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Coupled-Channel Calculations for Nuclear Bound States*

E. RosTt
Palmer Physical Laboratory, Princeton University, Princeton, Em Jersey

(Received 26 September 1966)

The method of coupled channels is presented for situations where all channels are bound. A numerical re-
laxation technique is formulated for such problems and is found to be rapid and reliable. Calculations are
performed for deformed nuclei (where angular momenta in a rotational band are coupled) and for the Lane
isospin t T potential (where proton-nucleus and neutron-analog compositions of a target nucleus are
coupled). In either case the relevant radial functions may be used as form factors for the analysis of stripping
or pickup experiments. The calculations are applied to (1) deformed components in spherical nuclei (0"and
Ca~); (2) a deformed nucleus (Mg"); (3) j-dependent effects in the 1fv~2 shell; and (4) the extraction of
(p,d) spectroscopic factors in the 1'/2 shell using the Lane potentiaL The effect of the channel coupling is
found to be important in many instances.

I. INTRODUCTION

'HE analysis of nuclear-structure data has shown
many instances where the simple central-6eld po-

ten. ial model is insufhcient. A primary example occurs
in nuclei far from closed shells where collective degrees of
freedom are crucial in understanding the details of the
nuclear spectra. ' These collective degrees of freedom
are strongly coupled to single-particle modes of motion
and their eRect may often be understood in terms of
deforrnations of the nuclear-potential well (either
permanent or vibrational) in which the single-particle
orbitals lie. These deformed orbitals are conveniently
calculated in a perturbative method which is often
quite adequate for describing the energy levels, mo-
ments, and other properties of nuclei. '4 However, for
nuclear transfer reactions such perturbative calcu-
lations fail, even if 6nite wells are used, since these
reactions are highly sensitive to the tail of the radial
wave functions which are improperly computed in
perturbation expansion. A compromise procedure is
often employed' using harmonic-oscillator expansion
coeKcients and spherical Woods-Saxon radial wave
functions, although the accuracy of such a procedure
is open to question.

A straightforward method for accurately computing
deformed orbitals is available by solving a coupled-
channel eigenvalue problem. The eigenvalue can be
adjusted to equal the separation energy of the trans-
ferred particle in a stripping reaction, i.e., the radial
wave function will have the correct tail. Similar
coupled-channel eigenvalue problems occur for other

nuclear-structure models and require only a change in
the matrix elements and notation. In particular, the
Lane isovector potential' t T gives rise to a coupling
between nuclear states and their isobaric analog states
and an accurate radial wave function may be readily
calculated. 7

In Sec. II a general coupled-channel eigenvalue
problem is presented and a relaxation method of
solution described. The detailed description of the
interaction potential and basis states is given in Sec.
III for a permanently deformed nucleus and for the
isobaric analog problem. Section IV is devoted to tests
of the sensitivity of the approximations and a com-
parison with alternative procedures. Finally, in Sec.
V the radial wave functions are used as form factors in
distorted-wave calculations and the results compared
with experimental data.

II. GENERAL FORMULATION

where P; and 8';; are known functions of the inde-
pendent variable r with asymptotic properties

0

F; - l,(l;+1)/rs+ r)/r. (2.2)

The E coupled equations to be considered in this
work may be written in the form

d2

ug+J;I,+z u;=Q,'8', ;.I,', i=1, 2, . 1V, (2.1)
dr'
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Here /; is the orbital angular momentum of the ith
component and r) is the Coulomb parameter. s (For
the analog-state problem an additional constant term
appears in the asymptotic form of F; and may be
included in an obvious manner. ) Bound solutions
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35, 676 (1962).
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(to be published).
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(positive &&') will thus satisfy

u; - II&,.(i«r), (2 3)

where II& Gr+——iF& denotes the tth Coulombic Handsel

function. ' The functions u;(r) must also vanish at r=0
since r 'u(r) must be finite, e.g., Eq. (3.6) below. The
eigenvalue problem is thus completely specified,
being the eigenvalue. The usual procedure for solving
such a problem would be to guess ~2 and solve the E
equations (2.1) E times, e.g., for each initial guess

(du;/dr)p ——i&;;. The solution of the simultaneous equa-
tions at a matching radius will yield a mismatch, which

may then be reduced by choosing a better value of ~2.

The disadvantages of this procedure are (1) difhculty
in determining a priori which of the 1V solutions one has
converged to; (2) the necessity for using a single

matching radius independent of i; (3) computational
time proportional to E2. A relaxation technique removes
the above difBculties and will often converge very
rapidly.

Let us therefore start with a "guessed" eigenvalue
Kp' and set of functions u, &P(&r) Thes.e are conveniently
obtained in terms of solutions with S',,'=0, viz. ,

except at a matching radius I&', This radius is chosen near
the largest value of r where d'u, &'&/dr'=0, i.e., the
classical turning point. This choice is important since
Eq. (2.6) becomes unstable integrating outwards
(inwards) when r is greater (lesser) than E;.The starting
integration values of (2.6) are determined by demanding
continuity at r= I&.'; and u, &"(I&.',)=u, &P&(I&.';). Near con-
vergence these conditions are satisfied by multiplying
the numerical solutions (2.6) appropriately. "

One can find an improvement to u,;&'&(r) by defining
the constants ai and X:

u, "&(r)=au, &'&(r) =u, (r),
V2= ~1~:O20 )

(2 7)

Now multiplying by I,(", integrating from 0 to ~,
and using (2.6), one arrives at the expression

where a; is an average scaling factor. Substituting into
(2.1) and rearranging gives

d2
u;&" +F, u,

'&& 1&&psu; '&& Q;—W,,'u, '&'& a;
dr2

= (1—X)«p'u;&'&a;+Q; W,; (u; &"a,' —u; &'&a;). (2.8)

u, &p&(r) =p„c„,v„,(r),
where v„,(r) satisfy

d2

v„,+F,v„~+0„;v„;=0,

(2.4)

where
a, = (1 )).,sI.,a;+g—,'g;,'a,' F,a, , (2.9)—

a;=lcm I;(')~,(')
e~p dr

v„;(r) - II&,(ik„,r). fu.&r&(r))'dr

Substituting (2.4) into (2.1), one obtains )by multi-

plying by v„,(r) and integrating j the following system of
linear equations:

~ ~ ~ 2n'i'~~gnin'i Cn i —Kp Cns )

u &'&(r) W;;.(r)u'&r&(r)dr

u„"'(r)W '(r)u &p&(r)dr

nin'i' v„;(r)W;;.(r)v„;.(r)dr+ i&';,'B„„k„,s. (2.5)
Finally letting b,=a+ t' gives

For the deformed-well problem, the solutions to (2.5)
have been well studied by Nilsson and others'4 and
thus are labeled, e.g. , by asymptotic quantum numbers,
so one does not need to perform many calculations as
a function of the coupling strength.

