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Lattice Response Functions of Imperfect Crystals: Effects Due to a
Local Change of Mass and Short-Range Interaction*
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Lattice response functions, such as the thermal conductivity and dielectric susceptibility of an imperfect
crystal with rocksalt structure, are evaluated in terms of the irreducible T matrix accounting for the phonon
scattering. It is shown that the eBect of defects on thermal conductivity and dielectric susceptibility can
be accounted for by expressions which have essentially the same structure. The T matrix for a defect
which affects both the mass and the short-range interaction is analyzed according to the irreducible
representations of the point group which pertains to the perturbation, and the resonance conditions for
F&, F», and F» irreducible representations are considered in detail for any positive impurity in KBr
crystals. Hardy s deformation-dipole (DD) model is employed for the description of the host-lattice dy-
namics. A comparison is made with simplified models, such as diatomic linear chains with nearest-neigh-
bor interaction; it is shown that in polar crystals an eft'ective-force constant has to be used in order to give
a reliable description of the short-range interaction between the impurity and the host lattice. An attempt
is made to define such effective force constants in the framework of the DD model. The numerical calcula-
tions concern positive monovalent impurities in KBr crystals. Fj, F», and F» resonance frequencies are
evaluated as a function of the change of mass and nearest-neighbor force constant. For KBr.'Li+ and
KBr'. Ag+ we also evaluate the band shape of the absorption spectrum at infrared frequencies; good agree-
ment is found between the theoretical prediction and the experimental data on KBr.'Li+. It is shown that
some structures actually observed in the spectrum are due to peaks in the projected density of states of
the host lattice, and have nothing to do with resonance scattering. Good agreement is found between the
impurity-host-lattice interaction as estimated from a Priori calculations and as deduced by fitting the I'»
resonance frequency to the experimental data. A simple explanation of the oG-center position of small ions
is also suggested. Finally, concentration and stress eGects on the absorption coefBcient are briefly
discussed.

I. INTRODUCTION

ECKNTLY, attention has been called to the re-

sponse that an imperfect crystal gives under the
action of an external disturbance, such as electromag-
netic' ' and neutron' radiations or thermal gradients. "
It is well known that the peculiarities these response
functions display in the range of the phonon frequencies
are to be ascribed to the defect-induced phonon
scattering. 7

The model which has been used till now to account
for the effects of the defect-induced phonon scattering was
essentially a pure change of mass. This model was useful
for recognizing that the peaks which might occur at the
high-frequency side of the Eeststrahlee frequency are
sects due to the eventual local modes induced by the
defect. However, this model did not allow for a good in-

terpretation of the peaks that sometimes are observed
at the low-frequency side."
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The eGect that a local change of force constant has on
the imperfect-lattice dynamics has been discussed quali-
tatively by several authors' ' on the basis of oversim-
pli6ed models, such as linear chains with nearest-
neighbor (n.n.) interaction. Recently, it was stressed by
one of the present authors that the change in the short-
range interaction can play an essential role in the quan-
titative explanation of the experimental data. " In the
present paper we try to perform a realistic calculation
on a substitutional impurity in lattices having rocksalt
structure, and to predict the e6ects on the response
functions.

In order to do this, we have developed the imperfect-
lattice dynamics on the basis of the T-matrix formalism,
and have analyzed the T matrix according to the irre-
ducible representations (irr. rep. ) of the point group
which pertains to the perturbation. This is done in Sec.
II, where the properties of the T matrix are also ex-
amined in the complex s plane. Kith the aim of shedding
some light on the local interaction around an impurity
ion, an attempt is made (see Sec. III) to define an effec-
tive-force constant for the (n.n.) interaction in ionic
crystals. The expression for the response functions of
the imperfect crystal is considered in Sec. IV. There,
their dependence on the T matrix of a single defect is
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fully explained. The emphasis is given to the complex
dielectric susceptibility; it is shown that to lowest order
in the concentration only T«, the optic-active element
of the scattering matrix, is involved. T00 is evaluated
in Sec. IV on the basis of a model which accounts for
both changes of mass and (n.n.) force constant.

Finally, the conditions for resonance scattering of 2~5
(the optic-active) as well as I't and I'ts (the Raman-
active) symmetry modes are analyzed in Sec. V, where
the numerical results for impurities in a KBr host lattice
are reported and compared with the experimental re-
sults for KBr:Li+ ' and KBr:Ag+.' The extension to a
change in both central and noncentral force constants is
outlined in the Appendix. The numerical results for de-
fects in KI were reported elsewhere, "while the system-
atic analysis of the resonance conditions for defects in
several other host lattices will be presented in a subse-
quent paper.

n. r-MaTM:X ZORMaLrSM

Consider a crystal containing a number of defects of
the same kind with 6nite concentration p, and let xt,
xs ' ' xj ' ' ' x»+ (where X is the number of primitive
cells comprising the crystal) be the set of lattice vectors
which characterizes a given configuration, say A, of
defects. The mass matrix of the imperfect lattice can be
written as

Mz ——M o[l—e&zj.
Mo is the mass matrix of the perfect lattice, —e is the
fractional change of mass due to a single defect, and
4~ is the matrix whose components in the lattice-
displacement representation are given by

(2)

In expression (2), x and y denote Cartesian compo-
nents, index / labels the lattice vectors x~—=x~+x„
(xt ——Bravais vector, x„=site vector in the primitive
cell), and the summation runs over the set of lattice
sites which characterizes the configuration (A) of de-
fects. As usual, b~; and b,„are Kronecker symbols. A
subscript A has been added to M on the left-hand side
of Eq. (1) and to ck in order to emphasize that these
matrices depend on the configuration of defects. The
force-constant matrix of the imperfect lattice can be
split as

@'A @'0+8@'A
y

where Co refers to the perfect lattice, and the normal-
mode equation reads

I Lo++~(~')g~=~BP)„(4)
where ~), is a normal-mode frequency of the imperfect

"G. Benedek and G. F. Nardelli, in Proceedings of the Confer-
ence on Calculations of the Properties of Vacancies and Inter-
stitials, Skiland, Virginia, 1966' (to be published).

(Ay[I —eXA+v) = 8kv p (6)

which assures the equivalence between Eq. (4) and the
more "natural" normal-mode equation

LA g'= t»g'A',

where L~=—M~ ' '(+o+8e~)M~ '~' is the dynamical
matrix of the imperfect lattice. "

In the lattice-displacement representation A~(oos)
reads

h.p„„(l,l', oo')=g;i"&{h.,„(l j, p——j)
+~'~*o(1—j 1—j')) (g)

where

h.go(l, l')=Mo '"(l)be.o(l, l')Mo "'(1')

and a»'A, „(l,l') account, respectively, for the change of
force constants and for the change of mass due to a
single defect at the origin of the crystallographic axes."
It will be shown in the following sections that both the
thermal- and the optical-response functions of an im-
perfect lattice can be expressed, in harmonic approxima-
tion, in terms of the inverse matrix

&(Le+X,(~') —s)-')

where the brackets with the subscript av denote a sta-
tistical average over all the configurations of defects
with the same concentration P, and z=oo'+itl is the
complex squared frequency.

We define now a T matrix for the total system of de-
fects by the equation

T.()=~.( ')-~.( ')(L.—)-'T.(), (10 )
or

Tg(z) =A.~((o')—Tg(z) (Lo—z)-'A.„(oo'), (10b)

which has the formal solution

Tg(z) = Kg(t»') [I+(Lo—z)
—'A g(o»s)p' (11a)

T~(z) = r&+&~(oo')(Lo—«) 'r'&A(4') (11b)

T~(z) accounts for the multiple scattering of lattice
waves in which one, two, three, etc., defects are involved
at a time. The contributions to Tz(s) can be analyzed by
a diagram technique. We use the wave-vector represen-
tation (q,s)—=q, where g is a wave vector and s is the
branch index; following Langer, "a horizontal line with
label q (phonon line) represents the free normal-mode

» J. S. Langer, J. Math. Physics, 2, 584 (1961).

lattice.

+x(oo')—=Mo 'I'6+aMo '~'+soothe=Az+eoosA (5)

is the frequency-dependent perturbation. , and Lo is the
dynamical matrix of the perfect lattice.

In considering Eq. (4) it is understood that the normal
modes fq satisfy the orthonormality condition
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FIG. f. Graphs entering the expansion of the perturbed Green's
function. (a), (c), (f), and (g) are irreducible graphs.

