucl. Phys.
68, 469 (1965).
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model has been applied to the (p,2p) reaction! and it
too leads to the result that the dependence of g;™ on w
is of the form J,,(ksR sinw).

3. INFORMATION OBTAINABLE FROM
NONCOPLANAR SCATTERING

In this section we discuss the information which can
be obtained from noncoplanar scattering. We use the
result that, in impulse approximation, the cross section
for the (p,2p) reaction is expressed in terms of the cross
section for proton-proton scattering at 90° in the
center-of-mass system, and hence that the proton-
proton scattering occurs only in singlet states. Thus
our general conclusions are dependent only on the
validity of impulse approximation. Particular calcula-
tions are carried out using the di-proton model to give
predictions for the magnitudes of cross sections for non-
coplanar scattering.

As we have seen, the effect of noncoplanarity is to
introduce nonzero contributions from all possible
substates for a given angular momentum /. In Sec. 2 A
it was shown, using plane waves and oscillator functions,
that 3. |g/™|? is a simple function of (2, but the true
situation is likely to depart from this simple prediction
owing to (i) angular localization caused by the distortion
and (ii) departures from sphericity in the target nucleus.

The component y° of the overlap integral which
contributes to g can in principle be determined from
coplanar scattering. This means that for a spherical
nucleus the radial function R,;(r) is determined [at
least that part of the radial function to which the
(p,2p) reaction is sensitive], and hence the other
components of the overlap integral ¢;™ are determined
through Eq. (4). Information on R,;(r) is also given,
of course, by other nuclear reactions. We assume,
therefore, that the components of the overlap integral
are known or can be determined. It then follows that a
study of noncoplanar scattering in the (p,2p) reaction
on a spherical or nearly spherical nucleus will give
further information on the effect of distortion and, in
particular, on the way distortion affects the population
of substates in the final nucleus. For example, if we
consider knockout of a ps,2 proton from C2, leading to
the ground state of BY, or from O, leading to an excited
state of N with Jy;=4%~, then in the coplanar experi-
ment the only substates to be populated are those with
M;=+3%, whereas in the noncoplanar experiment all
the substates are populated. This additional information
should be expected from the (p,2p) reaction since it is
an angular-correlation experiment and, compared with
reactions in which only one final particle is emitted,
should reveal information concerning the population of
nuclear substates, in the same way as the investigation
of angular correlation in the (p,p’y) reaction? reveals
more information than the (p,p’) reaction. The formulas

°F. H. Schmidt, R. E. Brown, J. B. Gerhart, and W. A.

Kolasinski, Nucl. Phys. 52, 353 (1964), and references cited
therein.
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—glam
————— - lof1* Fic. 2. The components
S— T of the nuclear matrix ele-
v ment for noncoplanar scat-
tering calculated using
plane waves. The dashed
lines show the components
for m=0 and m==-1 and
the full line is the sum of
these. The parameters are
those of set B in Table I,
the target is Lif, and the
incident energy is 185 MeV.
The scattering angle 6z
is 35.5°.
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for the (p,2p) reaction are somewhat simpler than those
for the (p,p"y) reaction, although in the former case
there is at present the implicit complication due to our
incomplete understanding of the structure of the overlap
integral 3.

From the theoretical point of view the simplest way
to investigate such processes would be to compare
coplanar scattering, for which Q, is zero for all §, with
noncoplanar scattering carried out in such a way that
Q. is held at zero; this form of noncoplanar scattering is,
however, not very practicable since it requires a simul-
taneous variation of w and . Also, the finite energy and
angular resolution of the experimental apparatus could
have a confusing effect when both Q. and Q; are near
zero. We therefore suggest that the best procedure is to
fix the angles 6 to give a value of Q, corresponding to a
maximum in the angular distribution for coplanar
scattering. For /5%0 there are two maxima and we choose
the one corresponding to negative Q.. As the angle of
noncoplanarity w is increased from zero, the value of
| Q.| falls to zero, while Q, rises from zero. The plane-
wave formulas of Sec. 2 A then lead to the results shown
in Fig. 2, while the distorted-wave formula given by
Eq. (7) leads to the results shown in Fig. 3. The
parameters for these figures are given in Table I. From
Fig. 2 it can be seen that, as a result of the geometry
we have chosen, the components of the matrix element
with m=0 and those with =21 are important at
different angles, giving rise to a sizeable cross section
for noncoplanar angles up to 20°. (The cross sections
corresponding to Figs. 2, 3, and 4 can be estimated in
ub MeV—! sr—2 by multiplying by a factor of 0.8. The
correct multiplication factor is not a constant, but is

TasLe I. Parameters for Figs. 2, 3, and 4.

Deformation Length parameters (F)

Curve parameter € a=q712 p=p712 (a?)
A +0.4 1.67 2.08 5.8
B 0 1.80 1.80 5.8
C —0.4 1.91 1.58 5.8

10 W, T. Pinkston and G. R. Satchler, Nucl. Phys. 72, 641
(1965) ; N. Austern, Phys. Rev. 136, B1743 (1964).
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nearly so.) By comparing the full-line curves in Figs. 2
and 3, it can be seen that distortion has the effect of
filling in the dip at 0° and spreading out the angular
distribution.