Having obtained' an initial «ps and u;&»(r), one
determines an improved set of functions u, &"(r) which
satisfy uncoupled inhomogeneous equations

d2

u, &»+F;u;&»1&&psu &'&=+;. W;;.u,'&'&) (2.6)
dr2

'

u;&»: II&,(i&&pr),

which is recognized as an eigenvalue equation. If the
initial guess is satisfactory the eigenvalue (X—1) nearest
zero gives an improved energy ~z'=3~0 and the corre-
sponding eigenfunctions bi give improved solutions to
(2.1) u;&"=b,I; 't'u;&». The cycle is then repeated
until sufficient accuracy is obtained. Typically, four or
five iterations were sufficient to obtain 5 decimal places
in energy and 3 places in the normalization constants.
Running time on the IBM 7094 was about 1 min for
/=5 and increased slightly faster than linearly with N.

"Far from convergence, an interpolation procedure is used
+he initial guessed functions in (2.4) are improved by erst to get the starting integration values; a detailed description

tacking on the correct asymptotic tail {2.6). would be out of place here.
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III. INTERACTION MODELS

The calculational techniques described in Sec. II
are applicable to any situation where a small number of
bound channels are needed. An elegant general formula
for the radial wave function for a captured particle in
a stripping reaction (form factor) has been given by
Pinkston and Satchler" and involves a set of coupled
radial equations like (2.1). However, in order to make
connection with the data it is necessary to specify the
nuclear-structure model in some detail. Only two ex-
amples will be given here, the rotational model and the
isovector potential model. For later convenience, how-
ever, a short discussion of form factors and spectro-
scopic factors will 6rst be presented.

B. Rotational Model

The primary feature of the rotational model is the
factorization' of the nuclear wave function into a
collective part involving orientation angles and an
intrinsic part consisting of appropriate combinations of
deforxned-well orbitals. This work is primarily con-
cerned with calculating these orbital wave functions
with sufBcient accuracy so that they may be used in
stripping calculations. The intrinsic Hamiltonian in-
volving a single nucleon in a deformed well of A
nucleons is taken to be

As ( k )s 1 d
jV= — Vs—A.

~
~

L o——V(r)+ V(r, 8). (3.2)
2m (2mcJ r dr

A. Syectroscopic Factors

In the description of a stripping reaction, one en-
counters the overlap between final- and initial-nucleus
wave functions, integrated over all coordinates except
those of the transferred nucleon. This overlap is factored
into the product of a spectroscopic amplitude and a
normalized single-particle wave function and is written
schematically"

pi*(g,x)g;($)d$= (S );)' 'P tp(x), (3.1)

where S ~, is the spectroscopic factor for the transition
in question. Here we assume that only one single-
particle orbital contributes significantly and denote
additional quantum numbers by n. The radial part
of f(x) is called the form factor" and is given asymp-
totically by the separation energy which is simply
related to the Q value of the reaction. However the
shape of f(x) inside the nucleus is affected by the
manner in which it is calculated and thus the asymp-
totic eormatisatioe is dependent on the interior wave
function.

In practice, the form factor is obtained by employing
a phenomenological model for f pp(x); in particular,
one may use the shell model (letting rr label the number
of radial nodes) and adjust a central potential to bind

f &; (x) correctly. Such a procedure is certainly con-
venient since it allows extraction of S ~; in a manner
rather independent of the nuclear-structure aspects of
the nuclei being studied. However, there exist many
situations where this procedure is open to question or
overly ambiguous.

A natural generalization occurs if we include more
than one channel in computing the form factor. Such a
situation occurs naturally for deformed nuclei and is
suQiciently Qexible to treat several kinds of problems
with the same general procedure.

'W. Y. Pinkston and G. R. Satchler, Nucl. Phys. 72, 641
(1965)."R.H. Bassel, R. M. Drisko, and G. R. Satchler, Oak Ridge
National Laboratory Report No. ORNL-3240 (unpubhshed).

Here m is the reduced mass of the nucleon-nucleus
system, m„ is the proton mass, and V(r) is a finite well
taken to be of the form

V (r) = —VpL1+ exp((r —Rp)/a)] ', (3.3)

where Rp ——rp(A —1)'~' is the nuclear radius and Vp, rp,
and u are well parameters to be discussed later. The
spin-orbit term in (3.2) is taken to be spherical with a
Thomas radial shape and is characterized by a dimen-
sionless strength parameter A. The deformed part of the
Hamiltonian, V(r, 8), is generated by deforming equi-
potentials keeping constant volume. Assuming axially
symmetric deformations, one has to second order in P

r ~ rp[1+PYsP(8) —P'/4m],

V(,8)—= V(,) = VL~/(1+ PY,o(8)—P /4 )]

For charged particles, (3.3) and (3.4) include also the
Coulomb potential from a uniform sphere of radius Ep.
In the calculations to be reported, Eq. (3.4) was
actually extended to fourth order in p in a straight-
forward manner, the formulas being given in the
Appendix.

The Schrodinger equation BI=EX can be written

h2 Ig ' 1dV
v2—A L rr+V(-r) —E X

2m 2m' r dr

= —V'(r, 8)X. (3.5)

Expanding in spin-angle eigenfunctions

X=r-'+pion upon. (r) )Pj'fl'), (3 6)

substituting into (3.5), and taking the scalar product

= V(r)+ V'(r, 8),

V'(r, 8) = PYsP(8)r—d V/dr

d'V dU 1 dU
+Ps LYsP(8)]2 r2 +2r +—r . (3.4)

dr' dr 4x dr
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with (ljQi, one obtains the set of coupled equations

los (ds l(l+1) ( ls '1dV -l
—h.