Green's function

G,(s)-=(~'(e)-s) " (12)

Further contributions to &Tz, ;„(s)), involve poly-
nomials of second and higher order in the defect concen-
tration. To lowest order in p, expression (9) can be
written finally as

&(4+~.( ')- )-'),=(L.+pT()- )-', (16)

'~ A. A. Maradudin, in Astrophysics and the kIcrly-Bod'y Problem
(W. A. Benjamin, Inc. , New York, 1963), Vol. 2, pp. 107—320.

the interactions are denoted by dashed lines which start
from dots representing the defect sites where interac-
tions occur and connect to the phonon line in the order
in which they occur in the perturbation expansion of
(11a) or (11b). The graphs entering T~(s) are of the
type shown in Fig. 1.

It has been shown by Langer" "that the statistical
average makes the inverse matrix (9) expressible in
terms of the irreducible part, say Tz, ;„(s), of the T
matrix. It turns out that

&(4+&.( ')-s)-')-=(Lo+&T. , -())-- )-', (»)
where T~,;„,(s) is defined as the sum of all the irreducible
graphs entering the perturbation expansion of the T
matrix. Here, we call irreducible a graph which cannot
be separated into two disconnected parts by breaking
a single phonon line. )In Fig. 1, (a), (c), (f), and (g) are
irreducible graphs. ) (T~,;„(s)), is recognized to be a
diagonal matrix with respect to wave-vector indices.

Consider the T matrix Ti(s) for a single defect and
perform the statistical average over a single-defect
random distribution with probability p at every site of
the Bravais lattice. We define a matrix T(s) by

pT(s) = (Ti(s)), .

T(s) is recognized to be a matrix which is diagonal in
the wave-vector representation and has finite matrix
elements. In the approximation in which only repeated
scattering of a lattice wave by the same defect is con-
sidered in summing up irreducible graphs, it turns out
that

and it is seen to involve the T matrix for the single
defect T(s).

We consider now in more detail the T matrix for a
single defect. The inspection of expression (11a) or
(11b), with the suffix A dropped, tells us that the matrix
Ti(s) has the same rank and synunetry as the matrix
A(ra'). ; thus, Ti(s) can be analyzed according to the
irr. reps. , say F, of the point group which pertains to the
perturbation itself. Let

I r,j) denote the oriented sym-
metry vectors in the subspace where the perturbation
has nonvanishing matrix elements, which transforms
according to the 6rst row of the irr. rep. I'. The label j
runs from 1 to n(r), where e(r) is the number of times
I' occurs in A.(aP). Ti(s) can be written as

T&(s)=&r &/~' lr j)(r jlTi(s) Ir j')(r j'I (17)

A. Defects in Rocksalt Structuxes

We assume that the defect aGects the mass and the
n.n. force constant of central type, say f, with the point
symmetry of the lattice; it is then an easy matter to
verify that the irr. rep. I' of the full cubic group appears
in our cl(~') e(r) times as follows:

~(r,)=1, e(r») =3, e(rpp) =1, (18)

m(r») =1, n(r»') =1, e(rmg') =1,
and that the nonvanishing matrix elements of A.(co') are

(r, l~(~2)
I
r,) =-',xx, (19a)

(r„la(~') I r„)=-',n, (19b)
and

(X+eo)2

(r,jl~( ') lr .,j') =I
5—(X/2)»g

—(X/2) "9.)
!

X+e&o2

(19c)

Notice that irr. reps. r»', I'25, and r25' enter A.(aP)
with vanishing matrix elements and that irr. rep. F~~
enters with a 2X2 instead of a 3)&3 matrix, because
the noncentral force constant has been disregarded.

In the above expressions &—=M(+)/M(+) denotes
the host-crystal mass ratio, while X= hf/M(+) denotes
the change of the n.n. force constant in units of a squared
frequency. We have labeled the two sublattices of our
crystal with a plus or minus sign; the choice of the upper
or lower sign depends on whether the impurity lies at
the positive or negative sublattice. The projected
Green's functions (I',jl (Lo—s) 'I I',j') are found to
have the following matrix elements:

(ril (Lo—s) 'I ri) =2LB4'(s)+2B~'(s)3, (2«)
(r»l(Lo —s) 'Ir») =2LB"(s)—B6'(s)3, (2ob)

and
Bi+(s) 2'"B2+(s)&

(r», jl (Lo—s) 'lr» j')=
2'"B*'() 2B'() ~

(20c)

B„+(s),ii=1, 2, 3, 4, 5, denotes the complex-valued in-
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tegrals over the Brillouin zone (BZ):

6 BZ

(21)

(22a)

&q j;(q,~)(~'p..—z) 'B.'(z) =p Z
s=l

(22c)

where j„+(q,s) have the following expressions:

jr+(q, s) =e '(+!q,s)

jp+(q, s) =e,(&!q,s)e,(W!q,s)cos(2z rpq, ), (22b)

jp+(q, s) =e '(W!q, s)cos'(2z.rpq, ),
j4+(q,s) =e,'(T!q,s)sin'(2z rpq,), (22d)

jp+(q, s) =e„(+!q,s)e,(+!q,s)sin(2zrpq„)sin(2z. rpq ).
(22e)

T'"(z)= ~&"(z)/D& "(z),

where the numerator, say N&~), is given by

N&' &=-,'&&lb„

N(~ )=-,'xX,
(24a)

Here 0 is the volume of the primitive cell, ro is the n.n.
distance, and 8,(k!q,s) is the zth Cartesian component
of the polarization vector of the lattice wave (q,s).

By use of (19) and (20), expression (11) can be
handled with no particular d fEculty, and the irr. rep.
T& & (s) of the 2' matrix for the defect we have considered
.ar.e found in the form

/ +co&p(1+XQBp+(z)) (tg)1/p/&(1+xr/peo&pgp+(z))
N ( i"I5)—

—(-'x) '/p/I. (1+x'/'eo&pgp+(z)) (-,'&&)X(1+eo&'br+(z))
(24b)

while the denominator, say D&~), is found to have the
following expression:

D& r» = 1+X),(g4+(z)+28 p+(z)),

D& r»& =1+x&(g4+(z)—gp+(z)),

and

(25a)

(25b)

D& &=1+so&pg +(z)+lb, Lg +(z)+X/ +(z)—2xr/pgp+(z))

+eo&2l&&&Lgl+(z)Q3+(z) $2+2(z)|. (25c)

It appears that the numerator is, in the general case,
a complex matrix of rank equal to the number of times
the F irr. rep. enters by nonvanishing matrix elements
the perturbation A. (o&), while the denominator is a com-
plex function of the complex squared frequency s.

Since, upon letting the imaginary part of s go to zero,
the last factor in the integrand of the defining expression
(21) of &&„+(z) is seen to approach a representation of the
8+ or 8 function, depending on whether s approaches
the real axis from the upper or the lower half plane,
the BZ integrals &&„+(z) and, therefore, the denominator
and eventually the numerator of T& "&(z) are recognized
to be multivalued functions of the complex squared fre-
quency s. The branch cuts lie on the real axis of the
complex s plane and occur along every frequency in-
terval where the spectral density of the lattice waves
assumes 6nite values.

Split the BZ integral &&„(z) into real and imaginary
parts (we drop for the moment the superscript & on
b„). In the limit z=o&'+i» with r/=0+, it is an easy
matter to verify Lsee expression (21)j that the real
part, say &/„&'&(o&p), never vanishes, while the imaginary
part approaches either a finite nonvanishing value, say
&&„&'&(o&'), or an infinitesimal value, say»G„(o&'), depend-
ing on whether co is, or is not, a frequency of the
vibrational continuum. Hereafter we use the term
"vibrational continuum" for the frequency interval (or

intervals, if a forbidden frequency gap occurs) which
corresponds to the vibrational spectrum of the perfect
lattice. On taking this property of &&„(o&') into account,
inspection of (23), (24), and (25) tells us that both real
and imaginary parts of T & r'(s) approach finite values, as
z approaches the real axis at a point ~' of the vibrational
continuum, while T&r&(z) exhibits a singularity at every
point of the real axis outside the vibrational continuum
where the real part of its denominator vanishes.

