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Semiempirical Electron Correlation in the Carbon Atom

RA'YMOND Vf. MIRES

Department of Physics, Texas Technologscal College, Lubbock, Texas

(Received 26 September 1966)

An empirical method of including the correlation of the two valence electrons has been applied to the
carbon atom, which has a (1s)'(2s)s(2p)' ground electronic configuration. The carbon atom was chosen as
a test of the method because of the penetrating nature of the 2p orbital. The atom was taken as a two-
electron system with each electron moving in some kind of effective potential. The choice of this effective
potential determines the type of raidal function to use as well as the screening function of one of the valence
electrons on the other. For each choice of effective potential, a correlation factor (1+crzs) is inserted into
the wave function of each of the multiplet members obtained as Clebsch-Gordan combinations of one-
electron orbitals, and the values of t,'are determined by the variation method. It is found that the ratio
of multiplet spacings is very sensitive to the type of effective potential used and that the Hartree-Fock aver-
age of the configuration calculation gives the best results. In this calculation, the use of the correlated wave
function gives a value for the ratio of the multiplet spacings of 1.34, compared with 1.43 obtained from
the unrestricted Hartree-Fock calculation and 1.13 from experiment.

I. BTTRODUCTION
' 'N the theory of multiplet structure of a two-electron
~ ~ configuration, such as (2p)', the wave functions of
the various terms are usually taken as Clebsch-Gordan
combinations of one-electron orbitals. "The multiplet
spacings are found to depend on, in the case of (2p)', a
single Slater-Condon integral and the ratio of the
multiplet spacings is independent of this integral and
has the value of 1.5 which is always considerably
higher than the experimental value. There are two
methods that can be used to correct this situation:
(1) The Slater-Condon integral can be treated as an
adjustable parameter chosen to 6t the experimental
values of the levels. This method may or may not give
a better value of the ratio 8 of the multiplet spacings.
For example, if the same value of the Slater-Condon
parameter is found which best fits all three multiplet
levels in the p' configuration, b would still be 1.5. Em-
pirical values of the parameter have already been
reported in the literature. "(2) The other method which

' E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, London, 1951).' J. C. Slater, Quantum Theory of Atomic Structure (McGraw-
Hill Book Company, Inc. , New York, 1960), Vol. I.' J. Hinze and H. H. Jatfe, J. Chem. Phys. 38, 1834 (1963).

4 W. M. Cady, Phys. Rev. 43, 322 (1933); M. A. Catalan and
M. T. Antunnes, Z. Physik 102, 432 (1936); M. A. Catalan F.
Rohrlich, and A. G. Shenstone, Proc. Roy. Soc. (London) A$21,
421 (1954); L. E. Orgel, J. Chem. Phys. 23, 1819 (1955); M.
Ostrofsky, Phys. Rev. 46, 604 (1934); Y. Tanabe and S. Suga
J. Phys. Soc. Japan 9, 766 (1954); and Ref. 2 above.

no,
s O. Sinanoglu, Advan. Chem. Phys. 6, 313 (1964).
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can be used is the direct evaluation of the Slater-Condon
integral from the exact wave function of the 2p elec-
trons. Both of these methods include the effect of
electron correlations; the 6rst method does so in a
purely empirical manner, while the second method
would contain the correlation effect exactly and would,
indeed, provide a physical basis for the 6rst method.
The dBBculty with the second method, however, is the
unavailability of exact many-electron wave functions.

Sinanoglu' has developed a many-electron theory that
includes electron correlations in a nonempirical way and
in which the Hartree-Pock one-electron orbitals can be
used as a starting point. This theory alleviates ex-
tensive conlguration interaction calculations and pro-
vides the basis for a more accurate determination of
the multiplet differences which are important in elec-
tronic spectra, core polarization, and molecular dis-
sociation. While providing the proper quantitative
basis for the empirical methods, the theory is rather
complicated to use and, in many cases, a less sophisti-
cated method which is intermediate between the exact
theory and the empirical methods is adequate. For
example, such an "intermediate" theory might be used
to determine the order of the singlet and triplet states
in large atoms where Russell-Saunders coupling breaks
down.