/

2m &drs rs E2m~c r dr —l—1

+ V(r) —»~ n(r) =2'l ~' &~~ t ~'"(r)ui 'n(r),

Lj=l +-',j (3.7)

which is seen to be of the form of (2.1). The coupling
term is

K„,,„' (r) = —(ljQ [ V (r,8) i
l j0), (3.g)

which may readily be evaluated explicitly using (3.4)
or (A4) and is seen to be surface peaked. The projection
quantum number 0 is a constant of the motion. Equa-
tion (3.7) is the same as a simple potential-well equation
in the case of a single lj channel since then the coupling
term IC"(r) is equivalent to a change in the potential
shape. For more than one channel, however, e6ects
due to the coupling may be significant, especially for
weak lj channels.

In the rotational model the nuclear wave function in
the space fixed frame is given in the simplest case by
f„&=D „r(8;)Xn, where 8; denote Euler angles con-
necting body and space axes. The model outlined above
further assumes negligible rotational energy, i.e., all
members of a band have the same energy. It is possible
to generalize (3.7) so that the energy depends on j but
the significance of such a procedure would be question-
able. The crucial point of the analysis is that all
components of X have the asymptotic form

The Coulomb energy is denoted by Az and lower-case
t implies operation on nucleon charge coordinates. The
total wave function for the two-channel system is of
the form"

f=r '(u„(r)
i pC)+u„(r) i uA)}, (3.11)

where the kets
i PC) and

i rsvp) denote the spin, angle,
and charge quantum number of each component. The
(daughter) nucleus A is the analog of the ground state of
nucleus C, i.e., A = T C. If we assume that nucleus C
with E neutrons and Z protons has good isospin
Tp—=—',(E—Z), as is reasonable for low-lying states in
nuclei, substitution of (3.11) into the Schrodinger
equation yields the coupled equation

(
V.() 7.s; —+vo(r) ac s. )N,(r)--

A 2

Vt(r) To 'is
u„(r),

2

(
Vt(r) Tp—1

IIp+
A 2

-s„)a„(r)

Vt(r) 2'p) 'i'
u, (r), (3.12)

2)

relative motion may be written as

v,(.)
Vs+ V,(r)+ t T.

2m A

+(s—&.) (V~(r) —Ao) (3 1o)

(3.9)

i.e., they have the correct tail for a stripping form factor
for a captured particle of angular momentum l with
separation energy B. The connection between the
stripping form factors and the differential cross section
is thoroughly treated by Satchler. " In this work we
ignore coupling effects on the distorted entrance and
exit channels in calculating diRerential cross sections.

C. Isovector-Potential Model

The isovector potential (Vt/2) t T was introduced by
Lane' to explain analog-state (P,rs) reactions'4 in
terms of a quasi-scattering process in which charge is
exchanged by this potential. In the simplest approxi-
mation, only a single spherical orbital need be con-
sidered, in which case the generalized Hamiltonian for

is G. R. Sstchler, Ann. Phys. (N. Y.) 3, 275 (1958).
'4 J. D. Anderson and C. Kong, Phys. Rev. Letters 7, 250

(1961).

where
h' ( ds l(l+1)

Ho= +Vo(r)
2m &drs r'

and Vp(r) is a central plus spin-orbit potential term.
Equation (3.12) is readily applied to the quasi-elastic
(p,n) process in which case the eigenenergy E„ is
positive.

Equation (3.12) may also have negative-energy solu-
tions in which case it has a form similar to that dis-
cussed in Sec. II." In general, two solutions will be
found for (3.12) corresponding approximately to
coupled isospin Tp—is and Tp+xs. The goodness of iso-
spin can then be investigated in this model by solving
(3.12) numerically. The lower energy (T= Tp —s) solu-
tion corresponds in this model to the lowest state of P,
i.e., the target state in a pickup reaction. In a proton-
pickup experiment one thus reaches the unique state C

"D. Robson, Phys. Rev. 137, 8535 (1965).
6 The 6, term in the proton channel is included with F; and

the boundary condition (2.3) is appropriately modified for this
channel.
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with T= To. For the neutron-pickup experiment, how-

ever, one reaches not only the analog state A(T= Tr/,

T,= Te 1)—but also a lower lying configuration state"
(T= Ts 1,—T.= Ts—1). Thus if one is dealing with a
target having e„protons and e„neutrons of a given con-
figuration, the summed spectroscopic factor for proton
pickup is e„and one immediately obtains" the neutron-

pickup spectroscopic factors to analog and configu-
ration states

u„'dr =r/, , (3.13)
0 2TO

Sanaiog =~i„
0

Scon fig '+n Sanalog ~

The approximate strength ratio of neutron and proton
components is a simple ratio of vector coupling coefB-
cients for forming good To—

~ isospin. "The comparison
of these predictions to (p, d) data in the 1fz/s shell will

be discussed in Sec. V. It will be demonstrated there
that the extraction of the spectroscopic factor de-

pends rather strongly on how the form factor u„(r)
is calculated.

IV. STUDIES OF THE MODEL

The reliability and accuracy of the model described
in the preceding sections will now be investigated for
several specific cases. It is therefore necessary to
specify well parameters (rs, a, A, V) for Eq. (3.3). To a
large extent these may be determined by htting single-

particle level position in spherical nuclei and also by
optical-model analysis of elastic proton scattering. An

average optical-model (OM) set follows the work of
I'erey' and is ro ——1.25 F, a= 0.65 F, and A =25. The
well depth is adjustable and we have chosen V=55
MeV as a reasonable value for light nuclei. An alter-
native set of well parameters comes from the analysis
of Ross, Mark, and Lawson (RML),"who fitted many
level positions in magic nuclei. Their parameters are
r0=1.30 F, @=0.69 F, A. =39.5, and V=42.8 MeV and
refer to neutron levels; for protons a larger V is needed.

The effect of the well parameters is investigated in

Fig. 1 for the A 40 region where OM and RML sets
are compared. Also shown in the figure are energy
levels for a harmonic-oscillator well, i.e., Nilsson levels,

using the original parameters of Nilsson. ' Except for a
change of origin, one sees no violent effects though
there are differences in detail, especially for the weaker
bound RML levels. Such binding effects are especially

'~ In practice, several configuration states are seen, so we refer
to their summed strength.