The T matrix we have here considered has been intro-
duced by looking at the time-independent equation for
the perturbed normal modes Lsee Eq. (7)j, rather than
one-phonon states. Nevertheless, it can be shown" that
our T matrix corresponds again to a scattering process
with the appropriate initial and anal conditions, pro-
vided we consider the limit z=o&'+i0+. In what follows
we denote by T&r&(o&') the limit

T&r&(o&') = lim T&r&(o&'+ir/)
g-+0+

=Tt' "(o&')+iTp"'(o&') (26)

Resonant scattering is said to occur when ReD&r&(o&') =0.
Since the time-dependent equation for the normal

modes involves a second-order, rather than Grst-order,
time derivative, our T matrix has not the same meaning
as in quantum-scattering theory. Indeed, it is an easy
matter to verify'p that the argument I&&r&(o&) of the
resonance denominator D&r&(o&P) appearing in (23) rep-
resents, to within a factor x, the fractional shift of
squared frequency induced by the scattering. In this
sense the T-matrix approach contains the early Lifshitz
theory.

Expressions (23), (24), and (25) give the T matrix for

"G. F. Nardelli, in Lectures on Elementary Excitations and
Their Interactions in Solids, NATO Advanced Study Institute,
Cortina, 1966 (to be published)."G. F. Nardelli, Nuovo Cimento, Suppl. 3, 1124 (1965).
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a defect which affects the mass and the short-range force
constants of central type. It appears that the perturba-
tion on the short-range interaction makes T involve a
F„a r», and, in principle, two F» symmetry modes
more than does the perturbation on the mass. Indeed,
on letting X go to zero, only a single F» symmetry mode
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Fxo. 3.The I'» resonance frequency as a function of the changes
of mass and effective-force constant for positive defects in KBr
at O'K. The Reststruhl and the maximum frequencies are roz =2.13
X10" sec ' and co~„-„=3.1&X10"sec ' respectively. A narrow
gap occurs in KBr at ~=1.76&10"sec '.
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Pzo. 2. A qualitative plot of the cosine-mode resonance fre-
quency as a function of the changes of mass, c, and of force con-
stant, nf/f =f/f t, for a d—iatomic chain or a simple cubic lattice
with n.n. interaction.

remains, and T is seen to approach the usual form for
the pure change of mass. The symmetry modes induced
in T by the change in the local interaction do not in-

volve the displacement of the impurity ion. This ex-

plains why the F& and F» resonance frequencies do not
depend on the change in mass; however, the whole

perturbation mixes together the two force-constant-
induced F» symmetry modes and the mass-induced

F», so that a force-constant-induced resonance cannot
be separated from the eventual mass-induced resonance
in the optical absorption.

Let us now consider the expressions (25). Equations
(25a) and (25b) involve only the change of force con-
stant, and for values of

~

X
~

not too small, the real parts
of D&~» and D'~») may have some zeros on the fre-

quency axis. Thus, a suitable change of force constant
can give rise to resonance modes in which the impurity
does not move and the dipole moment is zero for sym-
metry reasons. These modes do not absorb light, but
they can activate a first-order Raman scattering.

With regard to F» symmetry modes, by putting A. =0
it is an easy matter to verify that Dt "&(s) and Ntr'"(s)
assume the well-known forms for a pure change of
mass; in particular, N&r&»(s) is seen to become simply
&co', i.e., a real and monotonic function of or. For )«0,
the matrix N&r»& (s) is a more complicated function of oI,

and it can be responsible for some additional structures
in the frequency-dependent absorption coeScient. In
our case, it is seen from (25c) that the I'rs resonance
condition turns out to be a bilinear form in e and P,
i.e., a hyperbola in the (e,X) plane, for each value of
the resonance frequency &oII (see Figs. 2 and 3). We
have two different sets of hyperbolas, depending on
whether the substitutional ion lies on positive or
negative lattice sites.

The following consideration seems to be in order at
this point. The coe%cients of our bilinear form (25c)
involve the dynamics of the perfect lattice through the
complex-valued BZ integrals b„+(s). It will be shown in
Sec. IIB that simpli6ed models, such as the diatomic
linear chain, give formally the same result as (25c);
however, in crystals having rocksalt structure the BZ
integrals gr+(s), ps+(s), and gs+(s) are found to have
expressions quite different from the expressions they
have in diatomic linear chains. It turns out that expres-
sion (25c) actually represents something new with re-
spect to the linear-chain expression. Analogous consid-
erations hold for the linear forms (25a) and (25b).

B. Comparison with the Diatomic Linear Chain

Consider a diatomic linear chain with n.n. interac-
tion; the dispersion relation reads

where f is n.n. force constant.
The T matrix for a local change of mass and force

constant can be written down straightforwardly; the
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resonance denominators turn out to be

1+&,x84+(s) (28)

'7 J. R. Hardy, Phil. Mag. 7, 315 (1961).

for the sine mode, and. exactly expression (25c) for the
cosine mode. It is understood that BZ integrals g„+(s)
(@=1, , 4) entering (28) and (25c) are now to be
performed in the one-dimensional zone. (28) is seen to
be formally equal to the expression for D(~» or D&»»,
provided we neglect gq+(z) in (25a) and (25b), i.e.,
we neglect the BZ integral which involves different
Cartesian components of e(a

~
qs). Furthermore, by keep-

ing in mind that in diatomic linear chains the polariza-
tion vectors satisfy the relation

e(+
~ qj)/e(w~ qj)= fx '~' cos(2~roq)/(f M~co—„'),

(29)

(25c) can be written in a simple form which involves
only the gi+(s) BZ integral. Indeed, from (21), (22),
(2'l), and (29) one can see that bi+(z), g~+(s), and g8+(s)
are related to one another by

8"(s)= L(M+M~)"'/f3(f/M+ —~')Bi'(s)—1),
pa+(s) = L(M~M )"'/f j(f/M~ —(a') pm+(z),

(30)

so that the cosine-mode resonance denominator, the
analog of (25c) reads' (y= hM+/f)—:
D(cos)(s) —1+7{1+(1 g)M ~2/f j

+(c(1+p)+y(1—e)M~a&'/f) a&'gi+(z) . (31)

At X= —f/M~, i.e., for the complete decoupling of the
impurity from the other particles in the chain, the reso-
nance condition for the cosine mode admits a solution
only for co&

——0, whatever the mass of the impurity. This
result is fully consistent with the fact that, in this case,
the imperfect chain degenerates into two independent
subchains: a linear chain with no cyclic boundary condi-
tions, and a free particle. The resonance at cog=0 corre-
sponds to a 8-type peak at zero frequency in the spectral
density of the imperfect chain.

By putting &=1, i.e., by considering a defect of
vanishing mass, it is an easy matter to verify that at
X= f/M~ th—e real parts of D&"'&(z), the resonance
condition for cosine modes, is identically satis6ed for
all the frequencies. In the (e,X) plane this corresponds
to saying that all the hyperbolas cross the point (e=1,

f/M~) (see Fig.—2).
Let us comment briefly on the essential difference

between a linear chain and a crystal lattice with long-
range interaction. The essential difference is that in
lattices of rocksalt structure with long-range interaction,
Eqs. (30) are no longer expected to hold, so that the
hyperbolas which correspond to the same kind of sym-
metry do not cross the same point in the (e,X) plane.

In the ionic type of lattice, every ion interacts with
its neighbors essentially through hard-core (overlap),
Coulomb, and dipolar forces. '~ Also, when the overlap

interaction is completely removed, the motion of a
foreign ion is always coupled with the vibrating sur-
rounding ions by Coulomb and dipolar forces. Such a
physical situation is responsible for two kinds of effects:
(i) the value Xo which accounts for the resonance at
cog ——0 does not correspond to the vanishing of the over-
lap interaction, because Coulomb and dipolar forces
contribute to the n.n. force constant through a term
which makes the hard-core repulsion softeri2'i; (ii)
when we let e go to zero with a Axed resonance frequency
erg&0, the value of X which accounts for the resonance
at this frequency does not approach Xo, because Cou-
lomb and dipolar coupling for a vibrating charged par-
ticle diGers from the coupling of the particle at rest.