An "intermediate, " or semiempirical theory, has
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been. developed and applied to the (Bd)' configuration
of some transition metal ions and it was found that the
Inethod improved, though overcorrected, the multiplet
spacings of both Ti al and Cr v.' This method consists
of inserting a correlation factor of the form (1+crls) into
the wave function for the two valence electrons which
were obtained from linear combinations of one-electron
orbitals, and then using the variation method to de-
termine the parameter c. Inherent in this method is the
assumption of a "core" model for the atom. Because
of this assumption and the use of a simple, one-pa-
rameter variational function, one cannot expect the
results to be as accurate as the nonempirical theory.
However, this variational approach can be formulated
in a rather simple manner and does not involve a great
deal of numerical computation. In most of the cases in
which the method has been used, the results show an
improvement over those obtained without the corre-
lation factor.

In this paper, the semi-empirical method is applied
to the ground electronic con6guration of the carbon
atom which gives rise to a 'I' term, a 'D term, and a '5
term. The evolution of the improvement in the results
is followed through the use of various core models,
beginning with the most crude hydrogenic model and
ending with an "inexact Hartree-Fock average of
configuration" (HFAC) modeL It is found that the
ratio 8 from the HFAC model is in satisfactory agree-
ment with the experimental value. In Sec. II, a brief
description is given of the general method including a
discussion of the Hamiltonian and wave function. The
various models used along with the results obtained
from them are given in Secs. III—VII. Section VIII is a
discussion of the results.

H. GEHRIG. FORMULATION

In order to facilitate a discussion of this work, a
brief outline of the method is given here. More details
are contained in Ref, 6.The approximation is introduced
at the outset whereby the atom is replaced by a two-
electron system with each electron moving in an
e8ective potential V(r) which includes the CBect of
the inner core. The way this core effect is included de-
pends on the particular model used. This will be dis-
cussed in more detail later. The Hamiltonian is now

written, in Hartree atomic units, as

&=—a&1'+V(rl) —s~s'+ V(rs)+(1/«s) (1)

The zeroth-order approximation consists of taking the
wave function as a product of the one-electron wave
functions Q ~ which are eigenfunctions of the operator
+1 RIll H2~ I.e.

~

Here U(r) differs from V(r) in that the former includes

the screening effect of one electron on the other, i.e.,

V(r~) = U(r;) Y(r—;)

where F(r~) is the screening function of one of the
electrons by the other. Using Eqs. (2) and (3), the
HamiltoniRn CRn now bc written Rs

H =B'1+Ps+ (1/rls) —F(rl) —F(rs) .
For equivalent electrons this simplifies to

+&+Its+ (1/rls) 2Y(rl) (~)

The two-electron wave functions which diagonalize
H are obtained by forming linear combinations of
the products of @ according to the Clebsch-Gordan
cocKcients,

The electron correlation is now included in a semi-

empirical manner by inserting the correlation factor
in Kq. (6) to obtain

%herc E ls thc normalization constant glvcn by

In Kq. (8), the angular brackets represent matrix ele-

ments of the indicated. operator calculated using the
uncorrelated functions of Eq. (6) as a basis. In Eqs. (7)
and (8), the correlation coefficient c is to be determined.

by the variation method and is, of course, dependent
on L.

It is easy to show, especially by matrix methods, that
the modified wave functions of Eq. (7) are still eigen-

functions of L', L„S2, and S,. It is obviously an eigen-

function of S and S„since no spin-interaction terms
were included in the Hamiltonian and since the
correlation factor does not alter the spin part of the
wave function. Thus, the spin part will be omitted in

the calculation. For L', L„recall that the angular de-

pendence Of rls ls thC salllC as fol' (1/rls) which ls kllow11

to be diagonal in L, M but not in e, l. This is unlike

the correlated wave functions in the Sinanoglu theory.
As shown by McKoy, ~ the wave functions there are
not always eigenfunctions, separately, of the angular

momentum, and therefore cannot always be minimized

separately. The difference depends on the place in
which the proper symmetry requirements are imposed

on the wave function. Here, these symmetry require-

ments are built in at the outset in writing Eq. (6).

' R. W. Mires and C. C. Lin, Phys. Rev. 134, A332 (1964). ~ V. McKoy, J. Chem. Phys. 43, 1605 (1965).



Tsni, z I. Results for the hydrogenic-core model. All energies are in Hartree atomic units, e'/o where o is the Bohr radius for the respec-
tive atom, i.e., e includes the proper reduced mass. One-electron orbital energies are included.

Calculated energy
No corr. With corr.