The evidence for the deformation of light and medium
nuclei is increasing rapidly. Volkov!! has made a
detailed Hartree-Fock calculation of the equilibrium
deformation in the ground state of nuclei in the 1p shell
and finds prolate deformation favored for 4 <8, oblate
deformation for 9< 4 £ 13, while nuclei beyond 4 =13
are essentially spherical. Recent studies®® of the
properties of the overlap integral defined in Eq. (3)
have shown that the overlap integral is not the same as
the radial wave function in a self-consistent Hartree-
Fock potential. It is, however, customary in calcula-
tions on nuclear reactions to approximate the overlap
integral by a single-particle wave function in an effec-
tive one-body potential whose parameters are adjusted
to give the correct separation energy for the particular
reaction and, since nuclear-structure calculations indi-
cate the nonsphericity of the Hartree-Fock potential,
we should also use a nonspherical one-body potential.

For the 1p-shell nuclei, Volkov uses the wave
functions

do=CoBl 261 g~ ta (™) |
¢ﬂ:1 = Cj:la1/2 (x:h iy)e—'%“(xz'ﬂﬁ)e—%ﬂzz s
where o,8 are related to the deformation parameter e
through the relation
a 143

B 1—2¢

These wave functions can be rewritten in the form
bo=Co(B/a) 21 2ge—ta @it gha—p)?
b= Ciwzm (x:l: iy)e—%“ (a2 +y%+2) p} (a—B)2? ,
or, expanding the last factor,

¢y= Cy (B/a) a—|»l) /2a,1 /Ze—%ozr2 Z A nr2n+1 (Y10)2nylv ,

from which it can be seen that the effect of deformation

150 Fic. 3. The nuclear matrix
element for noncoplanar scat-

?;ngml' tering calculated using dis-
(7 N\ torted waves. The target is Li®,
100 Y the incident energy is 185 MeV,

and the optical potential
parameters are taken from
Ref. 9. The scattering angle
01, is 35.5°. For the full line the
length parameter is the same
as in Fig. 2, while for the
dashed line the length param-
eter has been increased to
ol— 224 F.
O 5 10 |5 20" 25°

(8

50

1 A, B. Volkov, Nucl. Phys. 74, 33 (1965).
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Fi1G. 4. The effect of deforma-
tion on noncoplanar scattering
calculated using plane waves.
The incident energy is 185
MeV and the parameters are
given in Table I. The scattering
angle 6z, is 35.5°.
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is to change the normalization and to introduce ad-
mixtures of higher shell-model configurations. The wave
functions of Volkov, which are the same as those in
Appendix A of Nilsson’s paper,? are defined in the
body-fixed system which must be rotated into the space-
fixed system before the matrix element can be calcu-
lated. This involves no essential complication. A
lowest-order estimate, using plane waves, of the effect
of deformation for noncoplanar scattering is given in
Fig. 4, and this indicates that the effect is sizeable. From
this estimate we may conclude that a calculation using
spherical wave functions for a nucleus which has posi-
tive deformation will lead to an underestimate for the
magnitude of the cross section and therefore an over-
estimate of the spectroscopic factor, and vice versa in
the case of a nucleus of negative deformation. A similar
conclusion has been reached by Rost®® in a detailed
distorted-wave analysis of the stripping reaction
O (He’,d).

For nonspherical nuclei it is no longer true that a
knowledge of one component of the overlap integral
determines the other components since the simple
representation given by Eq. (4) is not valid, but a
combined study of coplanar and noncoplanar scattering
in the (p,2p) reaction can provide a powerful method of

2S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 29, No. 16 (1955).

B E. Rost, Phys. Letters 21, 87 (1966).
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investigating the spatial distribution of bound protons
in nonspherical nuclei. The oscillator functions we have
used to obtain the results shown in Figs. 2, 3, and 4 do
not have the correct asymptotic behavior for the overlap
integral and must be replaced by functions whose
asymptotic behavior is related to the proton separation
energy.?1® It is encouraging, therefore, that methods
are now being developed for obtaining wave functions
in a deformed finite potential.’® In addition, the
distorted-wave analysis of the (p,2p) reaction has
reached the stage at which it is feasible to attempt the
determination of spectroscopic factors.’® What is now
required is an experimental study of coplanar and non-
coplanar scattering on suitably selected spherical and
nonspherical nuclei with the emphasis on an accurate
determination of the absolute magnitude of the cross
section and resolution of protons leaving the residual
nucleus in the ground and low-lying excited states.

The requirement that impulse approximation should
be valid places a rather fundamental restriction on the
energy region in which the proposed experiments should
be carried out. This restriction arises because it is
essential to the discussion presented above that the
proton-proton scattering take place in singlet even
states. However, the calculations of Lim and
McCarthy'® using their distorted-wave -matrix approxi-
mation indicate that contributions from triplet odd
scattering may occur when full account is taken of the
finite range of the two-body potential, its exchange
character, and of antisymmetrization. These authors
conclude that the triplet scattering decreases with
increasing energy of the incident proton and quote the
ratio of the triplet to singlet scattering at 143 MeV
as 4%. We may therefore estimate with reasonable
confidence that the conclusions reached here on the
basis of distorted-wave impulse approximation are valid
for experiments carried out with incident protons with
energies of 150 MeV or above. The extension of the
investigation to lower energies requires a more exact
treatment of the interaction.

4E. Rost and G. E. Brown, Bull. Am. Phys. Soc. 10, 487
(1965) ; P. Réper (unpublished report).

15 B. K. Jain and D. F. Jackson (to be published).

16 K. L. Lim and I. E. McCarthy, Phys. Rev. Letters 13, 446
(1964) ; Nucl. Phys. 88, 433 (1966).