Property (ii) corresponds to saying that on letting
mz go to zero and e to unity, the hyperbolas will thicken
up in the neighborhood of the straight line ) =Xo, but
they no longer cross the point (&= 1, X=Xo). The actual
situation is shown in Fig. 3. It appears that the value of
Xo does not correspond to f/M(—+), i.e., to the vanish-
ing of the bare hard-core repulsion. This fact suggests a
way to define an "effective" force constant f*

III. THE EFFECTIVE FORCE CONSTANT

Let f"denote the effective n.n. force constant of cen-
tral type in a rocksalt-type lattice. In the present ap-
proach it represents the combined effects of hard-core,
Coulomb, and dipolar forces. A way to obtain a de6ni-
tion of f*is suggested by the result Lsee expression (31)]
for the linear chain with n.n. interaction. Indeed, requir-
ing (25c) to have a resonance at M~=0 enables us to
define f* by the BZ integral:

f*=—M(+)Xo= r Q
BZ

y LM-' '(+)e.(+ ( qs) —M "'(W)e.(W
~
qs)

&&cos2m-roq, ]' . (32)

For a lattice with long-range interaction, expression
(32) can not be easily explicated with respect to physical
quantities, such as compressibility, electronic polariza-
bilities a+, and effective charge e, which usually enter
the definition of the dynamical matrix. Then, the use of
(32) requires the knowledge of all the frequencies so~, and
polarization vectors e(~

~
qs) of the perfect lattice. In the

definition of f*, as given by (32), a defect has been used
as the external probe to sample the short-range interac-
tion in our lattice. Of course, (32) represents the low-
frequency efIective-force constant.

In order to allow for an estimation of f* in terms of
the physical quantities we have mentioned above, we
try to introduce the effective-force constant starting
from a different point of view. In Hardy's deformation-
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dipole (DD) model" the force-constant matrix reads

@I&t&D& —
@I &Rip (1+.Se—&)@I&ci

&((1—e 'ne '+&c&) '(1+e 'S ), (33)

where +(")is the rigid-ion hard-core contribution, 4( )

is the matrix for the Coulomb interaction, e is the matrix
of the bare ionic charges, and 0, the matrix of the elec-
tronic polarizability of the ions. The matrix S (Sr de-
notes the transposed matrix) is defined in Hardy's'r
paper; in (33) it represents the correction due to the
dipole moment which is induced by the ion deformation,
i.e., the correction due to the transfer of electric charge.
Notice that matrix S involves Szigeti's eGective charge
es~ (S=0 means es*=e). It appears from (33) that a
nonvanishing polarizability of the ions gives rise to
terms with increasing powers of e &~& (dipole, quadru-
pole, etc., interactions); furthermore the matrix S is
responsible for a weakening in the rigid-ion hard-core
interaction. In the neighborhood of the zone center it
is a simple matter to verify that expression (33) admits
the following decomposition:

4 & &=+,«&~&+e.&i&c&, (q=0), (34)

where +,g~(~' and +,f~' ) are the usual matrices for hard-
core and Coulomb interaction with f and e simply re-
placed by f* and e*, respectively. e* is equal to the
Szigeti eGective charge e8*,"while, neglecting the de-
forrnation of the positive ion, the value of f* turns out
to be

~2 gz t es*) ' n++nf'=—A+»—
I

3 ( e 2 n++n +3&&/Sz

In writing (35) we have employed the usual notation

A = (2i&/e')Ld'&e&~&(r)/drsj, «,
8= (2&/e')Ld&t &»(r)/rdr j„=„„

for central and noncentral force constants due to the
hard-core interaction. On the assumption that the de-
composition (34) holds for practical purposes with the
same choice for f* and e* in all the points of the BZ

expression (35) is expected to yield the same result as
expression (32). Table I shows the comparison between
the values of f* as evaluated from (32) and (35). From
the above considerations it follows that f*, as given

by (35), is just a sort of center-of-zone effective-force
constant.

IV. THE RESPONSE FUNCTIONS

%e are concerned with the e8ect of defects on two
typical response functions, namely, the dielectric sus-
ceptibility tensor g(k,&e) and the thermal conductivity
tensor x(k,&e). Usually the evaluation of these response
functions is approached by the simplifying assumptions
of the electric-dipole approximation in the photon-
phonon interaction and the relaxation-time approxima-
tion in the phonon-transport equation.

Our purpose here is to show that both dielectric sus-
ceptibility and thermal conductivity can be expressed
in terms of the irreducible T matrix we have introduced
in Sec. II.

A. The Dielectric Susceptibility Tensor

The Kubo expression for the dielectric susceptibility
tensor reads"

X (k&e)= V-' dte '&" '"&'
0

X dP'(R. '(—l, —i'')K„(k,t)), (36)

where k and &e are the photon wave vector and fre-
quency, V is the crystal volume, and P=1/It»T (t'ts

=Boltzmann constant, T= absolute temperature). The
indices p and v denote Cartesian components with re-
spect to the intrinsic frame i„(ti=1, 2, 3) of the photon,
i.e., the frame in which the i3 axis is oriented in the same
direction as k. The operator gg(k) is the Fourier trans-
form of the dipole-moment operator of our crystal. Since
we are interested in the infrared (IR) region, gg(k) turns
out to be

9R(k) =P e"*e(l)u(t), (37)

where xt is the lattice vector (here l represents both
Bravais and cell indices I and &&), e(l) the electric charge,
and u(l) is the displacement of the 1th ion.

In expression (36) we have put

ltR(k s) eis&ti&3&R(k)—e is%&i&— (38)

Tml, z I. Comparison between n.n. hard-core force constants
for rigid-ion model (1st column), eGective n.n. force constants in
DD model (2nd column), and eftective n.n. force constants de-
duced from 6tting vanishing I'» resonance frequency.

{e/e')f*'
6.15
7.55
7.73
8.32

(e/ —e'lM(+lzob
and

5.95
7.20
7.58
8.16 for

Crystal

NaCl
KCl
KBr
KI

A+2J3

7.98
9.36
9.62

10.01

9R'(k, s) —=—(i/A) [9R(k,s),H) (39)

a Equation 35.
b Equation 32.

E. Surstein, in Proceedings of the International Conference on
Lattice Dynamics, Copenhagen, 1963, edited by R. F. Wallis
(Pergamon Press, Inc., New York, 1965), p. 315. "A. A. Maradudin, Phys. Rev. 123, 777 (1961}.

either s=t or s= —i&&1P'. H is the crystal Hamil-
tonian, and the brackets ( ) denote ensemble average
at thermal equilibrium. In the IR region, the dielectric
susceptibility tensor is simply related to the dynamical
matrix of our crystal, regardless of the degree of perfec-
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tion of the crystal itself. In order to see this, we expand
R(ks) as

Nt(k, s) =P), P) e "—*&e(t)

X (&/2M(t) ~)' '&),'(t)(b~(s)+b ~ (s)). (40)

Here bq and bq~ denote phonon destruction and creation
operators, respectively„ for the perturbed modes of the
lattice. M(l) is the mass of the ion at the tth lattice
site. In. writing the expression (40) we have used the
conventions

Q z (t)= Qx (t);

If we keep in mind that

bq(s) =bq(0)e '"~' bqt(s) = bqt(0) e'"&' (41)

substitution of expression (40) in the integrand of (36)
gives

(K„'(—k, —imp')R„(k, t))=-', A(gg Ptp
Xe '~'*' *'&e(l)e(l')M "'(t)
XM '"(t')i. e~'(t) 6"(t') ip

X((g ) e ildgt+—rltype' (g +1) eildyt rdype')) —
(42)

where eq denotes phonon occupation-number operator.
The ensemble average has been split into the statistical
average over all the possible con6gurations of defects,
here denoted by ( ), and the thermal average

( )e over the canonical distribution of phonons for a
given configuration of defects.

By taking into account that

(43)

the integrations on P' and t which appear in expression
(36) can be easily performed; one obtains

x„„(k,M) = V '(Qg( —k,eleM '"lg),')
X(~xP—~&—2i~O )-'(y„'IM- elt, —k))., (44)

Here e denotes electric charge matrix.
In writing the expression (44) we have considered

the linear vector space de6ned by the complete set of
normal modes gq'. The symbols lf&,') and Ir, k) denote
vectors in this space and the scalar product is defined by

(k,~ IA') =—2« ""&.6'(t) (45)

Equation (44) exhibits the spectral representation of
(L~—u&' —2ippOt) '. Thus we can write:

X„„(k,pp) = V—'((—k,vleM~ "'(Lg—z)-'
XM~ 't'el@, —k)), . (46)

Notice that the explicit dependence ofX„,on temperature
has disappeared.