Energy
diBerence

CI

0 III

lg
1D
3P
1+
xD
3P
I+
1D
SP

0.670076
0.261607
0.078197
0.581593
0.244413
0.076005
0.534578
0.234489
0.074695

—2.504785—2.607617—2.676171—4.337988—4.472461—4.562109-6.671191—6.837305—6.948047

—2.609548—2.640508—2.680801—4.451177—4.506738—4.566787-6.789910—6.872458—6.952753

0.104763
0.032891
0.004630
0.113189
0.034277
0.004678
0.118719
0.035153
0.004706

AtoIQ

CI

N II

'S—'D
«D —3I'
lg Ijg
lD 3P
lg ID
'D —3P

Obselved
Energy~

0.052190
0.046315 1.13
0.079155
0.069380 1.14
0.104400
0.091415 1.14

No corr.

0.102837
0.068549 1.5
0.134473
0.089648 1.5
0.166114
0.110741 1.5

0.030580
0.040674 o.75
0.055562
0.060048 0.93
0.082552
0.080291 1.03

Calculated
%ith corr.

41 4
12.2
29.8
13.4
20.9
12.2

a Observed values taken from Slater, Ref. 2.

The energy is

~={Pi~'(1+eris)
I
H

I yg&'{1+eris))//X
= Q~~'I {1+«»)H{1+«»)I

y~~')P' (9)

The numerator can be considered as the diagonal ele-
ment of the operator

H=H+c{risH+Hris)+c'rtsHris, (10)

with the original uncorrelated wave functions of Eq.
(6) as the basis. Details for evaluating these matrix
elements are given in Ref. 6.8 The energy of each
multiplet term associated with the (e, n 1)' g—round
elect o c conGg a,tion is obtai ed by min' z'ng

W = (H)/X (11)

with respect to c, using the proper uncorrelated wave
function for a given I. as a basis.

The various models, to be discussed next, will dier
from each other in the choice of U(r;) and F(r~). This
choice will also determine implicitly the type of radial
functions 'to use.

In this section, the semiempirical theory will be
applied to two 2p-electrons where each electron moves in
a purely hydrogenic type of central Geld. This is referred
to as the hydrogenic-core (HC) model and it implies
that the one-electron radial functions should be of
llydl'ogclllc type and 'tlla't tile scicclllIlg fullctloI1 F{r)
shouM be of the form

field bc llydl'ogclllc II1 forlll. Also U(r) ls taken as

U(r) =Z'/r,

where Z' is identiGed as the effective charge which makes
the one-electron orbital an eigenfunction of the one-

electron Hamiltonian given in Eq. (2). By Slater's rules

for e6ective nuclear charge, Z' should be 3.25 for G,
4.25 for N+, 5.25 for 0++, etc. The same set of rules

also gives 0 to be 0.35. These values are used. and the

results are shown in Fig. 4 and. in Table I. In Fig. 1,
the decrease in the value of the correlation coeKcient
c with increasing Z' is to be expected since, as the
central Geld. becomes stronger, the intraelectron inter-

actions plays a lesser role in determining the multiplet

energies. The same reason is given for the improvement
in the calculated. ratio 8 with increasing Z' as shown

in Table I. The individual multiplet separations are
also given in Table I, where the percentage error is
calculated using the observed value as a standard. The
D—'I' separation is over-corrected, but otherwise it. is

in rather good agreement with the observed value. How-

ever, in each case the lg—D' separation is considerably
over-corrected. This deviation must be attributed, to
the '5 level alone, which lies so high in energy that, for
a given Z', the hydrogenic orbitals become a poor basis
set for the unperturbed Hamiltonian.

IV. UNRESTMCTED STO MODEI

In the unrestricted Slater-type orbital (USTO) model
F(r) =o/r, the radial function is a single Slater-type orbital (STO),

where o is a constant since only then will the central
electron, and U(r) is again given by Eq. (13).However,

' Equation (14) in Ref. 6 should read (riiHi) = (Pirii)
=&~~ '&~u&. ~ See Ref. 2.
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the screening constant a in Y(r) is now an exphc&t
function of r, i.e., Y(r) is taken to be