'8 J. B. French and M. H. Macfarlane, Nucl. Phys. 26, 168
(1961).

"This derivation of the sum rules is essentially that of B. F.
Bayman, in Proceedings of the Conference on Isobaric Spin, Talla-
hassee, 1966 (unpublished)."F.G. Percy, Phys, Rev. 131, 745 (1963).

"A. A. Ross, H. Mark, and R. D. Lawson, Phys. Rev. 102,
1613 (1956).
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(9
IJJ
Z'.

-15

3/&
+
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+
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DEFORMAT ION P

Fio. 1. Single-particle energy levels for neutrons in the 2~40
region. OM parameters are ra=1.25 F, a=0.6S F, A=25, t/"=SS
MeV; RML parameters are r0=1.30 F, a=0.69 F, A. =39.5,
V=42.8 MeV; Nilsson parameters (Ref. 3) are «=0.05, //:=0
(/V=O, 1, 2), p=0.35 (ll/=3), hcao ——12 MeV. The dashed lines
in the OM curves were computed with coupled channels; the
solid lines with perturbation theory. In all cases the basis con-
sisted of the spherical levels isi/r Id5/Q 2s»2, idr/s (even parity)
and ipa/r, 1P&/a ifr/~, 2Ps/s, ifs/u, 2Pi/s (odd parity).

important on the wave functions and will be investi-
gated later. Since the levels of a Gnite-well calculation
depend on the mass region~it .was decided not to at-
tempt a general tabulation here. "

The effect of performing the complete coupled-
channels calculation is also shown in Fig. 1 for the OM
finite-well. parameters and is seen to be quite small —less
than 1%%uz as measured from~the bottom of the well.
Even for heavy nuclei, the perturbation estimate is
quite good for obtaining single-particle energies.
(However, it may not be satisfactory for computing
equilibrium deformations. ) The effect of truncating the
expansion in (3.4) was also studied by "turning off"
the P' and P' terms. The largest effects (for 0=—', and
large deformation) were found to be unimportant even
in the wave functions. Thus in this region, at least, the
expansion in deformation parameter p is converging.

e turn now to the calculation of the radial wave
functions. The exact intrinsic function was expanded in
spin-angle eigenfunctions

Xo——r-' g&,ui n(r)
~
ljII)

for a deformed orbital with angular-momentum pro-
jection Q. Note that the radial components ui, n(r)
depend on 0 and are rot normalized to unity. The per-

'~ Partial tabulations using perturbation theory are given by
R. H. Lemmer and A. K. S. Green Lphys. Rev. 119, 1043 (1960)$
and by A. Faessler and R. K. Sheline PiN/I 148, 1003 (196.6)j.
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TABLE I. Coe%cients c&; of a perturbation treatment compared with normah'zations of a coupled-channels treatment. Well parameters
OM are employed for A~40 and P =0.3 (see Fig. 1).

Level
Perturbation

c&~&
.2

Coupled channels
fu'dr

I+
2
5+
2
1+
2
+

2

3—
2
5—
2
1—
2
1—
2

Z (MeV)
—18.00
—17.69
—14.14
—13.58

—12.61
—10.89
—8.45
—7.87
—5.15

1$1/2

0.000
2$1/2

0.209

0.003 0.619

1pl/2

0.000
1P3/2

0.016
0.008

id3/2

0.656

0.312
0.959
2pl/2
0.022

1d5/2

0.135
1.00
0.066
0.041
2p3/2

0.276
0.114

0.005 0.000 0.343 0.263

&f612 &fn2
0.008 0.678
0.016 0.862
0.017 0.983
0.162 0.227

~ ~ ~ 100

$l/2

0.214
d 3/2

0.624

0.591

Pl/2
0.028

0.336
0.960
P3/2

0.312
0.127

0.341 0.238

d5/2

0.162
1.00
0.073
0.040
fs12 fern

0.011 0.649
0.018 0.855
0.016 0.984
0.166 0.255

~ ~ o 1 00

turbation expressiorI, on the other hand, can be written

xo(pert) =r ' p~, c~, (Q)u~, (r) I/jQ), (4.2)

where e&;(r) are normalized to unity and are independ-
ent of Q. The c~, (Q) coeKcients give the amplitude of the
Ij term (an extra index e should be added if spherical
orbitals differing only innumber of radial nodes are
included). The square of these coeKcients is thus
comparable to the integral

[ug;o(r) j'dr.

Such a comparison is presented in Table I for the OM
case of Fig. 1 with P =0.3. It is seen that some noticeable
changes are present; for larger 2 when several neighbor-
ing spherical levels of the same parity occur, much
larger eRects are seen in the relative normalizations.

The primary difference between the wave functions
in (4.1) and (4.2), however, is not in the component
normalization but is in the radial shape, especially near
the nuclear surface where the coupling term in (3.7) is
large. A typical example is shown in Fig. 2 for the de~2

component of the highest -', + level in Fig. 1. In the
critical surface region, the exact coupled-channel wave

TYPICAL RADIAL WAVE FUNCTION CASE
dsq& COMPONENT IN I/2 (E=-I4.14MeY)LEVEL

OM PARAMETERS P =0.5

EXTREME RADIAL WAVE FUNCTION CASE

Q 9~2 COMPONENT I N ~2 ( E 3 9MSV) LEVEL

OM PARAMETERS (g g7} p= 0.4

.02-

OI—

CHANNELS
TION
oundary
ndition)

TION
us ro~ IBO)

.002-
I
L

.OOI—

function is about 15% smaller than the perturbation
wave function, thus causing a 30%%u~ effect in a cross
section sensitive to this region.