Consider now a cubic lattice with two atoms per unit
cell and let

I q,s) be the unperturbed lattice wave in the
linear vector space de6ned above:

Here T(s) is the matrix we have defined by (14).Keep-
ing in mind the above definition of scalar product, we
have

(k)vleMp-"'ls, q)=$ "'8 ],

XP, e(~)Mp "'(~)e„(~lk,s), (50)

where b~, q accounts for the wave-vector conservation.
Since the photon wave vector k has negligible magni-
tude on the phonon scale, the phonon involved in (50)
practically lies at the center of the BZ. Furthermore,
expression (50) vanishes when s refers to acoustic
branches. Then s (s=1, 2, 3) can be considered to label
only the three optic branches. With no loss of generality
we can assume that s and v label the same axes, so at
q=O we have le(~IOs)I= le„(~IO,v)IB- Thus the
phonon involved in (50) is seen to have the same type
of polarization as the photon, and expression (49) can
be written as

x..(~)= (e*'/t s) («=0, r
I [Lp+PT(z) —z7'It, «= o) .

(51)

Here e* is the macroscopic effective charge associated
with the q=0 optic mode, "y=M(~)M(~)/[M(&)
+M(+)j is the reduced mass, and e= V/X the volume
of the primitive cell.

In the wave-vector representation, Lp+pT(z) —z is
a 6&(6 matrix. We label rows and columns by the double
index (v,r): by v= 1, 2 we denote transverse and by v =3
longitudinal waves, while by r =A,O we denote acoustic
or optic waves, respectively. Consider the 6X6 linear
vector space defined by the complete set of 6-row polari-
zation vectors e(«,v,r); the inversion of our 6X6 matrix
can be made easy by considering the irr. rep. of the
group of wave vector q. At the center of the zone, both
acoustic e(O,r,A) and optic e(O,v, O) 6-row polarization
vectors in the NaCl-type of lattice transform according
to the F» irr. rep. ; we identify these 6-row vectors by
I rp) (r=A, 0; r = 1, 2, 3).On the right-hand side of (51)
there appears the matrix element

(v,OI [Lp+pT(z) —zj 'IO,y). (52)

From Schur's lemma,

branch and S is the number of primitive cells of our
crystal.

With the help of the completeness relation

P, ,, I«,s)(s,ql = t, (4S)

the use of (4) and (16) in (46) gives

x (k u&) = V
—'P ~ P,(—k,p

I
eMp

—' '
I s, —q)

x(-q,.l(Lo+pT(.)- )-'I", -«)
X(—q,s'IMp —"'el', —k). (49)

(l,zlq, s)=X "'e(~lq, s)e'& *""& (~el T(s) Ir', t )= b.,2'- (z), (53)

Here e(~l«~s) is the polarization vector of the sth it follows that expression (52) is diagonal with respect
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to /s and v indices. Thus, we have to perform the inver- space. The projection of T(s) can be easily performed
sion of the 2)&2 matrix by means of the following transformation coefficients:

(
«+ pTAA(«) pTAo(s)

pTo (o) ' o+pToo—(o)I
(54)

for both p= 1 and p= 2, i.e., for transverse waves, and of
an analogous matrix with ~z replaced by ~~ for longi-
tudinal waves, i.e., p, =3. Here cop and ~1, are, respec-
tively, the transverse and longitudinal optic frequencies
at q=0, and T~~, Too and T~o=To~ are the ma-
trix elements of the projected T(s) into our 6X6 sub-

(.,rli», j=1, /)=h„„e„(~lq=o, r, v),

(v,rl I'», j=2, /s)=2'/28 e (Wl(I=O, r, v),

(v,rl I'» j=3 /s)=2&"'(~I&i=0, r, v). (55)

In writing (55) the I'» symmetry vectors in the sub-

space of the perturbation have been considered in full:
index p=x, y, 2' labels the rows of the irr. rep. , while j
retains the same meaning as in Sec. II. T~~, Too, and
T~o are found to be

Too(s) = {A/11(»s)+2Xll/22(»s) 22/2X1/2+12(res)}
(1+X)D&»»(s)

(56a)

TAA(«) =— (»5)+2Ar22( r»)+ 22/2X)/2' 2
( ris) }

(1+X)D(»s)(s)
(56b)

TAo(«) = ToA(«) = {Xl/2+11(»s) 2Xl/2+22(ris)+21/2(1 X)+12(res)}
(1+X)D& "»)(«)

(56c)

where Ã11&r"), Ar22~ r») and A'12(r") =Arsl(r») are the matrix elements of N'r"'(s) in (24c). Thus x,l(&d) =x»(ss)
= XT(ra) and Xss(&d) =Xr, (0)) are recognized to be the transverse and longitudinal dielectric susceptibilities, respec-
tively XT(&v) turns out to be

XT(&0) (e I/ss) {(p)T «+PToo(s)+P TAo (s)l(s PTAA(«)) } (57)

where s= u +2icuo+ An analo. gous expression holds for Xz(a&). In deriving expression (57) no assumptions have been
made other than the hypothesis of pure random distribution of defects and negligible contribution to TA;„by
irreducible graphs involving different scattering centers. In (57), multiple scattering by different defects is con-
sidered through reducible graphs only. The latter rather than the former assumption makes it doubtful whether

Eq. (57) is also reliable in the high- or intermediate-concentration case.

TAo and TAA enter the denominator of (57) with the second and third or higher powers of P, respectively. This
is accounted for by looking at the reducible graphs; the smallest order reducible graphs involving T&o and T» are
shown in Fig. 4. Hereafter we consider the low-concentration limit.

Assume 6rst that co belongs to the vibrational continuum; then by disregarding the last term in the denominator
of (57), and using Eqs. (23) and (24c), the complex dielectric susceptibility reads

M,'+p ReTOO(~'+iO+) —~2
XT")((O) =

X2 (2)(&0)=

/1() L&0T'+ p ReTOO(~2+io+) ra2]2+ $p ImT—OO(a&2+io+)]'

(»2—m2)(D, '+D, ')+p(F,D,+$2D2)
(58a)

» l (~T —~ )D,y PX,]'+L(~T'—~')D2+ PA/2]'
'

8 —p ImTOO(~2+iO+)

/s() Lst) T2+p Re TOO(aP+ io+) —cv2]2+ Lp 1m TOO(&p&2+ io+)]2p, (58b)
f(~T &p) )Dl+ p+1] +p(~T &o) )D2+p/72]

where we have put Too(s) = (cV1+ilV2)/(Dl+iD2) and XT XT ' +iXT&'——
Consider now a frequency outside the vibrational continuum; in this case the complex susceptibility is found
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to be
D1

XT&"(CO) = (P
pV ((uT' a)2—)D1+pN1 pn

1 pN1 1
)

a&T' —(o' cuT' —co' ((vT' a)')—D1+pN1
(59a)

e*2 p7rN1
XT ' (a)) = b((caT' (o')—1+pN1) .

P'V GOp —M

(59b)

ln Eq. (59), (P and 8( ) denote Cauchy principal value and h function, respectively. The absorption coeficient
for electromagnetic radiation is defined by

nT(10) = (42rao/gc) XT"'((u), (60)

where g is the refractive index and c is velocity of light. For a frequency in the vibrational continuum nT(co) is

seen to be

4me*' CO p(D2N 1 D2N2)

12~TIC (~T' ~')' (D1+p(~T' —~')-'N ]1'+LD2+ p(~T' —~')-'N21'
(61)

as follows from (58b).
Equation (61) exhibits the resonance denominator for

optical absorption at the vibrational continuum. On the
basis of the above expressions it is an easy matter to
analyze the peculiarities that the absorption coefIicient
of an imperfect ionic lattice exhibits in the whole IR
frequency range. The defects produce three types of
effects: (i) in the frequency region near 10T they have
the effect of replacing the 8 peak at the Reststrahlee
frequency by the Lorentzian-shaped expression (61)
which is peaked at the shifted frequency coT2+P
&(ReToo(~T2+20+); (ii) in the region outside the vibra-
tional continuum they give rise to 8 peaks at about the
local- and gap-mode frequencies, and (iii) they make
the crystal lattice able to absorb light at any frequency
of the vibrational continuum, with Lorentzian-shaped
peaks at about the resonance frequencies. The last two
effects appear clearly by considering the expression
(56a) for the optic-active element of the scattering
matrix. Indeed, the frequencies for which the real part
D1(102) of the denominator vanishes correspond either
to resonance scattering or to local and gap modes,
whether ~ is or is not a frequency of the vibrational con-
tinuum. "Equation (59b) makes statement (ii) obvious.
As regards statement (iii), let us assume that a root
(say coR) of the equation

In the neighborhood of the peak frequency, the absorp-
tion coefFicient can be written as

r(-, )
pf((oR') -, (63a)

(~2 ~ 2)2yl 2(& 2)

4me*'co
oT(a))—

where f(coR2), the strength factor, is given by

N1(o)R' )
f((oR')=,(64)

~T &R (&T ~R )D1 (~R )+pN1 (12R )

and the width is given by

D2(ÃR )+p(~T —~R ) N2(~R )

D1 (~R )+p(~T —&R ) N1 (~R )
(65)

rl (N1 D2 N2D1 )/(4&T 4&R )D1 (66)

represents the additional width which is due to the re-
ducible-graph multiple scattering by different defects.