0+5

0.4

where

1
Y(rt) =—p&, aL, &"Y&,(2p, 2p; rt) )

r

~1

Y&(2p, 2p; rt) =—
I R»(r2) I

'r2'+'«2
0

(14)
Oo3

c&} Oo2

0.1

-0.1

l
l I

4 5 6
I

I

ql

7 8 9 10 11 12 13

and

+r 0+1
I R2,(r2) I

'rm-'+'«2, (15) -0o3

-0.4-

~L ' ~mlnel' ~mlM —ml Cml'M —ml'

&(c"(lmt, tmt')c~(/M —mr', /M —mt) . (16)

In Eq. (16), C,»r P" are the well-known Clebsch-
Gordan coefBcients for two equivalent electrons and
c"(lm, bn') are the result of integrating over the products
of three spherical harmonics. Thus, Y(r) is different or
the different members of the multiplet, and since U(r)
implicitly contains this screening effect, Z' is not ex-
pected to be the same for all three multiplet levels.
Therefore, Z' should be regarded as an orbital exponent
rather than an e6ective charge. This means also that
the one-electron orbital energies will not be the same
for all the levels and, in calculating the ratio of the
multiplet separations, these orbitals energies must be
included. In Fig. 2 the correlation coefBcient is plotted
against the orbital exponent for this model. For almost
all values of Z', the value of c is greater for the 'P level
than for either the 'D or 'S levels. This is contrary to
what one expects. Intuitively, the value of c for the
triplet state should be less than for the singlet states.
This is because the symmetry of the uncorrelated wave

112

0 ' 5 ~

-0.6-
'D

3p

-0o7

-0.8-

-0.9

-1.0

FIG. 2. Correlation coeKcient versus Z' using the USTO model.

V. STO AVERAGE-OF-CONFIGURATION MODEL

The STO average-of-configuration (STOAC) model
is identical with the USTO model except that the
angular coeKcients ar, &"& in Eq. (14) are averaged over
the entire multiplet according to

function for 'P should already include some correlation
between electrons of the same spin, whereas it does not
for the singlets. This should be rejected in a lower

model will be abandoned without presenting any further
results.

1,0-

Oi9-

'D

3p

This gives

P r„s(2L+1)(2S+1)aI.&"&

Pr„s (2L,+1)(25+1)

0.8-

0.6-

0 5

0,4 ~

Oo3-

0.2-

0,1

I l I I

6 7 8 9 10 11 12 131 2 3 4 5

E'

Fro. 1. Correlation coeScient versus Z' using the hydros'enlq-
core model with Y(r) =0.55/r.

(18)

VI. UNRESTRICTED HARTREE-FOCK MODEL

This UHF model uses the expression in Eq. (14) w&th

the values of aL, &~& from Eq. (16) for the screening
function. However, U(r) is the self-consistent-fie

(SCF) expression which does not need to be written

a, t'& = 1, a,"'= —2/25.

Thus, Y(rr) and Z' are the same for all three levels,
but Z' can still be regarded as an orbital exponent. The
one-electron orbital energies now subtract out in form-

ing multiplet separations. The results are shown in

Figs. 3 and 4 and are not qualitatively diferent from
the USTO results.
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-o.6
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Z'

18---—'0

1,0

1,2

-x.4

-1.6

-1.8

-0 5 -2.0

-0,6 «2e2

-2.4

-o.8

Fro. 3. Correlation coefBcoe@.cient versus Z' using the STOAC model

-2,6

FIG. 4. Multi let en'p energy versus Z' using the STOAC model.

(2&&&)
~ta+&12

Ria(r) = rn~y —& —0~gre
L(2«~) G"'

(20)

in all othe
It is Ru~(r) which is to be used in Eq. (15) llas we as

in e ca cu ationer radial integrals which arise in th 1 1

q. ( ). gain, the orbital energies must be included
in the multiplet differences. Results for this model are
shown in Table II. Again, the value of c is larger for

h
the triplet than for the singlet Al he s. so, t e correlation

as reordered the three levels.