In order to examine the radial eKect closely it is
instructive to consider an extreme example. A useful
case is the g9/2 component in a 2s, id nucleus, say
Mg", which occurs in this model via AS= 2 admixture
due to deformation. Picking a "reasonable" deforma-
tion P=0.4, assuming an Q=~sband, and using OM
parameters, " one obtains the wave functions dis-
played in Fig. 3. In this case the amplitude of the g&~2

component was only about 1'Pc of the total, so that the
coupling terms dominate; indeed g9/~ is unbound in any
reasonable spherical well in this Inass region. Figure 3
shows two attempts to circumvent this fact and still
use perturbation theory: (1) by employing a resonant
boundary condition for g9/2, normalizing the interior,
and proceeding as before, and (2) by using an un-
reasonable well of large radius combined with the
perturbation amplitude c~, computed with method (1).
Neither attempt is satisfactory in this extreme situation.

FxG. 2. Compari-
son of coupled chan-
nels and perturba-
tion calculations of
a radial wave func-
tion for a typical
case.

.05

7 .02-
1

.OI—

.005-

.002-

LED CHANNEL

URBAT ION

.0005-

.OOOP. —

I

0 2 4 6 8 IO IR

Fio. 3. Comparison of coupled channels and perturbation calcu-
lations of a radial wave function for an extreme case.

.001
0 2 4 6 8 IO

r(F)
"The well depth was taken to be &~=47 MeV in order to fit

the experimental separation energies,
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CROSS SECTIONS
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b

Q DEPENDENCE FOR W (d p)

RML PARAMETERS, P=O.ES,
f ~i@ ORBlTALS

FORM FACTORS

—@Og r&E

-—@I?J siqr~
Fze. 4. Form factors

and DW cross sections
for the W'pp(d, p)W'"
reaction at 12 MeV. The
fr/p orbitals were com-
puted in a deformed well
with Q=g (solid curve)
and 0=—,

' (dashed
curve). The well depths
(RML parameters) were
adjusted to 6t the ap-
proximately equal sepa-
ration energies as deter-
mined in Ref. 24. Optical
parameters for the DW
calculations were taken
to be the Ineasured
D2P1 set of Ref. 25.

TABLE II. Relative normalizations of neutron and proton
channels for the Fe (target) isotopes.

C A Tp rp 11 1/27'p

Mn"
Mn"
Mn'~

Fe" 2 1.270 17.66 0.333
Fe" —,

' 1.280 18.98 0.200
Fe" ~ 1.291 20.47 0.141

fpp~sdr/f u, 'dr

0.337
0.208
0.150

for the iron (target) isotopes using OM well parameters,
the radii being adjusted slightly to 6t the experimental
separation energies. The coupling term was taken to be
of surface form )see Eq. (5.4)) with Vt= 100MeV. It is
seen from the table that the relative normalizations
agree with the isospin formula to about 5% with the
percentage inaccuracy increasing as one increases Tp.
For higher Tp, the relative inaccuracy of the 1/2Tp
ratio might be serious in some applications. However,
the overlap with good isospin is about 99%, a fact which
lends credibility to the initial assumption of the model.

I I 'I I I I

30' 60' 90 I 20 I 50 I 80'

~c.m.

Since the radial wave functions in (4.1) depend on 0,
one might expect to observe an effect on the stripping
cross section, i.e., an 0 dependence. This feature is
investigated in Fig. 4, where the f&/s components of the

and —,
' band'4 in W's' (asymptotic quantum num-

bers' L512) and L503)) are studied using RML parame-
ters and P=0.23. The [503)-,' is largely ( 90%)
composed of f&/s and thus the extracted fr/s wave
function resembles a simple spherical one; the L512)s
band, however, has only 10% f7/s strength, the remain-
der being largely fs/s and hp/s. As may be seen from
the figure, an effect is present on the form factors which
for display purposes are equated asymptotically and
plotted semilogarithmetically. The distorted-wave
(DW) calculations for the 12-MeV deuteron stripping
experiment used the measured optical parameters of
Siemssen and Erskine. "Only a very small effect is seen
which rejects the overwhelming dominance of the tail
region for this reaction. A hint of such dependence
appears in the stripping data" but the Dgl analysis is
not reliable enough for such one detail. Higher energy
experiments would be needed to verify band dependence
in the stripping angular distributions.

Finally, we turn to the analog-state problem treated
by the coupled equation in (3.12). In the limit of good
isospin, the radial functions in (3.11) are proportional
and thus one may write immediately" for the target
wave function

A. 0"(Hes, d)F»

A reanalysis of the 0"(He',d)F" reaction" to the
erst three states of F"has been published elsewhere. "
Briefly, it was found that deformed-well radial wave
functions were significantly larger in the crucial surface
region than spherical-well wave functions for the
positive-parity levels of F".Therefore the use of de-
formed-well functions in the DQl analysis yielded
smaller spectroscopic factors for positive parity levels
and hence a larger 0" core-excitation probability as
measured by the relative odd-parity yield. The effect
is shown in Fig. 6 for the d5~2 component of the —,'+

ANALOG DAUGHTER WAVE FUNCTIONS (TO=5/2)

FOR Fe TARGET

i2

.05—

.005-

.002—

—NEUTRON CHANNEL
W5)
N CHANNEL

FIG. 5. Comparison of
radial wave functions
for T0=—,

' daughter-plus-
nucleon system. Well
parameters are r0=1.28
F, a=0.65 F, A. =25,
t/'= 55 MeV plus a
Lane symmetry-energy
term of surface form,
Eq. (5.4), with V& ——100
MeV.

V. COMPARISONS WITH EXPEMMENT

In this section the bound-state wave functions will

be used as form factors for DW calculations and the
predicted cross sections compared to experimental data.
A limited selection is taken in order to illustrate the
applications of the model.

lP=r 'e(r)(2Tp+1) ' 'f(2Tp)'/ ~PC)—(nA)), (4.3)

where the radial function s(r) is normalized to unity.
The accuracy of (4.3) is tested in Fig. 5 and Table II

.OOI—

I

2 4 6 8 IO 12

r (F)

J. R. Erskine, Phys. Rev. 138, 366 {1965)."R. H. Siemssen and J.R. Erskine, Phys. Rev. 146, 911 (1966).

' J. R. Erskine, R. E. Holland, R. D. Lawson, M. H. Mac-
farlane, and J. P. Schiffer, Phys. Rev. Letters 14, 915 (1965).

Pr E. Rost, Phys. Letters 21, 87 (1966).
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Ther.z III. Extracted distorted-wave results for Mg".