I'2 ——D2/D1' is seen to be the proper width of the reso-
nance, i.e., the width coming from the scattering due to
the defect itself;

D1(co2) =0 (62) B. The Thermal Conductivity Tensor
exists inside the vibrational continuum. It appears from
(61) that nT(&v) exhibits a Lorentzian-shaped peak at
the shifted frequency

We conclude this section with some remarks on the
thermal conductivity. In the relaxation-time approxi-

rvR2 —orR' —pN1(coR')/(o) T'—orR')D1'(&oR2) . (63)

By a prime on D1 we have denoted the derivative with
respect to co'. This peak is called "resonance absorp-
tion. " Notice that broader peaks may occur when the
resonance condition (62) is approximatively satis6ed.

2) PToA

I xG. 4. Smallest or- ~)

der reducible graphs
involving Tgo(s)
= Tow (s) (1} and
Tgg(s} (2}.

q, A

P ToA

q.A

AA

PTAo
'

q, A

»AO
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mation, the thermal conductivity tensor reads'0

where C, is the heat capacity of phonons of wave vector
ll and polarization s, v6(q) is the group velocity, and
v., is the relaxation time. Under the action of an
external temperature gradient the quantity which is
actually lneasured is x=x(0,0), namely, expression (67)
for ~ and h equal to zero. All the processes which
a6ect the free-phonon propagation in crystals con-
tribute to r, ', and it is usually assumed that they
contribute independently. It has been recently pointed
out by Klein" that to lowest order in the concentration
of defects the inverse of the relaxation time, as limited
by the defect phonon scattering, is essentially just the
imaginary part of the matrix element of T(z) with
respect to the free normal mode of wave vector q and
polarization s, i,e.,

(&q. ~

ganef'eats=

p&+q, e

&(Im(q, s
~
T(co'+i0+)

~
s,q). (68)

In the above expression, p is the fractional concen-
tration of defects. It is worth while to note that the
relaxation time involves all the irr. rep. which appear in
the T matrix, so that it would be one of the most in-
teresting quantities to measure experimentally; unfor-
tunately, x is an integral functional of the phonon
distribution, and a large part of the sensitivity of v,
with respect to the phonon scattering is lost in perform-
ing the integral over q space.

A good sensitivity is retained at very low tempera-
tures, but there the defect contribution to the thermal
conductivity is expected to be dominated by resonance
scattering of 7~5 symmetry, the same symmetry in-
volved in the absorption coeQicient. The phonon heat
capacity is indeed signi6cantly diferent from zero for
6o,&k~T, and we could show easily that the symmetry
modes of T which have nonvanishing projection on the
fl'cc acollstlc modes at tllc zollc ccllt'cl (l.c., at 11 0)
are just the I'» symmetry modes. %e conclude that we
can hope to draw more physical information from ther-
mal conductivity measurements than from optical
measurements only when unusual accuracy is obtained
in performing the experiments.

V. NUMEMCAL RESULTS AND DISCUSSION

A. Results for the Absorption CoefBcient

%e have performed numerical calculations for several
rocksalt-type lattices: Hardy's DD model and zero-
temperature crystal data were used for the host-lattice
dynamics. '~ 22

~' P. Carruthers, Rev. Mod. Phys. 33, 92 (1961)."M. V. Klein, Phys. Rev. 14I, A716 (1966)."A. M. Karo and J. R. Hardy, Phys. Rev. 129, 2024 (1963).
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Pro. 5. Plots of the change in force constant versus resonance
frequency of F» modes for two different impurity masses: Li+
(&=0.847) and Ag+ (~=—1.77). Points A refer to experimental
peak frequencies.

"G. Benedek and G. F. Nardelli, Phys. Rev. Letters 16, 517
(1966).

~ I. G. Nolt and A. J. Sievers, Phys. Rev, Letters 16, 1103
(1966).

To evaluate the complex-valued integrals g„+(z) a
grid of 4096 points in the Brillouin zone was chosen.
Here we restrict ourselves to reporting, as an example,
the numerical results fol KSr crystals contalnlng posi-
tive defects. The results for several other crystals (but
not KI, for which see Ref. 12) will be presented in a
subsequent paper. Figure 3 shows the hyperbolas in
the (e,X) plane corresponding to different I'15 resonance
frequencies. Instead of X we report the fractional change
of effective force constant, i.e., f*/f*—1, with f*given
by Kq. (35). In the low- or high-frequency limit the
hyperbolas approach a horizontal or a vertical straight
line, respectively. In both cases the hyperbolas become
very close to one another: The frequencies of low-lying
resonance modes are seen to depend criI;ically on the
change in force constant and to be quite insensitive to
the change in mass. The reverse holds for the frequency
of strongly localized modes. Indeed, in the theory of
strongly localized modes (as for the U center) the change
in force constant enters as a correction, "while it ac-
counts by itself for the existence of a low-frequency reso-
nance, when the impurity is weakly bound to its neigh-
bors (f*~0). These circumstances also explain some
striking effects induced in resonance modes"" by a
lattice strain. It is instructive to plot the change in force
constant versus the resonance frequency for diferent
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values of ~. Figure 5 shows this plot for two weakly
coupled ions in KBr, i.e., 'Li+ (a=0.847) and Ag+
(e= —1.77). The intersections with the horizontal axis
(i.e., X=0) give the pure-change-of-mass predictions for
the resonance absorption. It is well known' ' that both
'Li+ and Ag+ as impurities in KBr are able to induce a
very strong and narrow resonance at low frequencies
and a broad absorption band at somewhat higher fre-
quencies. The oscillator strength for the broad band is
much larger for Ag+ than for Li+. In Fig. 4 the abscissa
of the point A corresponds to the experimental fre-
quency of the resonance absorption. From the ordinate
one obtains the value of the eGective coupling between
the impurity and its n.n. According to our model one
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obtains:
fa(sLi+) =0.015fa,

f*(Ag+) =0.23f*.
(69a)

(69b)

Note that for KBr Li+ a resonance at co=1.24)(10"
sec ' and two other resonances at ~=1.80X10" sec '
very close to one another are also predicted. These are
expected to be very broad, since the projected density
of states is quite large at such frequencies. Beyond this,
a localized doublet not too far from the maximum fre-
quency co =3.10)(10" sec ' should exist also. For
KBr:Ag+ no other resonance is expected from the fitted
value (69b) of f*, except for the resonance at the point
8 in Fig. 5, which occurs too close to the Reststrahlem

frequency ever to be detected. Figure 6 shows the reso-
nance condition for F& or F» symmetry modes. Since

FREQUENCY & (10 sec')

FxG. 6. Plots of the change in force constant versus resonance
frequency of I"& and I'» modes. The effective-force constant change
Gtted to the experimental IR absorption peak is reported for 'Li+
and Ag+.