and the
U r determines the type of radial f t'ia unc ion to be used
an e one-electron orbital energies. Thes t
ties will bi e slightly different for each of th h

ese wo quanti-

levels since U, r~&is~r~ is slightly different because of L de-
o e tree

pendence of up~~'. Clementi et a/. " h
anal ti

'
e a. ave used short

na y ical expressions for the radial f t dia unctions and have

orbital ener i Tgies. These radial functions are linear
nations of STOo 0 functions having the form f h

re inear combs-

2p-orbital,
rm, or te

Rg„(r)= aiRn(r)+a2Ri2(r)+a3Ria(r)+a4Ri4(r), (19)

where

VII. INEXACT HF AVERAGE-OF-
CO5FIGURATION MODEL

Again, Eq. (17) is used in Eq. (14) so that F r i
ree multiplet levels, provided that

is ra ial functiont e same radial function is used. Th
should be the solution of another SCF e u

th b t 1 fes va ue or the avera e ener

as yet, ut is not expected to be significantly diferent
from either one of Clement' d' 1is ra ia unctions for
carbon. Indeed, if Clementi's b't 1or i a energies are aver-
age over the configuration according t th do e proce ure

q. ( ), hen the "a-of-c" energy is found to be

o.6-

0 5

o.4 ~

Tmr.z II. Results for carbon usin the
energies are in Hartree units On-r ree uruts. ne-electron orbital energies are

Level

1g
1D

'P

0.448398
0.469016
0.476786

Calculated energy

No. Corr. With corr.

—1.20683 —1.72004
—1.29499 —1.72224
—1.35660 —1.71439

Energy
difference

0.51321
0.42725
0.35779

02

0.1

1.0 2.0 3.0 4,o 5oo

' E. Clementi, C. C. J. Roothaanoothaan, and M. Yoshimine, Phys.
r(a.u. )

Fro. 5. Radial charge density for carbon.
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+~LE III. Results for carbon using the HFAC model. All energies are in Hartree units. The average two-electron energy is omitted.

Level
Calculated energy

No corr. With corr.
Energy

difference UHF' This work obs.

(a) 'D radial
lg
1jg
3E

(b) 'P radial
lg
1D
3jp

functions are used
0.570930
0.489386
0.442723

functions are used
0.593254
0.507055
0.457882

—0.391879—0.476139—0.532312

—0.402334—0.489918—0.548307

—0.848022—0.881881—0.907136

-0.868220—0.903428—0.929730

0.456143
0.405742
0.374824

0.465886
0.413510
0.381423

1.4275 1.3407 1.1268

1.4275 1.3386 1.1268

a Calculated from Clementi*s total energies, Ref. 10.

about midvray betvreen the 'I' and 'D energies. Also,
from Fig. 5, the UHF 'D radial charge density appears
to be an acceptable compromise for all three levels.
It is this function vrhich vras used to obtain the results
shovrn in Table III. It can be seen that the ratio 6 is
in satisfactory agreement vrith the experimentally ob-
served value. Table III also shovrs the same results
using the 'I' radial function obtained by Clementi as
if it were the correct "a-of-c" function. The value of 5

is practically unchanged.

The results indicate that a satisfactory representation
of the multiplet levels can be obtained from the semi-
empirical electron correlation theory if the HF average-
of-conhguration model is used. This is attributed to the
sensitivity of the results to the proper radial function
as vrell as the screening function. These two quantities

0,6

3s UHP

—————9 UHF

Ps UHF

0.35/r, HC

0.3

0,2

are compared in Figs. 5 and 6. Apparently, the UHF
model has already accounted for a large part of the
electron interactions and the e6ect of the correlation
factor is too strong, vrhereas the HFAC model does not
include so much of the correlation and the correlation
factor corrects this deficiency by a satisfactory amount.
The HFAC model is also more accurate than the non-
SCF models because the core is more accurately repre-
sented since the central 6eld novr contains interactions
betvreen the valence electrons and core electrons
through the SCF potential.

There is another consideration, however, which has
to do with the core model. Since the 2s and 2p orbitals
mutually interpenetrate quite strongly, one could un-

doubtedly expect more accurate results by treating the
carbon atom as a four-electron problem with a core
consisting of the (1s)s electrons. In fact, McKoy and
Sinanoglu" have found that the 2s-2p correlations are
very large, about equal to the 2p-2p correlations. Since
these produce corrections in the same direction as the

p-p correlation, they wouM further improve the results
of this calculation. However, such a semiempirical
method as outlined here, based on a two-electron model,
could be very useful for the (ns)', (Np)', and (ed)' con-

Qgurations of atoms and ions in which very little inter-
shell correlations are expected.

awhile the results here shovr a de6nite improvement,
the remaining deviation from the experimental results
must be attributed to the naive choice of the core and
to the use of a one-parameter correlation factor. Both
of these effects are presently being studied.
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