5+
2
1+
1+
2

(l+)
1+
2
+

2
1+
2
5+
2
1—
2

2
1
2
3
2

(s)
5
2
1
2
3
2
9

3
2

(MeV)

0
0.58
0.98
(1.61)
1.96
2.56
2.80
3.40
3.40

do/do
(mb/sr)

3.98
2.58
2.15

(0.10)
1.15
0.85
3.05

small
5.66

Spherical extraction
V o.nw c( (th)

(MeV) (mb/sr) c~,'(ex) (Nilsson)

47.0 3.08 0.65 1.00
50.5 6.86 0.19' 0.11
55.2 2.74 0.39 0.61

&100
43.6 3.86 0.15 0.27
46.4 7.02 0.061 0.56
51.7 3.75 0.41 0.31
86.8 0.508 &0.04b

66.9 6.54 0.43 0.58

U
(MeV)

53.6
50.1
49 3
49.7
47.5
54.9
54.4
47.0
52.2

2.58
7.88
4.57

~0.9
2.68
6.51
3.15
0.957
6.57

0.77
0 17a

0.23
~0.16

0.21
0.065.
0.49

&0.02b

0.43

0.99
0.28
0.46

~0.002
0.26
0.47
0.47
0.014
0.55

Deformed extraction
o nw A,'(th)

(mb/sr) cps(ex) (je'dr)

a DW fits are very poor.
b An experimental value do/dQ =0.04 mb/sr was assumed. This is the measured 25 cross section for the (9/2+) level at 4.055 MeV.

ground-state band of F'. The OM parameters are
reasonable in this region and do very well for spherical
F"with V~54 MeV. Using the same well to bind F"
with the experimental separation energy requires P= 0.5,
a reasonable value for such a light nucleus. Obtaining
the additional binding by deepening the well, however,
underestimates the tail region significantly.

B. Mg'4(d, P)Mg"

The structure of Mg" was investigated by Cujec'
with 15-MeV deuterons. Spectroscopic factors were
extracted from the stripping differential cross sections
using a D analysis with spherical-well wave functions
(depth varied to fit separation energy) and compared
to the Nilsson harmonic-oscillator coeKcients. ' The
relevant levels and their band structure are shown in
Fig. 7 (these bands are the lowest three plotted in Fig.
1).It seemed worthwhile to repeat the calculation using
deformed-well radial wave functions for the form factors
in the D calculations. The optical parameters were
taken to be the same as those used by Cujec" and the
6ts to the angular distributions were found to be
similar (i.e., poor fits for /=0). The nuclear-structure

information was extracted using the formula given by
Satchler":

do (8)/d 0= 2c(/on w(II), (5.1)

where ODw is the computed distorted-wave cross section
using a normalized (spherical or deformed) form factor. "
The results obtained by equating (5.1) at |I=25' are
presented in Table III. In obtaining the deformed levels
P=0.4 was assumed and the depth of the OM well was
adjusted to yield correct separation energies. This
adjustment was appreciable since the rotational energy. es
are large. Despite this limitation, a smaller spread is
seen in V especially for the "unusual" levels at 3.40
MeV.

The agreement between the extracted c~,' values and
the normalization integral, i.e., the prediction of the
rotational model, are quite adequate except for the
~+ level at 2.56 MeV. This is brought into line by using
a smaller P 0.2 or by invoking considerable band
mixing. Neither alternative is particularly disturbing
for such a light nucleus.

Of particular interest are the ill-observed l=4 tran-

ENERGY LEVELS FOR Mg

NORMALIZED d5/2 RAD IAL WAVE FUNCTION

Oia+ PROTON B=7.7S MeV
OM PARAMETERS

5.40 3.40 "3

Fzo. 6.Normalized
d51 2 proton radial
eave functions for
F'9 in deformed and
spherical wells.

0.2-

PI
S

.05-

—DEFORMEO
P=0.5, Vo"-54

--- SPHERICAL

FxG. 7. Energy
levels and rotational
band g structure for
Mg25. %The 2+ level
at 3.40 gMeV ' was
observed in Mg"-
(p,p') by G. Craw-
ley I Ph.D. thesis, ~,s i

Princeton University
(unpublished) g and
is observed in the
mirror AP' nucleus.

I.96

7/2

0.98---

2.80

2.56
goaJ $+

.02- 0 58 I+ I/2
I2Ig -'+

2

's B. Cujec, Phys. Rev. 136, B1305 (1964).

6
0 512

Is.Og 5+
2

"The DW cross sections are computed in zero range and
assume a Hulthen deuteron internal wave function (see Ref. 12).
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sitions, since these exist in the model only by coupling
between major shells and are thus very sensitive to
deformation. The 3.40-MeV ss+ level (observed in the
inirror Ais' nucleus) would agree in order of magnitude
with the model if its strength were comparable to the
Ineasured 4.06-MeV —,'+ level, since the theoretical pre-
dictions (no band mixing) for the latter assuming a
L211)-',+ band are roughly the same. On the other hand,
the strength of the —,

'+ level at 1.61 MeV is seen to be
two orders of magnitude too large and is clearly not the
simple stripping of a g7/Q neutron. A possible explanation
is a second-order 65= 1 spin-Rip process along with the
d5/2 neutron transfer. Further experimental and theoret-
ical exploration would be interesting since this case is
rather unambiguous.

C. Ca'&(P,d)Ca" and Ca'0(d, P)Ca"

The Ca isotopes have been extensively studied by
stripping' and pickup" reactions and strong single-
particle (hole) levels in Ca" (Ca") are well described

by a spherical shell model and a DW analysis. "On
the other hand, weaker low-lying levels of the "wrong"
parity have been observed" "and are very important in
determining the extent of collective admixtures in the
ground state of Ca". The strongest of these levels are
the —,

' (2.80-MeV) level in Ca" and the as+ (2.02-MeV)
level in Ca", neither of which fits into a simple shell-
model description. If one adopts the viewpoint" that
Ca" is a mixture of spherical and deformed components,
one can use the rotational model described above to
extract the deformed admixture from the stripping
and pickup data. This model is especially convenient
for the d3/& stripping since questions of radial nodes
(amount of 2ds/s in a perturbation expansion) do not
arise.