10

8
E
O

p=.0001—1.43 ~10 cm'

KBr: Li' [T=O K]

3
'II 6-
w
D
4
4

o 4-w

p-.001-1.43"10 cm

X
CD

I-
2-

CD
V)
Cl
gg

0
0

I I I I I

.2 4 .6 .8 1.0 1.2 1.4

FREQUENCY (10 sec')

I

1.6 1.8

they depend only on ), these plots hold for all positive
defects in KBr. By using the fitted values of f* for 'Li+
and Ag+, we see that four resonances (two of the I'r and
two of the I'» type) are induced by Li+, while no reso-
nance is induced by Ag+. The resonances induced by
Li+ have been recently observed by Pohl2' in thermal
conductivity experiments, and the agreement with our
resonance frequencies is very good. Notice' that such
resonances are activated in KBr by those impurities for
which —1.25&f*/(f*—f*)&1.43, i.e., for a large
weakening or strengthening of the force constant. As
regards F& and F» local modes, it appears that only an
extremely high (and probably unphysical) positive
value of f* could produce a Raman-active local mode.
However, notice that our definition of f*, which is
probably correct for F» modes, could not apply equally
well to F~ or I'~2 modes.

We now use the fitted values of X to evaluate the
frequency-dependent absorption coeKcient of KBr Li+
and KBr:Ag+, as given by Eq. (61) (see Fig. '7). In order
to make a significant comparison with the experiment*l
data, we must note that the "tail" coming from the
Reststrahlen is minimized at T=O'K, but for a finite
concentration p of defects it cannot be subtracted from
the total spectrum because the Reststrahl itself is in-
Quenced by the finite concentration of defects. However,
for the values of p we have used here the spectra do not
seem to di8er substantially from the one-defect spectra,
except for co&1.5X10" sec ' where the Reststrahl

"R. O. Pohl, in Lectures on Elementary Excitations and Their
Interactions in Solids, NATO Advanced Study Institute, Cortina,
1966 (to be published).

Pro. 7. Calculated (solid line) and experimental (broken line)
IR absorption coefficient for KBr: IILi+ at O'K in the low-fre-
quency region. The resonance peak is reported for a concentration
of defects 10 times smaller. In the resonance region the experi-
mental points fall on the theoretical line.
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3

1.0

HYDROSTATIC STRAIN dr/fo ('Io)

FIG. 8. Resonance frequency shift versus hydrostatic strain in
KBr. 61 i+. The Grst derivative of this function is proportional to
the hydrostatic coeScient A(su+2sgg) (see Ref. 23). Note the
nonlinearity of acaz/ass versus mrs/rs, which causes the hydrostatic
coefEcient deduced from the shift at 1% strain, as in Ref. 23, to be
quite smaller than that deduced from the shift at vanishing strain.

broaden1ng becomes sensible. Flgule / allows that fall'ly

good RglccDMnt cxlsts bctwccD CRlculRtcd Rnd cxpc11-
mental absorption spectra, particularly at resonance;
also the agreement between theoretical and experimen-
tal absorption amplitudes is remarkable. Thus it seems
that the structured spectrum in the region 0.4&10"
sec '&co& j..6&IO" sec ' essentially rejects the shape of
the normal-mode I'l~ frequency density, while the reso-
nance at au= 1.24&10" sec ' is really very broad and
unobservable.

As remarked above, the low-lying resonant modes are
very sensitive to a variation of X. Elsewhere, 23 wc have

discussed how to produce such a variation (and there-
fore a large frequency shift or splitting of the peak), and
we have given estimates of the hydrostatic codEcicnt
for the resonance frequency of some doped crystals. In
Fig. 8 we shove the calculated resonance frequency shift
fox' RD lDclcaslng hydlostatlc stlain RQd ln Flg. 9 wc
show the effect of a —0.6% hydrostatic strain on the
resonance absorption in KBr Li+. The change in shape
is very remarkable; however, the broadening seems to
be entirely due to the large shift towards a more dense
region of the phonon spectrum, the amplitude factor,
as de6ned in Ref. 23, being very close to unity. OD the
other hand, the structures due to the host-lattice dyna-
mics remain essentially unchanged.

As concerns the dependence of the resonance fre-
quency on ~, it is known that replacement of 'Li+ vrith
9i+ in KBr yicMs an isotope shift of the frequency
equal to —10jo.s It is surprising that simplified dynami-
cal models in which long-range forces are neglected"0
account quite well for this isotope shift, while the pres-
ent calculations, based on the DD model, predict an
isotope shift not exceeding —5 jz. However, we have
some evidence that the strong anharmonicity, mainly
fourth-order, of the low-frequency resonant mode is able
to produce by itself, even at T=0'K, an isotope shift of
the same sign Rnd oldel of mRgnltude Rs thc harmonic
shift.

I et us now consider the absorption spectrum induced
by Ag+ (Fig. 10), as obtained from (61) after 6tting
f* to the resonance peak. Poor agreement is found be-
tween the experimental Rnd the theoretical peak shape,
pRl ticular ly Rt high conccQtl Rtlon, whllc Do corre-
spondence exists between the theoretical predictions
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Pro. 9. The effect of a hydrostatic strain on the
absorption spectrum of KBr Li+.

I l

.4 .6 .8 1.0 1.2 1.4 1.6 1.8

F R E QUENCY ~ (10 sec )

FIo. 10. Calculated (solid line) and experimental (broken line)
IR absorption coefBcient for KBr:Ag+ at O'K for tow values of
defect concentration.
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and the observed structures at higher frequencies. How-
ever, this disagreement is no surprise in principle, since
Ag+ is expected to induce a more extended perturbation
than that induced by I i+, which has a tightly bound
core structure. Calculation based on a model of A. (ops)

including also the perturbation on 2nd neighbors should
be able to test the present interpretation of such dis-
crepancies. A completely different interpretation is
proposed below for the experimental observations. How-
ever, we have used the KBr:Ag+ absorption peak to
show (Fig. 11) the effects of an increasing concentration
on the band shape, according to Eq. (61).In Fig. 11 the
intensity of the bands corresponding to p=10 ' and
P=10 ' are reduced by a factor of 10 and 100, respec-
tively, in order to allow for a better comparison. Up to
P = 10 ', which should be considered a large value with
respect to the reliability of the low-concentration ap-
proximation, shall changes in shape occur. Indeed, the
shift in frequency seems to be detectable, and agrees
with the measurements of NaCl highly doped with AgCl
(from P=2.3X10 ' to p=2.3X10 ') by Weber" who
observed a small shift towards lower frequencies as p in-
creases. This nonlinearity in p comes mainly from the
optical contribution Tpp(s) Lsee Eq. (57)] while the
acoustic terms T~o(s) and T~~(s) are found to be
negligible.

1.5-
p =10-1.43 )(10 cd~fq

lOH

B. Results for the Change of Force Constant

Suitably chosen phenomenological potential are used
in the a priori calculations of the short-range interac-
tion. When these potentials have been 6tted to certain

KBr

1.2-

CV'o .8-
(1J

0
UN STABIL ITY

FUKAI

crystal properties (namely, the lattice constant and the
compressibility), their reliability is good over the whole
range of validity of the corresponding equation of state
with respect to a variation in temperature and pressure.
From this point of view, simple potentials, such as the
Born-Mayer", Pauling, "or Lennard-Joneses potentials,
have been proven to be quite satisfactory. However,
these potentials can be used less safely to predict the
interaction between ions which are much displaced from
their "equilibrium" distance, i.e., the interionic distance
on which the potentials themselves were 6tted. Since
any a Priori calculation of fa would meet this uncer-
tainty, we want to investigate here the consistency be-
tween calculation and 6tting to IR data. In the Born-
Mayer form the n.n. potential is

I I

-.05 -10
n. n. RELATIVE RELAXATION„$

FIG. 12. The eGective n.n. force constant of Li+ in KBr from a
Born-Mayer potential plotted versus n.n. elastic relaxation for two
different values of the local effective charge: e*=0.70e= s*(LiBr)
and ca=0.76e=es(KBr).

C

C)
1.0

8
cfA

~(B)(r) c e(r+kr=r) lp (70)

where r+ is the ionic radius, p is the screening radius, and
c+ is the Pauling coeScient. "The two free parameters
p and c+ exp(r++r /p) are deduced by fitting the
crystal potential

(p(r) = —nsre'/r+6y' (r) (71)

.5

.52
I

.60
I I I I I

.68 .76
FREQUENCY (10 sec')

I

.84

to the zero-temperature lattice parameter ro and com-
pressibility. In Fig. 12 we plot f* for KBr:Li+ as a func-
tion of the n.n. distance r (or the relative relaxation
&=r/rs 1) for two different values—of the effective ionic
change which enters the deformation-dipole term:
e~/e=0. 70 refers to LiBr, and e~/e=0. 76 to KBr."The
fitted f* and the elastic relaxation calculated accord-
ing to Fukai's method" are also indicated.