Referring to Fig. 1 and assuming P=0.3, it is reason-
able to assign deformed quantum numbers 0=~3+ for
the ds/s stripping and 0=-,' for the fr/s pickup. The
well depths were adjusted with OM-well geometry to
fit the binding energies. The results are summarized
in Table IV, where the spectroscopic factors are ob-
tained from

do'/tf0= sSo'nw, (plckllp)

do/d& =4$onw, (&3/s stripping) (5.2)

the numerical coefficients being statistical weights. A
normalized deformed radial wave function is used for

"T.A. Belote, A. Sperduto, and W. W. Buechner, Phys. Rev.
139, B80 (1965)."P.E. Cavanagh, C. F. Coleman, G. A. Gard, B. W. Ridley,
and J. F. Turner, Nucl. Phys. 50, 49 (1964); C. D. Kavaloski,
G. Bassani, and N. Hintz, Phys. Rev. 132, 813 (1963)." L. L. Lee, Jr., J. P. Schi6er, B. Zeidman, G. R. Satchler,
R. M. Drisko, and R. H. Bassel, Phys. Rev. 136, 8971 (1964).

'3C. Glashausser, M. Kondo, M. E. Rickey, and E. Rost,
Phys. Letters 14, 113 (1965).

'4R. Bock, H. H. Duhm, and R. Stock, Phys. Letters 18, 61
(1965).

"W. J. Gerace and A. M. Green (to be published).

TABLE IV. DW analysis of "unusual" levels in Ca" and Ca".

8 d~/gati(e, ...) V ~n~(e .)
Nucleus ti j1(MeV) (mb/sr) (MeV) (mb/sr) S

Ca" —,
'

f7/2 18.5 0.20 63.0 0.56 0.24
Ca" 2+ d3/2 6.35 0.82 43.0 0.83 0.25

the form factor in O.DW. The OM parameters were taken
from elastic-scattering fits" and are reasonably well
known. An examination of the extracted well depths in
Table IV indicates a deficiency in the model. Evidently
strong "residual" forces are needed to bind a fr/s neutron
far below a ds/Q neutron. (A deformation P 0.8 is
needed, which seemed a bit absurd. ) A better theory of
these levels is called for in order to accurately extract a
Ca" deformation probability. However, at present the
deformed-well model offers a well-defined extraction
procedure which is probably an improvement over the
usual spherical-well method.

D. Fe"(P,d)Fe";jDependence

A difference in the 28-MeV (p,d) angular distribution
between ~7 and 2 states was found by Sherr et al. '~in
the A 55 mass region. The fs/s angular distributions
were found to peak at more forward angles than the fr/s
distributions and also fall oG sharper. The effect could
be explained by using a form factor for fs/, with rela-
tively larger tail amplitude and this was achieved
artificially by using less binding for fs/s (experimentally
the ss and s7 levels of Fe" are roughly degenerate)
as might be the case if all residual interactions could
be switched off.

A preferable procedure to obtain a larger external fs/s
form factor is to consider the residual interactions,
albeit in a simple approximation. Huby and Button, "
using zero-range pairing interactions arrived at a set
of coupled equations similar to (3.7) and found an eRect
in the right direction. An alternative method is to
treat the residual interactions as causing an effective
nonspherical well, in which case one can employ the
formalism already laid out. The values of 0 and P are
not well determined but experience showed that an
appreciable deformation effect would occur when con-
siderable deformation energy was involved, e.g., the
highest ~~ deformed level in Fig. 1. A typical defor-
mation P=0.3 was assumed and the eRect of de-
formation on the fs/s component wave function and

(p,d) pickup cross section is shown in Fig. 8. The well

depth using OM parameters was adjusted so the sepa-
ration energy of the 0= ~ band agreed with the spheri-

's B. W. Ridley (unpublished). Proton parameters: V=47.5
MeV, ro, =1.15 F, e, =0.70F, V„=6MeV, roI=1.252 F, g1=0.75 F,
S'~=5.4MeV; deuteron parameters: U, = (83.3+1.023 E~) MeV,
r = 1.112 F, a& =0.875 F, roI= 1.562 F, aI =0.477 F, 8/'D

=25.0—0.53 E~ MeV. The notation is de6ned in Ref. 20.
"R. Sherr, E. Rost, and M. E. Rickey, Phys. Rev. Letters

12, 420 (1964).
's R. Huby and J. L. Hutton, Phys. Letters 19, 660 (1966).
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cal f7/s binding energy which was taken to be 13 MeV.
Also plotted is the effective-binding prescription where
the spherical fs/s level is bound by 7 MeV, i.e., the same
spherical well with a reasonable spin-orbit potential.
Figure 8 shows that the effect of deformation goes in
the same direction as the empirical effective-binding
prescription (and the data) but that the effect is too
weak. Similar results were found by Huby and Hutton. "
Of course, the parameters of the deformed well, es-

pecially Q and P, are ill determined, as are the optical
parameters in the D% analysis, and it may be possible
to get agreement by a suitable choice. However, recent
work by Glashausser" suggests that the j-dependent
effect is not explainable by any form-factor modifications
in the D~ analysis, at least at lower energies. Thus the

Fxo. 9. Analog-
state neutron form
factors computed
with surface and
volume coupling
terms.

.05

.02

.Ol

I .005

~002

.OOI

Fe f7' NEUTRO N To
B =!9MeV

OM PARAMETERS
V - l20 MeV

6
r (F)

p* 56.I

Vp* 55.7

Fro. 8. Forward-
angle j-dependence
study for the Fe"-
(P,d)Fe" reaction at
28 MeV. Form fac-
tors were computed
in an OM well with
U adjusted to give
either 13- or 7-MeV
separation energy, as
shown. Optical pa-
rameters used were
for protons U, =42.8
MeV, ros =1.25 F,
a, =0.65 F, U,,=8
MeV, rol = 1.25 F,
+1=0.47 F, 8'~=11
MeV; for deuterons
U, =91.5 MeV, ro,
=1.15 F, a, =0.81 F,
ror=1 34 F, el=0.68
F, O'a=19.5 MeV.
The notation is de-
Gned in Ref. 20.
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E. Analog States by (P,d)

explanation of forward-angle pickup (as well as back-
ward-angle stripping") j dependence is still largely
unknown.

sets4' "of optical parameters. A further enhancement
occurs if one employs the coupled-channel approach.

The radial dependence of the coupling term was
taken to be of either volume or surface form

Vi(r) = Vr(1+exp[(r —Rs/a7} ', volume (5.3)

d 1
Vi(r) = —4aVi- surface, (5.4)

dr 1+expL(r —Re)/a7

where the parameters Eo=roA' ' and a are taken to
be the same as in the central Ve(r) term. The two
forms have the same maximum value V~ and thus are
roughly comparable. The eRect of (5.3) and (5.4) on
the form factor is shown in Fig. 9, where the depth Vo
of the central well is adjusted slightly to give the experi-
rnental separation energy for the Ts ——s (analog) f7/s
state of Fe". The surface coupling term is seen to in-
crease the radial wave function in the tail region as
already noted by Tamura' and thus increase the (p,d)
analog-state cross section by about 40/o in this case.

In redoing the DW calculations for the nine nuclei it
seemed reasonable to follow the ideas of Pinkston and
Satchler" and keep a fixed central well depth (using
the OM parameters), adjusting the radius to ftt the

States of spin ~
—in nine nuclei with A 55 were

observed by Sherr et at 4' by means . of the (p,d) reaction
with 28-MeV protons. In each case the highest —,

'
state seen was found to be the isobaric analog of the
lowest ~ state of the isobar with one more neutron.
Although the angular distributions were in good agree-
ment with DW calculations, the magnitudes of the
analog-state transitions were found to be too large
compared to the predictions (3.13). Part of the dis-
crepancy could be removed by using improved average

Fxo. 10. Compari-
son of experimen-
tal and theoretical
values for summed
spectroscopic factors
for the T-upper ana-
log state and the T-
lower coniguration
state.
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'ik
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T- upper state
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'9 C. Glashausser, Ph. D. thesis, Princeton University (un-
published).

o L. L. Lee, Jr., and J. P. Schi8er, Phys. Rev. Letters 12, 108
(1964); Phys. Rev. 136, B405 (1964).' R. Sherr, B. F. Bayman, E. Rost, M. E. Rickey, and C. G.
Hoot, Phys. Rev. 139, B1272 (1965).

Ti Ti4 Cr 'Fe 3Fe Fe Ni Ni~Nj6'

42M. P. Fricke and G. R. Satchler, Phys. Rev. 139, 3567
(1965).

4' J. K. Dickens and F. G. Percy, Phys. Rev. 138, 31083
(1965).
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structure effects in more detail than is customary. This
is true even if the nuclear interior wave function is
irrelevant, e.g., Coulomb stripping or heavy-ion nucleon
transfer reactions. The method of coupled channels can
often be combined with convenient phenomenological
models to obtain more reliable form factors and spec-
troscopic information.

40 I l

50 55
MASS NUMBER A

I

60
4.0

Fro. 11. Potential-well radii Eo which give f7/2 separation
energies using OM well parameters a=0.65 F, A=25, and V=55
MeV plus a surface symmetry-energy term with V&=100 MeV.
The T-lower configuration-state energy is taken to be the spectro-
scopic-factor weighted average.

binding energies. This procedure accurately reproduces
the eGect of using a symmetry-energy term of surface
form (5.4) for different isotopes. Furthermore, the
changes in residual interactions, collective or otherwise,
between nearby nuclei are probably also of a surface
nature.

The confrontation of theory and experimental data3~
is displayed in Fig. 1.0. The D% calculations use average
optical parameters4' 4' and employ local-energy ap-
proximations to the effects of finite range44 and non-
locality. 4' The over-all agreement with experiment is
seen to be satisfactory, the low values for Ni being a
possible experimental diTiculty in detecting weak ~~

states.
The potential radii determined by 6tting the analog

and configuration4s fr~s seParation energies are shown
in Fig. 11. It is seen that the analog radii are 5—

10%%u~

larger than the corresponding coniguration radii and
that an approximate constancy in Es in the f7(s shell
(2&54) is observed. These features do not depend
sensitively on the parameters in the calculation (e.g.,
a reasonable volume symmetry-energy term gives the
same result). Since the proton component dominates in
the coupled system, this result can be interpreted as a
larger proton radius than that for a neutron in agree-
ment with the recent work of Soper. 4~

44 J.K. Dickens, R. M. Drisko, F. G. Percy, and G. R. Satchler,
Phys. Letters 15, 337 (1965). A range of 1.25 F is assumed.

45 S. A. Hjorth, J. X. Saladin, and G. R. Satchler, Phys. Rev.
138, 81425 (1965).A nonlocality parameter P =0.85 F is assumed
for the neutron and proton wells and P =0.54 F for the deuteron
well.

"A spectroscopic-factor weighted configuration energy is used
as in Ref. 41.

4' J. M. Soper (to be published).

VI. CONCLUSIONS

In the calculations of form factors for nuclear-strip-
ping experiments, it is often necessary to treat nuclear-
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APPENDIX

~e outline here the extension of Eq. (3.4) to fourth
order in the deformation parameter P. The radius of an
equipotential is generalized to fourth order

r r,P+PF, '(e) P'/4 +c,P—+cy'g, (A1)

where the constants c3 and c4 are determined by applying
the constant-volume assumption

r'drdQ = 4zr p3, (A2)

which determines c3 and c4'.

cs———(1/12') (5/4s. ) '~'(2200
~
20) '
=—4.7806X10 4, (A3)

C4= 0.

Expanding V(rs) in a Taylor series as in (3.4) yields
the 6nal result

where

V = V(r)+PA+P'B+P'C+P4D, (A4)

Here F denotes the spherical harmonic Fss(e, y) and
V =r"I d"V(r)/dr" j.

a= —~v„
B=F'(Vt+-,' Vs)+ (1/4s.)Vt,
C = —F'(Vt+ Vs+a' Vs) —(1/4s) F(2Vt+ Vs)+ caVt,
D= F'(Vt+-,s Vs+-', Vs+ (1/24) V4)

+ (3/4w) F'(V,+Vs+-s V,)
+csF(2Vt+ Vs)+(1/(4s. )')(Vt+-,' Vs) .