FxG. 11. Concentration effect on the absorption peak of KBr:
Ag+. The absorption coefficient at different concentrations has
been divided by the concentration itself in order to make easier
the detection of the concentration effect as p is increased.

"R.Weber, Phys. Letters 12, 311 (1964).

"F. G. Fumi and M. P. Tosi, J. Phys. Chem. Solids 25, 31
(1964); M. P. Tosi and F. G. Fumi, ibid. 25, 45 (1964).

28 M. N. Sharma and M. P. Madan, Indian J. Phys. BS, 231
(1964)."Y.Fukai, J. Phys. Soc. Japan 18, 1413 (1963).
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FIG. 14. Qualitative
predictions for the shape
of the absorption coefB-
cient with respect to the
shape of the impurity
potential well. For an
impurity equilibrium
position displaced from
the lattice site, the reso-
nance splits into a dou-
blet whose strengths are
in the ratio 2:i. The
assignment of experi-
mental peaks to some
shape of the potential
well could be tested by
stress experiments.
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For realistic values of $, the quantity f* is positive,
i.e., the lithium ion is stable at its lattice site; instability
becomes possible for small values of the relaxation, as
pointed out recently. "In this case, because of the dis-
placed equilibrium position of the defect, anisotropy
occurs in the A. matrix, which produces a splitting of
the resonance peak. As was recently pointed out from
an experimental study by Nolt and Sievers, '4 for Li+
in KBr this does not seem the case. Figure 13 shows
analogous plots for KBr:Ag+. In fitting the Ag+-Br
interaction potential to the low-temperature experi-
mental data, the van der Waals (vdW) terms c/re-

d/r' must—be included; indeed, the plots of f* so ob-

n. n. RELATIVE RELAXATION p

FIG. 13.The effective n.n. force constant of Ag+ in KBr plotted
versus n.n. elastic relaxation from a potential iricluding or not in-
cluding van der Waals terms. Two values of the local effective
charge are used: ee=0.70e=e*iAgBr) and ee=0.76e=ee{KBr).

tained differ remarkably from those in which vdW terms
are neglected. It is interesting to note that the inclusion
of vd% terms increases the stability of silver at its
lattice site. However, the low ionicity of the bond and
the higher polarizability of silver could create some other
equilibrium positions for AgI at displaced sites in the
sense expressed by Matthew" and described in Fig. 14.
In this case some otherwise unexplained absorption
peaks would be expected.

Examining these plots, we note in general that as far
as the elastic relaxation and overalp interaction are
known, consistency is found between the calculated
and the fitted change in force constant, even if f* de-
pends too strongly on the elastic relaxation, effective
charge, and choice of interionic potential itself to
allow any reliable prediction. However, there is some
evidence that the local change in effective charge should
be small (i.e., e~ approaches the host-lattice effective
charge) and the true elastic relaxation slightly larger,
in absolute value, than that which 6ts the experimental

f . In fact, if n.n. ions relax inwardly, the interaction
between defect and n.n. is hardened while all the other
n.n. force constants are softened by the relaxation field,
which covers the whole remaining crystal. Analogously
for $)0; thus the local relaxation effect should be par-
tially compensated.

APPENDIX

The most general form of the frequency-independent perturbation A.o on n.n. interaction should include the
change in noncentral force constant ) . For a NaC1-type lattice the complete form of the symmetric matrix A.o is
given by

)+2)' 0 0
(OOO~An~OOO) = O )+2) '

O

0 0 )i+2)i'
I

0 0
X'~'(000~ A.n~ 100)= X'~'(000~ An] —100)= —(100)An j 100)=& 0 rsV 0 and cyclic permutations;

0 0
(le~A. n~ lx) =0 otherwise.

All the irr. rep. of the point group O~ which are associated with the 21-dimensional system of the impurity plus its

"J.A. D. Matthew, Solid State Commun. 3, 365 (1965); G. J. Dienes, R. D. Batcher, R. Smoluchowski, and W. Wilson, Phys.
Rev. Letters 16, 25 (1966).
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(I'i
(rig
(ris'
(ris

(rgs'

r,) =x)/2
I'ig) =xX/2
ri, ') =x) '/2
r„) =x)'/2
I's,') =XX'/2

(1-fold)
(2-fold)
(3-fold)
(3-fold)
(3-fold)

six nearest neighbors contribute to the perturbed normal-mode spectrum. One finds

(r„~A~ r„)=
sspg+X+2) ' —(X/2) "gX —X"9,'

= —(x/2) "9, (x/2)X 0
—X"sV 0 (X/2))i'

(3-fold)

(A2)

—(2X) 'l 9,'gg+ Xh'gs

1 2X—"g).'gr+X)i'c'sg'

Only the F~5-resonance modes contribute to the dipole IR absorption, while the resonances of I'1, ~"12, I'»', and
F»' are involved in the first-order Raman scattering induced by the impurity. The resonance denominators for
each irr. rep. can be easily written down in terms of some integrals in the Brillouin zone. In particular we have

1+(espg+ ),+2),') bi —(X/2) ifgyg + X/2if g),gg —X»gy'b, +X),'g7
—»~s) gg —2xi~s) 'g,

D&r»&(s)=det 2' (s~'+X+27)gs 1—x' ) gg+x), gs (A3)
—(2X)»9.g,—2X'f gX'g„

2(esp'+)I, +2&')gr —(2x) fgyb, +x&43s
—(2X) '~9.bs—2X'lg) 'gg

where g„+(s) (14=7, 8, 9) are de6ned according to Eq. (21), with

jr+(s) =e,(+ t q,s)e,(W
~ q, s)cos(2srrpq„),

j„+(s)=e,g(+
~ sl,s)cos(2irrpq, )cos(24rrpq ),

jg+(s) =e.s(+
~

sl s){cosg(2grrpq„)+cos(2grrpq„)cos(2grrpq, )) . (A4)

The change in noncentral force constant affects the I"is irr. rep. (we now have a 3&&3 matrix) and introduces some
new characteristic odd-parity normal modes of I'»', I'25, and I'»' type, while it has no inhuence on I'& and I'].2
normal modes. However, it can be shown that realistic values of X are able neither to excite resonant or localized
r»', r», and I'»' modes, nor to aBect appreciably the I » resonance conditions.
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Electromechanical Behavior of Single-Crystal Strontium Titanate

G. RUIPRECHT

Borders E/ectronics Research Corporation, Waltham, Massachusetts

AND

W. H. WINTER

Research vision, Raytheon Company, 8"altham, Massachusetts

(Received 26 October 1966)

A study of electrostriction in strontium titanate provides evidence that SrTiQ3 is not perfectly cubic. It
exhibits a small but noticeable piezoelectric effect whose temperature and Geld dependence is E/(T T,), —
whereas the electrostrictive effect was found to vary as E'/(T —T,)'. T, and T, are the temperature of the
phase transition (102.5'K) and the Curie temperature (41'K), respectively. The results of an extensive
study of the compliance constant s» above and below the phase transition are reported and are combined
with previously reported data to yield a complete set of elastic coefficients c; f,(T,E) or s; k(T,E) as a function
of temperature and externally applied electric Geld E. An accurate determination of the transition tempera-
ture as a function of electric Geld provides the basis for a possible check on a recent explanation of the phase
transition by Cowley.

I. INTRODUCTION
' T is known that SrTi03 is of the cubic perovskite

structure with symmetry class ns3m. It has been
noticed, however, that a phase transition of at least
second order takes place at about 100'K, which
manifests itself most strikingly as an abrupt change of
the elastic constants, ' a gradual splitting of the EPR

' R. O. Sell and G. Rupprecht, Phys. Rev. 129, 90 (1963).

spectrum in crystals doped with magnetic impurities, '
a change of the c/rs ratio to 1.00056,' 4 and a decrease of
amplitude of the nuclear magnetic resonance of Sr' .'

Based upon the observation of birefringence and

2 L. Rimai and G. A. de Mars, Phys. Rev. 127, 702 (1962}.' R. S. Krogstad and R. W. Moss, Bull. Am. Phys. Soc. 7, 192
(1962).

4 F. W. I ytle, J. Appl. Phys. 35, 2212 (1964).
~ M. J. Weber and R. R. Allen, J. Chem. Phys. 38, 726 (1963).


